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Abstract: To improve the accuracy of personnel positioning in underground coal mines, in this paper,
we propose a convolutional neural network (CNN) three-dimensional (3D) visible light positioning
(VLP) system based on the Inception-v2 module and efficient channel attention mechanism. The
system consists of two LEDs and four photodetectors (PDs), with the four PDs on the miner’s helmet.
Considering the height fluctuation of PD and the impact of wall reflection on the received light power,
we adopt the Inception module to perform a multi-scale extraction of the features of the received light
power, thus solving the limitation of the single-scale convolution kernel on the positioning accuracy.
In order to focus on the information that is more critical to positioning among the numerous input
features, giving different features of the optical power data corresponding weights, we use an efficient
channel attention mechanism to make the positioning model more accurate. The simulation results
show that the average positioning error of the system was 1.63 cm in the space of 6 m × 3 m × 3.6 m
when both the line-of-sight (LOS) and non-line-of-sight (NLOS) links were considered, with 90% of
the localization errors within 4.55 cm. During the experimental stage, the average positioning error
was 11.12 cm, with 90% of the positioning errors within 28.75 cm. These show that the system could
achieve centimeter-level positioning accuracy and meet the requirements for underground personnel
positioning in coal mines.

Keywords: visible light positioning (VLP); coal mines; three-dimensional (3D); Inception; efficient
channel attention; convolutional neural network (CNN)

1. Introduction

With the continuous complexity of the coal mine working environment and the im-
provement of safety requirements, the research on underground positioning technology in
coal mines has become an important field for coal mine safety management and production
efficiency improvement. During underground operations, inaccurate personnel positioning
can lead to the mislocation or misjudgment of a miner’s position, thereby increasing the risk
of accidents. For example, suppose the positioning system misjudges a miner’s location.
In that case, it may cause the worker to mistakenly enter a hazardous area or approach
dangerous equipment, increasing the likelihood of experiencing accidents and incidents.
Moreover, accurate personnel localization is critical for the emergency rescue of a coal fire,
landslides, or other accidents. Inaccurate positioning can impede rescuers from quickly
and accurately locating trapped personnel, resulting in a delayed emergency response time
and intensifying the difficulty and risk of rescue efforts. Accurate personnel location can
help to monitor and manage miners’ working status and duration. Ensuring the precise
positioning of underground coal mine personnel can improve the management of their
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entry and exit, thereby reducing the safety risk and management difficulty in coal mines.
Therefore, realizing the accurate positioning of underground personnel in coal mines is
essential to ensure the safe production and efficient operation of coal mines. Various posi-
tioning methods have been proposed to address the underground personnel positioning
challenge, including Wi-Fi positioning, Bluetooth positioning, radio frequency identifi-
cation (RFID), ultra-wideband (UWB) positioning, and others [1–4]. Wi-Fi positioning
technology has disadvantages such as complex hotspot acquisition and high power con-
sumption; Bluetooth positioning technology usually relies on Bluetooth hotspots deployed
in space, which requires precise arrangement and adjustment and increases the complexity
of system deployment and maintenance; RFID technology was first applied to personnel
positioning under the mines, but it has disadvantages such as a small transmission range
and low positioning accuracy; and UWB technology has a higher positioning accuracy,
but due to the broadband characteristics of UWB, it may produce interference with other
wireless signals, affecting the positioning accuracy and reliability. Moreover, realizing
high-precision UWB positioning requires specialized hardware equipment, which increases
the cost and deployment difficulties. Compared with these wireless technologies, visible
light communication (VLC) utilizes the visible light spectrum for data transmission and
communication and has advantages, including unrestricted operation within the wireless
spectrum, a high bandwidth capacity, strong anti-interference capabilities, and enhanced
security. Moreover, the prevalence of lighting devices within underground coal mine
environments facilitates the deployment of visible light positioning (VLP). By leveraging
existing lighting infrastructure, VLP presents a forward-looking solution to the challenge
of locating personnel in underground coal mines.

According to the different receivers, VLP is usually divided into an imaging type [5]
and a non-imaging type [6]. Imaging-based VLP employs a camera or image sensor to
capture visible light signals, utilizing image processing and computer vision technology
to determine the device’s position. The device’s location is determined by analyzing the
captured image’s features, textures, or markers. However, this approach necessitates
complex hardware, thus increasing the system’s overall complexity and cost. On the
other hand, non-imaging VLP does not rely on image data directly but utilizes parameters
that are extracted from the received visible light signal for localization. This method
primarily relies on signal measurement and processing techniques, such as Time of Arrival
(TOA), Time Difference of Arrival (TDOA), Angle of Arrival (AOA), and received signal
strength (RSS) [7–10]. Among these techniques, the fingerprint localization method based
on received signal strength has garnered extensive research attention due to its utilization
of simple hardware equipment and its high localization accuracy.

Machine learning and deep learning technologies have been widely used in the mining
industry, bringing many advantages to coal mine production and management. Jo et al. [11]
proposed an IoT technology prediction system for air quality pollutants in underground
mines. The system collects real-time air quality data using various sensors deployed in
underground mines and employs machine learning algorithms to analyze and predict the
data. Wang et al. [12] summarized the advantages and challenges of applying machine
learning and deep learning to classify microseismic events in mines, which provides
reliable technical support for mine safety and geologic disaster prevention. Li et al. [13]
proposed a hierarchical deep learning framework based on images used for coal and gangue
detection. This framework employs deep learning algorithms and utilizes a hierarchical
structure to solve the problem of coal and gangue differentiation in coal mines. These
studies indicate that introducing machine learning and deep learning technology provides
more intelligent and automated coal mine production and management solutions, thus
effectively improving efficiency, safety, and sustainability. Therefore, combining deep
learning and visible light positioning technology is feasible to accurately position people
who are underground in coal mines. More and more researchers are also applying deep
learning to visible light localization. By selecting suitable deep learning models and
optimizing them for specific positioning tasks, researchers can improve the models’ learning
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and generalization abilities, thereby enhancing the positioning accuracy and opening up
new possibilities.

Chen et al. [14] proposed a long short-term memory fully connected network (LSTM-
FCN)-based localization algorithm for implementing a VLP system with a single LED
and multiple photodetectors (PDs). Lin et al. [15] proposed a model replication technique
utilizing a position cell model to generate additional position samples and augment the
diversity of the training data. Wei et al. [16] developed a method employing a metaheuristic
algorithm to optimize the initial weights and thresholds of the extreme learning machine
(ELM), thereby improving localization accuracy. However, the use of an optimization-
seeking algorithm adds complexity to the model. Zhang et al. [17] presented a 3D indoor
visible light positioning system based on an artificial neural network with a hybrid phase
difference of arrival (PDOA) and RSS approach, enhancing the system stability in light
signal intensity variations and reducing the impact of modeling inaccuracies. However,
the effect of reflection was not considered. Presently, most visible light positioning studies
focus solely on 2D localization [18–20]. However, a reliable 3D localization method is
crucial for locating people underground in mines. This is because the heights of the miners
vary according to the job’s requirements, and height fluctuations can impact the positioning
accuracy. Conventional 3D positioning methods typically require at least three LEDs for
positioning [21,22]. These LEDs emit signals and communicate with a receiver to determine
the target’s location. However, this method has several limitations. First, multiple LEDs
need to be installed, increasing the complexity and cost of the system. Second, since the
signals emitted by the LEDs are reflected on surfaces such as the walls in the mine, the
traditional method ignores the effect of such reflections on the localization results. This
can lead to an increase in localization errors, especially in complex underground mine
environments. In addition, the PD’s tilt and the PD height’s fluctuation can also impact
the positioning accuracy, which are factors that are often not adequately considered in
conventional methods. Some existing 3D visible light positioning systems employ hybrid
algorithms [23–25], increasing the system complexity. To address these challenges and
enhance the accuracy and simplicity of underground mine localization, this paper proposes
a convolutional neural network (CNN) 3D visible light positioning system based on the
Inception-v2 module [26] and efficient channel attention (ECA) module [27]. In this study,
two LEDs were utilized as emitters and four PDs were used as receivers, and the effects
of the wall reflections and PDs’ tilts on localization were considered. Conventional con-
volutional neural networks often rely on stacking deeper convolutional layers to improve
performance, which increases the model’s parameter count and the risk of overfitting.
This paper employs the Inception module, enabling parallel operations of multiple con-
volutional and pooling layers with varying sizes. This approach yields multiple feature
representations of the input and reduces the computational complexity. Additionally, the
ECA module assigns weights to different channel features, extracting the most critical
features and ultimately enhancing the localization accuracy.

Its simplicity and ease of implementation characterize the proposed algorithmic model
in this paper. Simulation experiments have validated its efficacy in localizing personnel in
underground mines. The rest of this paper is organized as follows: Section 2 elucidates the
components of the visible light positioning model. Section 3 expounds the structure and
principles of Inception-ECANet. Section 4 explores the network parameters that influence
localization. Section 5 presents the simulation and experimental results. Lastly, Section 6
provides a conclusion to the study.

2. Visible Light Positioning Model
2.1. System Model

The visible light positioning system and receiver model designed in this study are
shown in Figure 1. In a space of 6 m × 3 m × 3.6 m, two LEDs are placed at the tunnel’s
ceiling. These LEDs serve as both a source of illumination and a means to transmit
positioning signals. Within the positioning space, the LEDs emit signals of identical
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frequency. The PDs on the miner’s helmet acts as a receiver to receive positioning signals.
The receiver is designed as a symmetric multi-PD model to adapt to various positioning
scenarios effectively. The central PD0 is positioned at the receiver’s midpoint, while the
three inclined PDi(i = 1, 2, 3) are symmetrically arranged around PD0. The positional
relationship between the horizontal PD0(xP, yP, zP) and the tilted PDi(xPi, yPi, zPi) is [28]

xPi = xP + l cos θ cos αi
yPi = yP + l cos θ cos αi
zPi = zP + l sin θ

, (1)

where l is the length of the line segment from PD0 to PDi, which is parallel to the inclined
plane; θ is the elevation angle of PDi; and αi is the angle between the projection of the line
connecting PD0 and PDi in the xoy plane and the positive direction of the x-axis.
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2.2. Channel Model

Indoor visible light communication systems can be categorized into line-of-sight (LOS)
propagation and non-line-of-sight (NLOS) propagation. For the LOS link model, the signal
propagates directly from the source to the receiver without interference from obstacles.
Assuming that the LED light source radiation adheres to the Lambert distribution, the
channel gain of the LOS link model is

HLOS(0) =

{
Ar(m+1)

2πd2 cosm(φ)Ts(ψ)g(ψ) cos(ψ), 0 ≤ ψ ≤ ψc
0 , else

, (2)

where Ar is the light detection area of the PD receiver; d is the linear distance between the
LED lamp and the PD receiver; φ is the LED lamp emission angle; Ts(ψ) is the transmittance
of the light filter; g(ψ) is the optical concentrator gain; ψc is the field of view of the receiver;
and m is the number of Lambert emission levels, which correlates with the LED’s half
power angle φ1/2, and the relationship is

m =
− ln 2

ln(cos φ1/2)
, (3)

The gain of the optical concentrator can be expressed as

g(ψ) =

{
n2

sin2 ψc
, 0 ≤ ψ ≤ ψc

0 , ψ > ψc
, (4)
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where n is the refractive index of the optical concentrator. The received power of the
receiver can be expressed as

Pr = Pt × HLOS(0), (5)

where Pt is the emitted power of the LED. Most of the investigated positioning methods
assume that the PD is positioned horizontally and that the LED lamp’s emission and
incidence angles are equal. However, during the actual positioning process, the receiver
may experience tilting due to the miner’s body movement. Consequently, the emission
angle φ of the LED lamp and the incidence angle ψ of the tilted PD undergo changes and
can be expressed as follows:

φ = cos−1
(

h
d

)
, (6)

ψ = cos−1

 →
vtilt ·

→
ntilt∥∥∥ →vtilt

∥∥∥ · ∥∥∥ →ntilt

∥∥∥
, (7)

where h is the vertical distance from the LED to the plane where the PD above the miner’s
head is located,

→
vtilt is the vector from the LED to the PD, and

→
ntilt is the normal vector

of the inclined plane. Let the coordinates of the LED be (xtxd, ytxd, ztxd), and let the co-
ordinates of the PD be (xrxd, yrxd, zrxd); then, the direction vector is

→
vtilt = (xtxd − xrxd,

ytxd − yrxd, ztxd − zrxd). If the normal vector of the horizontal PD when it is vertically up is
→
n = (0, 0, 1), then according to the geometric relationship, the normal vector of the tilted
PD is

→
ntilt = (cos(αt) sin(θt), sin(αt) sin(θt), cos(θt)), where αt is the azimuth of the PD and

θt is the tilt angle of the PD.
In indoor localization scenarios, it is crucial to consider both the LOS links and the

influence of the wall reflections. However, for the NLOS links, reflections beyond the first
order have a minimal impact on the visible light positioning. As a result, this paper focuses
solely on evaluating the impact of the primary reflection. To accomplish this, we divide the
surface of each wall into q microelements, each with an area denoted as ∆A. The channel
gain of the NLOS link can be expressed as [29]

H(1)
NLOS =

 m+1
2π2

q
∑

i=1

Arρ∆A cosm(φi) cos(αi) cos(βi) cos(ψi)

d2
Tid

2
Ri

, 0 ≤ ψi ≤ ψc

0 , else
, (8)

where q is the total number of reflective elements; p is the reflection coefficient; ∆A is the
area of reflective elements; dTi is the distance from the LED to the i-th reflective element;
dRi is the distance from the i-th reflective element to the receiver; φi is the emission angle of
the i-th reflection; αi and βi are the horizontal angle between the i-th reflective point and
the LED line and the horizontal angle between the i-th reflective point and the receiver line,
respectively; and ψi is the angle of incidence of the i-th reflection. In indoor visible light
positioning, the received power Pr of the PD can be expressed as follows when considering
the light transmission through the LOS link and NLOS link:

Pr = Pt(HLOS(0) + HNLOS(0)). (9)

3. Inception-ECANet Model
3.1. Convolutional Neural Network

Inspired by biological vision systems, convolutional neural networks combine multi-
layer convolution and pooling operations with a full connection layer to extract the features
and classify the input data. The convolutional layer filters the input through convolutional
operations and extracts the local features of the input data. The pooling layers are used to
downsample the data, reducing the parameter count while maintaining spatial invariance.
The fully connected layer maps the high-level features to different output classes. In this
study, the optical power data under investigation is one-dimensional. When applied to
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one-dimensional data, CNNs extract local and global features from the input sequence,
capturing the pattern and association information. However, one-dimensional CNNs also
possess limitations. The fixed perceptual field sizes of 1D convolutional operations prevent
dynamic adjustment according to the sequence length, resulting in constraints when han-
dling long-term dependencies and contextual information. Longer sequence inputs may
necessitate larger convolutional kernels and deeper networks to capture more comprehen-
sive feature representations. This parameter-sharing property of 1D convolutional layers
increases the model’s parameter count. To address these challenges, this paper introduces
the Inception structure and combines it with the ECA mechanism, thereby enhancing the
representation capability of the improved model.

3.2. Inception Structure

The structure of Inception-v2 is shown in Figure 2. Unlike the traditional sequential
connection of convolutional and pooling layers, the Inception-v2 module employs a distinct
approach [26]. It simultaneously conducts convolution and pooling operations of varying
sizes, such as 1 × 1, 3 × 3, and 5 × 5, enabling the network model to capture both global
information (through 3× 3 convolution) and local information (through 1 × 1 convolution).
By utilizing parallel convolutional layers, the Inception-v2 module performs feature ex-
traction on the input data, operating on the convolutional kernels of different scales and
combining their outputs. This approach facilitates the extraction of information regarding
the received optical power at multiple scales in the time domain, addressing the limitation
of localization accuracy imposed by single-scale convolution kernels.
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3.3. ECA Mechanism

After the Inception module processed the input data, the positioning model obtained
some optical power information with different characteristic dimensions. In order to further
obtain more and higher-dimensional feature information and give more weight to the more
important features, attention mechanisms need to be used. The attention mechanism is
a common technique in deep learning that enhances the model’s focus on the input and
extracts crucial feature information. This mechanism emulates the attention mechanism
that is observed in the human visual system, enabling the model to automatically select
and weigh the relevant parts of the input. This study utilizes the ECA mechanism, shown
in Figure 3, to extract the important weights for each channel in the input feature map by
adaptively weighting the channel dimensions [27]. Incorporating this mechanism aids in
reinforcing the representation of essential features and improving the model’s attention
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toward key features, thereby enhancing its overall performance. With the ECA mechanism,
it is possible to comprehensively capture the optical power features from the input and
utilize them more effectively, facilitating more accurate learning and inference by the model.

Photonics 2023, 10, x FOR PEER REVIEW 7 of 19 
 

 

 
Figure 2. Inception-v2 architecture. 

3.3. ECA Mechanism 
After the Inception module processed the input data, the positioning model obtained 

some optical power information with different characteristic dimensions. In order to fur-
ther obtain more and higher-dimensional feature information and give more weight to 
the more important features, attention mechanisms need to be used. The attention mech-
anism is a common technique in deep learning that enhances the model’s focus on the 
input and extracts crucial feature information. This mechanism emulates the attention 
mechanism that is observed in the human visual system, enabling the model to automat-
ically select and weigh the relevant parts of the input. This study utilizes the ECA mech-
anism, shown in Figure 3, to extract the important weights for each channel in the input 
feature map by adaptively weighting the channel dimensions [27]. Incorporating this 
mechanism aids in reinforcing the representation of essential features and improving the 
model’s attention toward key features, thereby enhancing its overall performance. With 
the ECA mechanism, it is possible to comprehensively capture the optical power features 
from the input and utilize them more effectively, facilitating more accurate learning and 
inference by the model. 

 
Figure 3. Efficient channel attention module. 

The ECA module, an ultra-lightweight attention module, significantly enhances the 
performance of deep neural networks without increasing the model complexity. One of 
its key advantages over the traditional SENet [30] module lies in its improved local cross-
channel interaction strategy. The ECA module achieves moderate cross-channel interac-
tion by directly establishing connections between the channels and weights, reducing the 
model complexity while preserving performance. Despite introducing only a small 

Figure 3. Efficient channel attention module.

The ECA module, an ultra-lightweight attention module, significantly enhances the
performance of deep neural networks without increasing the model complexity. One of
its key advantages over the traditional SENet [30] module lies in its improved local cross-
channel interaction strategy. The ECA module achieves moderate cross-channel interaction
by directly establishing connections between the channels and weights, reducing the model
complexity while preserving performance. Despite introducing only a small number of
parameters, the ECA module yields substantial performance improvements. Additionally,
the ECA module employs an adaptive method to determine the size of the one-dimensional
convolutional kernel. Specifically, it utilizes a fast 1D convolution of size K to facilitate
local cross-channel interactions, with K representing the coverage of such interactions. To
avoid a manual adjustment of K, the ECA module utilizes an adaptive approach to set its
size proportionally to the channel dimension, generating attention weights as outlined in
Algorithm 1.

Algorithm 1. The ECA module generates attention-weighting processes.

Input: feature map x of dimension H ×W × C,
1 Define t = int(abs((log(C,2) + b)/gamma)), (b = 1, gamma = 2)
2 Set the size of the adaptive convolution kernel k,

k = t if t % 2 else t + 1
3 Global average pooling of the input feature map x,

y = tf.keras.layers.GlobalAveragePooling1D(x)
4 A 1-dimensional convolution operation with a convolution kernel of size k is performed on the
output y,

Conv = tf.keras.layers.Conv1D(1,kernel size = k, padding= ‘same’)
5 Sigmoid activation function is used to map the weights between (0,1),

y = tf.sigmoid(y)
6 Weighting the attention weights to the original input to obtain the final output,

y = Multiply()([x, y])
Output: 1×W×C channel weighted feature y.

3.4. Inception-ECANet Network Framework

We propose a novel combined model called the Inception-ECANet for visible light 3D
positioning. The overall architecture of the model is shown in Figure 4. The model takes one-
dimensional optical power data as the input and processes them through a convolutional
layer with a large convolutional kernel. This layer effectively extracts valuable information
from the original optical power data. After the initial convolutional block processing, the
model obtains information across different feature dimensions. To further capture the multi-
scale and comprehensive features, the Inception structure is incorporated, combined with
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the ECA mechanism, which allows for the appropriate weighting of the different channel
features. Subsequently, a maximum pooling layer is added to reduce the computational
burden and parameter count, and to eliminate redundant information, thereby enhancing
the model’s computational efficiency and generalization capability. A flattening layer
is introduced after the pooling layer to establish connectivity with the neurons in the
fully connected layer. Finally, the output layer produces three coordinate values as the
model’s output.
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4. Positioning Process
4.1. Building a Fingerprint Database

The miner will move randomly during work, and the height of the PD above the
miner’s head varies. In this study, we set the maximum height of the PD to 1.8 m. Two
LEDs are chosen as the radiation light sources, positioned at different locations above
the miner’s head. The coordinates of the LEDs are denoted as L1 (2, 1.5, and 3.6) and
L2 (4, 1.5, and 3.6), respectively. To achieve the accurate positioning of the miner, the
positioning process is divided into an offline phase and an online phase. In the offline
phase, the positioning space of 6 m × 3 m × 1.8 m is divided into smaller spaces of
0.2 m × 0.2 m × 0.2 m. For each small space, the center point of the top square area is
selected as the reference point, and four PDs are used at each reference point to receive the
signal emitted by the LED light source. A fingerprint database is constructed by recording
each reference point’s optical power values and their corresponding location coordinates.
The fingerprint data of the i-th sampling point, denoted as Ri, can be expressed as

Ri =
(

Pij, Pij, Pij, Pij, xi, yi, zi
)

(10)

where Pij is the optical power received by the j-th PD at the i-th reference point, and
(xi, yi, zi) are the 3D location coordinates of the i-th reference point. Thus, the complete
fingerprint database can be expressed as Rdb = (R1, R2, R3 , · · · ,RN)

T, and N is the number
of reference points.

During the online localization phase, the received optical power values from the PD
are utilized to predict the real-time position coordinates of the miners. To evaluate the
effectiveness of the localization system, the localization space was further partitioned into
smaller units measuring 0.25 m × 0.25 m × 0.25 m. The data collected from these reference
points served as the testing set. Through the testing set evaluation, we could objectively
assess the performance and accuracy of the positioning system.

4.2. Inception-ECANet Parameter Selection

During the design of the Inception-ECANet model, numerous key parameters require
optimization, such as the number of convolutional layers, the size and quantity of convolu-
tional kernels, the learning rate, the choice of the optimizer, the number of iterations, the
batch size, and the selection of activation functions. These parameters significantly affect
the overall accuracy and computational efficiency of the network. As a result, selecting the
appropriate parameter configuration meticulously is vital for constructing the localization
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model. The following sections will compare and analyze various hyperparameter values to
identify the optimal parameter combination.

The choice of the batch size significantly affects the accuracy of the localization model.
In this study, the compared batch sizes were 16, 32, 64, 128, and 256, and the results are
shown in Table 1. From Table 1, one can see that using a larger batch size enables a better
utilization of parallel computing, resulting in faster training. However, this may lead to
instability in the parameter updates and increase the likelihood of the model converging
to local optima. On the other hand, selecting a smaller batch size introduces more noise
during training, as each parameter update is based on a smaller number of samples. This
leads to slower training and requires more iterations to achieve the same performance level.
Considering the available computational resources and training effects, we chose a batch
size of 128 to train the model in this study.

Table 1. The influence of batch size on the accuracy of the model.

Batch Size Average Error/m Maximum Error/m Training Time/s

16 0.01849 0.26080 1548.75
32 0.01745 0.22399 920.64
64 0.01716 0.23451 474.68

128 0.01634 0.14717 271.76
256 0.01763 0.19478 187.77

The number of convolutional kernels in the Inception module significantly influences
the model’s complexity and representational power. Choosing a smaller number of convo-
lutional kernels results in a more simple and abstract feature representation. On the other
hand, a larger number of convolutional kernels enhances the model’s ability to transform
features, leading to a richer and more complex representation. However, excessive convolu-
tional kernels can lead to model overfitting and slower training. Therefore, when designing
the Inception module, a trade-off must be made between the localization accuracy and
the model complexity when choosing the number of convolutional kernels. Based on this
consideration and after repeated experimental comparisons, the model parameters used in
this paper were chosen as shown in Table 2.

Table 2. Model parameters.

Layer Name (Convolution Kernel)
Size

Number of
Convolution Kernels

(Convolution Kernel)
Step Size

Convolutional layer 3 × 1 128 1 × 1

Inception module

Convolutional layer 1 × 1 16 1×1
Convolutional layer 1 × 1/3 × 1 16/64 1×1
Convolutional layer 1 × 1/3 × 1/3 × 1 16/32/64 1×1

Pooling layer 3 × 1/1 × 1 16 1×1
Attention module 5 × 1 1 1 × 1

Inception module

Convolutional layer 1 × 1 32 1×1
Convolutional layer 1 × 1/3 × 1 16/48 1×1
Convolutional layer 1 × 1/3 × 1/3 × 1 16/32/48 1×1

Pooling layer 3 × 1/1 × 1 32 1×1
Attention module 5 × 1 1 1 × 1

Pooling layer 2 × 1 — 2 × 1
Fully connected layer 3 — —

During model training, the input data consist of optical power data from various
heights. To ensure training stability and improve the convergence speed, it is essential
to normalize the original input data. The mean–variance normalization expression is
as follows:

Rr
′ =

Rr − µ

σ
, (11)
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where Rr
′ is the normalized data, Rr is the received optical power, and µ and σ are the

mean and standard deviation of the sample data.
Several optimization algorithms, including stochastic gradient descent (SGD), Ada-

grad, RMSprop, Adam, and Adadelta, were compared by adjusting the learning rate to
determine the most suitable one for the localization model. The impact of the different
optimization algorithms on the root mean square error of the localization model at various
learning rates is shown in Figure 5. Notably, the Adam optimization algorithm achieved
the smallest root mean square error at a learning rate of 0.001. Therefore, we selected
the Adam algorithm with a learning rate of 0.001 to train Inception-ECANet, which can
improve the convergence speed and performance of the model, making it better suited for
localization tasks.
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To assess the performance of the Inception-ECANet model and improve the prediction
accuracy, we incorporated a loss function as a learning criterion to guide the training
process. The loss function plays a vital role in training and evaluating the localization
model. For prediction problems, the mean square error (MSE) is a widely employed
loss function. Reducing the mean square error facilitates the performance optimization
of the positioning model, leading to an enhanced prediction accuracy. Its mathematical
expression is

EMSE =
1
N

N

∑
i=1

[
(x̂i − xi)

2 + (ŷi − yi)
2 + (ẑi − zi)

2
]
, (12)
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where N is the number of reference points, (x̂i, ŷi, ẑi) are the predicted position coordinates
of the i-th reference point of the positioning model, and (xi, yi, zi) are the real position
coordinates of the first reference point.

Once the localization model is trained, it is essential to assess whether the model meets
the localization accuracy requirements. To achieve this, the validation set is used to perform
localization predictions on the trained model. The magnitude of the localization error is
then analyzed using the root mean square error (RMSE), which offers a comprehensive
measure of the prediction error by calculating the square root of the average error between
the predicted and actual values. The mathematical expression of the RMSE is

ERMSE =

√√√√ 1
N

N

∑
i=1

[
(x̂i − xi)

2 + (ŷi − yi)
2 + (ẑi − zi)

2
]
. (13)

5. Simulation and Experimental Analysis
5.1. Simulation Analysis

To assess the performance of the proposed Inception-ECANet localization method, we
conducted modeling and simulation using the Python3.9 compiler. The Inception-ECANet
was implemented in TensorFlow 2.10 and trained on an NVIDIA RTX 4090. During the
training process, we utilized the mean square error as the loss function and employed the
Adam optimization algorithm with an initial learning rate of 0.001. The model was trained
for 1400 epochs, using a batch size of 128. For the localization space, measuring 6 m × 3 m
× 1.8 m, we uniformly divided it into smaller spaces with side lengths of 0.2 m. Each small
space’s center point in the top square area was selected as a reference point. The received
optical power value and the position coordinates of these reference points were used as
the training set data to train the Inception-ECANet model, thus establishing a prediction
model for the visible light positioning method in mines. Subsequently, the localization
space was further divided into small spaces with a side length of 0.25 m. The received
optical power values and the coordinates from these points were utilized as the testing
set data to evaluate the performance of the trained localization model. The simulation
parameters are shown in Table 3.

Table 3. Simulation parameters.

Parameter Value

Room size/m×m×m 6 × 3 × 3.6
Height of positioning space/m 0–1.8

Position of LED/m (2, 1.5, 3.6); (4, 1.5, 3.6)
Power of each LED bulb Pt/W 15

Field of view ψc/
(◦)

90
Half power angles of LED φ1/2/

(◦)
70

Tilt angle of PD θ/
(◦)

30
Azimuth of PDs (α1, α2, α3)/

(◦)
0,90,180

Effective area of PD Ar/m2 0.0001
Gain of optical filter Ts(ψ) 1

Reflection coefficient ρ 0.7
Reflection surface element area ∆ A/m2 0.01

Distance from PD0 to PDi l/m 0.05
Refractive index of optical concentrator n 1.5

The training and validation sets are selected to train and test the localization model,
and the predicted 3D localization distribution of the model obtained is shown in Figure 6.
In order to visually represent the localization error, the localization error distribution of the
PD located at different heights is shown in Figure 7.
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Figure 6. The model’s predictions of the 3D positioning distribution.

From Figures 6 and 7, it is evident that the proposed positioning model exhibits
exceptional performance in 3D space. With an average positioning error of only 1.63 cm
and a maximum positioning error of 14.71 cm, the model achieves centimeter-level accuracy,
meeting the precise requirements of mine positioning. Additionally, it was observed that
the positioning model exhibits larger errors in the edge and corner regions. These errors can
be attributed to the longer path that light must travel to reach these areas and the greater
angular deviation from the photodetector. When the light enters the photodetector at a
steeper angle, it fails to be fully captured, resulting in the attenuation of the light intensity
and an increase in the localization error.

To investigate the impact of different submodules in Inception-ECANet on the local-
ization accuracy, we conducted experiments, and the comparison results of the localization
errors after incorporating various submodules are presented in Table 4.

Table 4. Comparison result of positioning error after adding different submodules.

Positioning Algorithm Average Error/m Maximum Error/m Training Time/s

CNN 0.02249 0.25562 218.01
CNN + ECA 0.01825 0.20091 228.40

CNN + Inception-v2 0.01724 0.18514 275.36
CNN + Inceptionv2 + ECA 0.01634 0.14717 295.42

As seen in Table 4, adding two submodules significantly enhances the localization accu-
racy of the positioning model. Regarding the individual submodules, the CNN + Inception-v2
module demonstrates a higher accuracy than the CNN + ECA module, indicating the su-
perior effectiveness of the Inception-v2 module in improving the localization accuracy.
The Inception-v2 module’s advantage lies in its utilization of a multi-scale convolutional
kernel, which enables the extraction of more detailed and informative features. In con-
trast, the attention mechanism employs a single convolutional kernel, resulting in limited
improvements in the localization accuracy. Furthermore, the combination of these two
submodules shows more significant improvements in the localization accuracy compared to
each submodule alone. Upon incorporating the Inception-v2 module and the ECA module,
the average localization error is reduced by 27.35%, and the maximum localization error is
reduced by 42.43%. These outcomes signify that the fusion of the Inception-v2 module and
the ECA module enhances the network’s feature extraction capability, thereby improving
the localization accuracy of the model.
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Figure 7. Positioning error distribution of receiving plane at different heights. (a) Height = 0 m;
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(g) height = 1.5 m; (h) height = 1.75 m.
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5.2. Experimental Analysis

The proposed positioning model in this paper demonstrates favorable performance
in the personnel positioning within underground coal mines under simulated conditions.
However, it is essential to acknowledge the disparities between the actual application
environment and the simulation conditions. To further validate the effectiveness of the
proposed positioning model, we constructed a simulated experimental scenario with
dimensions of 6 m × 3 m × 3.6 m, as shown in Figure 8. During the experiment, two LEDs
with a 15 W emitting power served as the emitters. LED1 was positioned at coordinates
(2, 1.5, and 3.6), while LED2 was located at (4, 1.5, and 3.6). The experimental space
was enclosed with a black cloth to simulate real-world conditions, and four S1133 silicon
photodiodes were utilized as the receiving terminals.
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Figure 8. Simulation experiment scene.

We used a stand to position the PD at various height positions to acquire data, simu-
lating the receiver’s height variation during the miner’s work. During experiments, we
uniformly divided the length and width of the positioning space with 0.2 m spacing and
selected four typical heights (0 m, 0.6 m, 1.2 m, and 1.8 m) to collect data at the divided
reference points. The collected data were then used as the training set to train the model. To
validate the accuracy of the localization model, we further divided the localization space at
a spacing of 0.25 m and used the collected data as the validation set. To reduce the impact of
LED light fluctuations on the results, we performed ten acquisitions of optical power data
at each reference point and used the average value as the input for the localization model.

After testing, the positioning model exhibited an average positioning error of 11.12 cm
in 3D space, with a maximum positioning error of 59.54 cm. Furthermore, 90% of the
positioning error fell within 28.75 cm. The cumulative distribution of the positioning error
is shown in Figure 9.
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To investigate the impact of height on the positioning accuracy, we compared the
positioning errors at various heights, as detailed in Table 5. The results in Table 5 show
that the receiver height significantly influences the positioning errors. This effect can be
attributed to the increased light deficit area between the two light sources as the height
increases, resulting in a more significant variability of optical power values across the
receiving plane. This variability has implications for the regularity and similarity of
received data, subsequently affecting the data fitting during network training and the
accuracy of the predicted results on the validation set, thus leading to an increase in the
localization error.

Table 5. Three-dimensional positioning errors at different heights.

Height/m Average Error/m Maximum Error/m Minimum Error/m

0 0.08729 0.47930 0.01303
0.6 0.11902 0.57127 0.01223
1.2 0.12369 0.56821 0.00649
1.8 0.11129 0.59536 0.01730

The proposed algorithm in this study was compared with several other localization
methods, namely the Backpropagation Neural Network (BPNN), Recurrent Neural Net-
work (RNN), long short-term memory network (LSTM), and CNN. The localization errors
of these localization methods are shown in Table 6. The results clearly demonstrate that
the algorithm proposed in this paper significantly enhances the localization accuracy. In
comparison to the BPNN, the proposed algorithm reduced the average localization error by
33.35% and reduced the maximum localization error by 32.55%. Similarly, when compared
with the RNN, the average localization error was reduced by 48.19%, and the maximum
localization error decreased by 58.13%. In contrast, in comparison to the LSTM, the average
localization error was reduced by 49.56%, and the maximum localization error decreased by
56.56%. Moreover, compared with the CNN, the proposed algorithm achieved a reduction
of 13.96% in the average localization error and a reduction of 27.70% in the maximum
localization error.
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Table 6. Positioning errors of different neural network localization methods.

Positioning Algorithm Average Error/m Maximum Error/m

BPNN 0.16684 0.88266
RNN 0.21462 1.42188
LSTM 0.22046 1.37061
CNN 0.12924 0.82350

Inception-ECANet 0.11120 0.59536

To provide a more intuitive demonstration of the localization effect, a comparison of
the cumulative distribution of localization errors among the five algorithms is shown in
Figure 10. It can be observed that 90% of the localization errors of the proposed localiza-
tion method are less than 28.75 cm. In contrast, for the other four localization methods
(BPNN, RNN, LSTM, and CNN), 90% of their localization errors are below 44.28 cm,
58.53 cm, 61.13 cm, and 34.28 cm, respectively. This comparison highlights that the pro-
posed Inception-ECANet localization method exhibits significantly lower localization
errors overall.

Photonics 2023, 10, x FOR PEER REVIEW 17 of 19 
 

 

Table 6. Positioning errors of different neural network localization methods. 

Positioning Algorithm Average Error/m Maximum Error/m 

BPNN 0.16684 0.88266 

RNN 0.21462 1.42188 

LSTM 0.22046 1.37061 

CNN 0.12924 0.82350 

Inception-ECANet 0.11120 0.59536 

To provide a more intuitive demonstration of the localization effect, a comparison of 

the cumulative distribution of localization errors among the five algorithms is shown in 

Figure 10. It can be observed that 90% of the localization errors of the proposed localiza-

tion method are less than 28.75 cm. In contrast, for the other four localization methods 

(BPNN, RNN, LSTM, and CNN), 90% of their localization errors are below 44.28 cm, 58.53 

cm, 61.13 cm, and 34.28 cm, respectively. This comparison highlights that the proposed 

Inception-ECANet localization method exhibits significantly lower localization errors 

overall. 

 

Figure 10. Cumulative distribution of positioning errors for different neural network localization 

methods. 

6. Conclusions 

We proposed a convolutional neural network visible light 3D localization system for 

localizing underground coal mine personnel by combining the Inception-v2 and ECA 

modules. The system employed two LEDs as transmitting base stations and four PDs 

mounted on miners’ helmets as receivers. The optical power data acquired from the re-

ceivers are used to train the Inception-ECANet model, enabling a precise prediction of the 

position coordinates. The simulation results demonstrate that within a 6 m × 3 m × 3.6 m 

space, the Inception-ECANet localization method achieves an average error of 1.63cm and 

a maximum error of 14.71 cm, with 90% of the localization errors below 4.55 cm. An ex-

perimental validation further confirmed the effectiveness of the proposed method, achiev-

ing an average error of 11.12 cm and a maximum error of 59.54 cm within the same-sized 

localization space. It was worth noting that compared to four other positioning methods 

(BPNN, RNN, LSTM, and CNN), the proposed positioning method in this paper demon-

strates outstanding performance. The research results show that when using this method, 

90% of the positioning errors are within 28.75 cm, which is far superior to the other four 

positioning methods. Compared to the BPNN, the algorithm reduced the average posi-

tioning error by 33.35%. Similarly, compared to the RNN, the average positioning error 

was reduced by 48.19%. Compared to the LSTM, the average positioning error was re-

duced by 49.56%. Furthermore, the proposed algorithm reduced the average positioning 

Figure 10. Cumulative distribution of positioning errors for different neural network localization methods.

6. Conclusions

We proposed a convolutional neural network visible light 3D localization system
for localizing underground coal mine personnel by combining the Inception-v2 and ECA
modules. The system employed two LEDs as transmitting base stations and four PDs
mounted on miners’ helmets as receivers. The optical power data acquired from the
receivers are used to train the Inception-ECANet model, enabling a precise prediction of the
position coordinates. The simulation results demonstrate that within a 6 m × 3 m × 3.6 m
space, the Inception-ECANet localization method achieves an average error of 1.63cm
and a maximum error of 14.71 cm, with 90% of the localization errors below 4.55 cm.
An experimental validation further confirmed the effectiveness of the proposed method,
achieving an average error of 11.12 cm and a maximum error of 59.54 cm within the same-
sized localization space. It was worth noting that compared to four other positioning
methods (BPNN, RNN, LSTM, and CNN), the proposed positioning method in this paper
demonstrates outstanding performance. The research results show that when using this
method, 90% of the positioning errors are within 28.75 cm, which is far superior to the other
four positioning methods. Compared to the BPNN, the algorithm reduced the average
positioning error by 33.35%. Similarly, compared to the RNN, the average positioning
error was reduced by 48.19%. Compared to the LSTM, the average positioning error was
reduced by 49.56%. Furthermore, the proposed algorithm reduced the average positioning
error by 13.96% compared to the CNN. Through a comprehensive comparative analysis, it
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can be seen that the positioning method proposed in this paper exhibits lower positioning
errors, which further validates the superiority and practicality of the proposed positioning
algorithm in underground personnel positioning in coal mines.
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