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Abstract: Fiber-optic hydrophone (FOH) has significant potential in many applications of hydroa-
coustic sensing and underwater communication. A novel path-matched differential interferometer
fiber optic hydrophone (PMDI-FOH) approach incorporating an integrated-optic component (IOC) is
presented in this paper. It is presented to meet the demands for high-quality dynamic measurements,
which solves the problems with the conventional homodyne detection system’s low modulation fre-
quency. The IOC functions as a phase-generated carrier (PGC) component. The scheme is investigated
both in theory and experiments. The theoretical and experimental results verify the effectiveness
of the proposed scheme. It achieves a high SNR of up to 20.29 dB demodulations. The proposed
system is cost-effective and has excellent potential in building next-generation underwater sensing
and communication networks.

Keywords: path-matched differential interferometer fiber optic hydrophones (PMDI-FOH); integrated-
optic component (IOC); phase-generated carrier (PGC); homodyne detection

1. Introduction

Fiber-optic hydrophone (FOH), a novel underwater acoustic signal sensor based on
fiber optic and optoelectronic technology, has been researched extensively. It converts hy-
droacoustic signals into optical signals through optical detection approaches and transmits
them to the signal processor through the optical fiber to extract acoustic signal information.
It has significant potential in hydroacoustic sensing [1–3] and underwater communication
applications [4,5]. Due to its superior features, including immunity to electromagnetic in-
terference, high sensitivity, wide dynamic range, and small size, it is an effective substitute
for the traditional piezoelectric ceramic sensor [6,7].

FOHs can be divided into polarization type, intensity (amplitude), frequency, inter-
ference, and fiber-grating type by different sensing schemes [3,8–10]. The interferometric
FOH is the most promising and studied [10]. The basic principle of interferometric FOHs is
that the interferometer effectively converts the external sound field information into phase
change information [11].

With a proper phase detection method, phase change information can be extracted. The
widely accepted phase detection techniques are based on providing the sensing information
encoded on a carrier signal, and include the phase generated carrier (PGC) demodulation
method [12–16], heterodyne demodulation method [17–19], and 3 × 3 diversity detection
method [20,21]. PGC is widely adopted due to its wide dynamic range, high sensitivity, and
good linearity [22]. A homodyne detection method includes a broad class of interrogation
approaches [8]. Usually, a sinusoidally modulated optical carrier generates a signal in an
interferometric FOH system. A high modulation frequency is required when the signal to
be measured is high-frequency and has a large amplitude [22]. The commonly used PGC
component for an interferometric FOH is the piezoelectric ceramic (PZT) [9,23]. However,
the modulation frequency of the PZT is usually as low as dozens of kHz. Moreover, the
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PZT has several disadvantages, such as being bulky, expensive, and having low-level
integration. Since the modulation frequency is limited by the modulation bandwidth of
the modulation device, it is possible to use a modulation device with a large modulation
bandwidth. Several works on phase modulators have recently been developed to meet
the demands of PGC-based FOH systems, such as the thin piezoelectric sheet (TPS) [24].
The TPS has some drawbacks. Although the TPS is highly integrated and miniature, its
modulation bandwidth is limited to 50–300 Hz [24]. What is more, it needs a high voltage to
drive. A Lithium Niobate (LiNbO3) component has a low drive voltage and an ultra-high
modulation bandwidth of up to hundreds of GHz [25–27], providing an alternative research
idea.

In addition, multi-sensor operation is critical to using FOHs in most practical appli-
cations [9]. The multi-sensor structures can be divided into two categories: (a) separate
and (b) multiplexed architectures [28]. Based on the different interferometer architectures,
the separate architectures of FOHs can be further divided into four main configurations:
Mach–Zehnder interferometer (MZI), Michelson interferometer (MI), Fabry–Perot inter-
ferometer (FPI), and Sagnac interferometer (SI), among which MZI and MI are widely
used due to their simple structure, high sensitivity, and easy array formation [8,10,29]. To
form a multiplexing system, time-division multiplexing (TDM), frequency-division mul-
tiplexing (FDM), wavelength-division multiplexing (WDM), code-division multiplexing
(CDM), and space-division multiplexing (SDM) are the most commonly used multiplexing
technologies [10]. Path-matched interferometer fiber optic hydrophones (PMDI-FOH), as
s kind of simplified TDM architecture [9], are commonly used in the FOH multiplexing
system [30,31]. It has become an attractive alternative to conventional Michelson-FOH
due to its many features [9,32], including a simple “wet-end” structure, high light energy
utilization, and low phase noise [30,32].

A novel PGC-based PMDI-FOH design incorporating an integrated-optic component
(IOC) is presented in this paper. The IOC device is a semi-custom phase modulator
fabricated in Y-cut Z-propagation LiNbO3 by Titanium-indiffused technology. It is a
critical component in the scheme, used as a PGC component. Compared with PZT, the
IOC modulator achieves a much higher modulation frequency. Theoretical analysis and
experiments are conducted to verify the effectiveness of the scheme. The proposed system
achieves a high SNR of up to 20.29 dB demodulations. It solves the problems with a
conventional homodyne detection system’s low modulation frequency. The excellent
experimental results suggest that the scheme has good potential in large dynamic and
high-frequency detection applications.

2. System Design and Principle
2.1. PMDI-FOH System Design

To simplify the array architecture, a path-matched differential interferometer (PMDI).
is used in multiplexing FOHs. The PMDI-FOH achieves equal-arm interference by time
delay matching. It consists of three major components: (a) a compensating interferometer
(CIF) which converts modulations into phase modulations; (b) a sensing array which
converts the acoustic pressure into a measurable parameter in amplitude, wavelength,
or frequency of the light passing through the fiber through respective modulations; and
(c) a phase demodulator which interrogates the phase modulations encountered by the
interferometer.

The proposed PMDI-FOH system using a PMDI structure is shown in Figure 1. The
light emerging from a narrow-linewidth laser (NLL) passes through an optical isolator.
Then, it enters an acoustic-optic modulator (AOM) to generate an optical pulse. The AOM is
switched by a programmable pulse generator (PPG) with a duty cycle, which is determined
by the number of sensors in the sensing array. Passing through the AOM, the pulse is
split by a 50:50 PM coupler into an unbalanced Mach–Zehnder interferometer (MZI). The
MZI, as the CIF, generates periodic dual pulses. The short path propagates through the
IOC phase modulator (IOC MOD), and the long path is through a delay coil. The length
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of the coil is 2L. The IOC MOD is modulated by an arbitrary function generator (AFG).
The generated dual pulse injects into the sensing array through an optical circulator. The
sensing array consists of several in-line Michelson interferometers (MIs). It uses several
Faraday rotation mirrors (FRMs), 1 × 2 couplers, and delay coils. The length of each delay
coil is L. They are also used as sensors in the system, labeled S1 ... Sn−2, Sn−1, Sn, and Sn+1.
The couplers are labeled C1 ... Cn−2, Cn−1, Cn, and Cn+1. Additionally, the FRMs are labeled
FRM1 ... FRMn−2, FRMn−1, FRMn, and FRMn+1. Notably, the FRMs applying a double pass
efficiently cancel all polarization rotation effects in the delay fibers [9].
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Figure 1. Schematic of the IOC-based PMDI-FOH system (PM: polarization-maintaining, SM: single
mode.

A pulse time sequence is formed after the sensing array returns a series of pulses. The
interval of each pulse is τ = 2nL

c . In each pulse trace, the reflected pulse P1 and reflected
pulse P2 overlap in the time sequence. For the reflected pulse P1 an P2, the optical field can
be expressed as follows [33]:

E1 = A1ej[ωt+ϕs(t)+ϕ1] (1)

E2 = A2ej[ωt+ϕm(t)+ϕ2] (2)

where A1 and A2 are the amplitude of optical waves, ω is the frequency for the laser source,
ϕ1 and ϕ2 are the initial phases of E1 and E2, respectively, ϕs(t) is the time-dependent
phase signal of interest, and ϕm(t) is the phase change introduced by the IOC modulator.
The two overlapped pulses interfere [33]:

I =
〈
(E1 + E2)(E1 + E2)

∗〉 = A2
1 + A2

2 + 2A1 A2cos[ϕs(t)− ϕm(t) + ϕ0] (3)

where ϕ0 = ϕ1 − ϕ2 is the initial phase for the interference pulse.
Thus, the interference pulses carry sensing and phase-modulated information in the

photodetector (PD). Acquired by the high-speed data acquisition (DAQ) card, the data are
transferred to a personal computer (PC) and processed. With a proper phase detection
method, the acoustic signals can be demodulated.

Additionally, it is essential to consider how pulse timing affects signal interference
in a PMDI-FOH system. Figure 2 depicts the section of the sensor array in Figure 1. An
unbalanced MI is created between positions B and C as a separate sensor, enclosing the
Sn with FRMn and FRMn1, respectively. Due to the double pass time of the latter through
each sensor, the first pulse P1 is ahead of the second pulse P2 by the separation time
τs = τ

2 . At time t, pulse P1 enters the interferometer at position B, and pulse P2 enters
the subnetwork at position A. The pulses will span at any time. Thus, the two pulse-span
sensors, Sn−1 and Sn−2, will span. Then, the time differential interferometer is formed
between A and C. It is clear that pulse P2 carries no phase information with respect to
A at time t, while pulse P1 acquires a phase ϕSn−1(t) + ϕSn−2(t) at B. At time t + τs, the
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first pulse P1, initially at B, has traveled twice through sensor Sn after reflecting from
the FRMn to merge at position D with the second pulse P2. The pulse P2 has traveled
through Sn−2 and Sn−1 and has reflected in mirror FRMn−1. At time t + τs, the phase
received by P1 through the interferometer is 2ϕSn−1(t + τs), while the phase received by
P2 is ϕSn−1(t + τs) + ϕSn−2(t + τs). In the detector, the common-mode phase information
received by the two pulses returning together to the PD at location D is differenced, leaving
only the net phase collected across the interferometer arms.
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However, the optical switches, such as the AOM that generate the light pulse, have a
limited extinction ratio (ER), and background or leakage light is present after the device
is turned “off”. The leakage light enters in the sensor array, which introduces cross-talk
noises in the PMDI-FOH system. For a TDM system, the finite ER is the main cause of
cross-talk noise [9,34]. A high “on-off” ER optical switch of 50 dB or more is required for
large-scale and high-performance FOH array systems [9,35]. The proposed system shown
in Figure 1 uses the AOM as the optical switch. Thus, the ER of the AOM is required to be
higher than 50 dB.

2.2. IOC-Based Phase Modulator

In the PDMI-FOH system, the IOC-based phase modulator is the critical component.
It is used as a PGC component. It differs from conventional PGC-based systems, usually
PZT [23,24]. It is a semi-custom device fabricated in Y-cut Z-propagation LiNbO3 by
Titanium-indiffused technology. It consists of a single, through the optical waveguide.
Although Y-cut crystals have lower sensitivity to an electric field than Z-cut ones, they are
proven to achieve suitable temperature stability [36–38].

The mechanism of the phase modulator is the Pockels effect. A voltage V is applied to
the waveguide’s electrodes, which causes a change in the refractive index of the LiNbO3
crystals. When the optical waves pass through the waveguide, the phase changes are
proportional to the amplitude of the voltage. After the light polarized along the Z-axis
passes through the optical waveguide, the phase change caused by the electro-optical effect
is [30,39]:

ϕm = πn3
e γ22Γ

Vl
Gλ

(4)

where ne is the extraordinary refractive index, γ22 is the electro-optic coefficient of the
LiNbO3 crystals, and Γ is an electro-optic overlap integral factor. It implies the strength of
the interaction between the optical and electric fields. Usually, it is between 0 and 1. l is the
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length of the electrodes, G is electrode gap width, and λ is the wavelength of the optical
light in the waveguide.

If the definition of the half-wave voltage of the LiNbO3 waveguide is [40]:

Vπ =
λG

n3
e γ22Γ

(5)

Then, Equation (4) can be simplified as [30,40]:

ϕm = π
V
Vπ

(6)

2.3. PGC-Based Demodulation Method

The PGC demodulation technique extracts the phase information from the proposed
PMDI-FOH system. The PGC technique introduces phase modulation outside the signal
bandwidth. The modulation signal carries the signal of interest to sidebands and upconverts
them. Therefore, the low-frequency noise is eliminated [12].

Suppose a sinusoidal modulation signal applied to the IOC modulator can be ex-
pressed as [9,23]:

V = VDC + Vmcos(ωmt) (7)

where VDC is the DC bias voltage of the signal and Vm and ωm are the peak amplitude and
modulation frequency of the sinusoidal wave, separately. Substituting Equation (7) into
Equation (6), the resulting equation can be written as:

ϕm = π
VDC
Vπ

+ π
Vm

Vπ
cos(ωmt) (8)

Then, the output of the interferometer from the same time slot in the pulse train
(corresponding to a particular sensor) is [9]:

I = A + Bcos
[
π Vm

Vπ
cos (ωmt) + ϕs(t) + ϕ0m

]
= A + Bcos[Ccos (ωmt) + ϕs(t) + ϕ0m]

(9)

where A is a constant term proportional to the optical power, B is a coefficient related
to optical power and interferometer visibility, C = π Vm

Vπ
is a constant, which is called

modulation depth, ϕ0 is the initial phase mentioned above, and ϕ0m = ϕ0 + π VDC
Vπ

is the
initial phase noise with a phase modulation.

The cosine term is written in terms of the Bessel expression [41]:

cos[Ccos (ωmt) + ϕs(t) + ϕ0m]

=

[
J0(C) + 2

∞
∑

k=1
(−1)k J2k(C)cos(2kωmt)

]
cos(ϕs(t) + ϕ0m)

−
[

2
∞
∑

k=1
(−1)k−1 J2k−1(C)cos (2k − 1)ωmt

]
sin(ϕs(t) + ϕ0m)

(10)

where Jn(C) is the first kind of n-order Bessel function.
As is shown in Figure 3, the digitized PD signal is split into two streams in the PGC-

Arctangent technique. They are multiplied by cos(ωmt) and cos(2ωmt) separately, which
is called up conversion [42]. After that, the mixing results are low-pass filtered to obtain
in-phase signal II and quadrature one IQ, which be given as [10]:

II = −BJ1(C)sin(ϕs(t) + ϕ0m) (11)

IQ = −BJ2(C)cos(ϕs(t) + ϕ0m) (12)
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The phase information can be recovered from the arctangent of the ratio of IQ to II ,
then [10]:

ϕs(t) + ϕ0 = arctan
(

II
IQ

)
= arctan

(
J1(C)sin(ϕs(t) + ϕ0m)

J2(C)cos(ϕs(t) + ϕ0m)

)
(13)

As ϕ0m is nonlinearly changed with the phase difference between the arms of the
interferometer, and the cosine term represents the nonlinear relation of phase change to the
interferometer output [37], it drifts slowly with time. After a properly high-pass filter, ϕs(t)
can be retrieved.

The extracted phase ϕs(t) is proportional to J1(C)
J2(C)

. It can be inferred that the PGC-
Arctangent methods can avoid experiencing light intensity fluctuations in the light intensity,
as they can maintain the modulation depth. If the modulation depth C is set to 2.63, then
J1(C)
J2(C)

= 1. That is to say, the amplitude from the first and second harmonic components of
the cosine term are equal, as is shown in Figure 4. As a result, the amplitude of the in-phase
and quadrature terms are equal.
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A crucial restriction of the arctangent method, when the quadrature sine and cosine
components are transformed to phase, is that the signal phase can only change by a
maximum of π radians between samples. As shown in Figure 5, when the phase exceeds π
or is less than −π, an uncertainty is presented about whether the flag traveled clockwise or
counter-clockwise around the circle. As a rule for demodulators, a shorter way was taken [3].
Thus, the demodulated phase abruptly jumps by 2π. This is known as phase wrapping.
Phase wrapping causes a disturbance in the continuity of the demodulated signal. For
small amplitude phase signals, this does not affect the signal waveform. However, for
significant amplitude phase signals, this adds additional noise to the detected phase signal.
As a result, the dynamic range of FOH is limited to one unit circle period, i.e., 2π.
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To correct the phase wrapping error, the fringe counter is used in the algorithm [22,43].
As shown in Figure 5 and Table 1 [43], the unit circle is divided into four regions according
to the signs of in-phase and quadrature terms. The discrete baseband sequence sin ϕ([k]),
cos ϕ([k]), sin ϕ([k − 1]), and cos ϕ([k − 1]) are stored in memory. Once a transition from
Region 2 to Region 3 occurs, the fringe counter value increases by 2π. From Region 3 to
Region 2, the fringe count value is decreased by 2π. The fringe counter value accumulates
in the arctangent operation process. Theoretically, the dynamic range is increased as the
fringe counter value increases.

Table 1. Look-up table for arctangent operation [23].

Region sin ϕ([k]) cos ϕ([k]) ϕs(t)∈(−π,π)

1 >0 >0 tan−1
(

sin ϕ([k])
cos ϕ([k])

)
− π

2 >0 <0 tan−1
(

sin ϕ([k])
cos ϕ([k])

)
3 <0 <0 tan−1

(
sin ϕ([k])
cos ϕ([k])

)
4 <0 >0 tan−1

(
sin ϕ([k])
cos ϕ([k])

)
+ π

3. Experimental Methods and Results
3.1. Phase-Generated Carrier Measurement Experiment

Based on the principal analysis in Section 2, an experimental set-up for phase-generated
carrier signal measurements is built firstly to verify the effectiveness of the IOC-based
phase modulation, as shown in Figure 6. A NLL with 17 mW output emitting at 1550.92 nm
is used. The continuous light is generated from the NLL and it is passed through an
unbalanced MZI. The unbalanced MZI consists of a PM coupler, a semi-custom IOC device,
a SM delay coil, and a SM coupler. The length of the delay coil is 50 m. The measured data
for the IOC used can be seen in Table 2. The AFG modulates the IOC modulator and a
sinusoidally modulated signal is applied to the IOC device. To realize C = 2.63 mentioned
in Section 2, the peak modulation amplitude is set to 3.14 V with different modulation
frequencies. The interferometric signal is received at the PD. The bandwidth of the PD is
200 MHz. The interferometric signal is captured by a high-speed DAQ card and processed
on a personal computer (PC). The sampling rate of the DAQ card is 50 MHz.

The phase-generated carrier measurement experimental results are shown in
Figures 7 and 8. The time domain results of the interferometric signals are shown at
the top of the figures. The interferometric signal’s power spectral density (PSD) analysis re-
sults are displayed at the bottom. Compared with Figures 7 and 8, limited by the sampling
frequency, the harmonic terms decrease as the phase modulation frequency increases. The
modulation frequency should be at least two times the maximum signal frequency, and the
interferometric signal spectrum contains baseband and harmonics frequencies. It can be
concluded that the IOC-based system has the potential for accurate acoustic measurement
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because the harmonics of the frequency are sufficiently tiny with high modulation fre-
quency. As the sampling rate is required at least eight times the modulation frequency for
the PGC method [44], the modulation frequency of the IOC modulator in acoustic sensing
experiments is set to 5 MHz.
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Table 2. Measurement data for IOC phase modulator.

Parameters Measured Data Unit

average insertion loss 3.44 dB
polarization dependent loss 0.54 dB
output polarized crosstalk −31.0 dB
half-wave voltage (TE) 3.75 V
bandwidth ≥300 MHz
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3.2. Dual Pulses Measurement Experiments

Then, the dual pulse measurement experiment setup is established, as shown in
Figure 9. A high extinction ratio (ER = 60.06 dB) AOM is used. The AOM converts the
continuous light into a pulse. The AOM is modulated by a programmable pulse generator
(PPG). The AFG sinusoidally modulates the IOC modulator. The PD receives the output
waveform from the unbalanced MZI.
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The dual pulse measurement results are shown in Figure 10, when the pulse repetition
frequency is 160 kHz with different pulse widths.
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3.3. Acoustic Sensing Experiments

Acoustic sensing experiments are conducted with one sensing unit to verify the
proposed scheme, as shown in Figure 11. The system consists of an unbalanced MZI and
a sensing unit. The path difference of the MZI is 50 m and an attenuator is inserted in
the long arm to introduce optical loss. The sensing unit comprises a SM coupler, a SM
delay coil, a PZT phase stretcher, and two FRMs. A PZT phase stretcher is placed at the
sensing arm of the MI. A continuous sinusoidal modulation signal is given to the PZT with
different frequencies and amplitudes. Strain modulations are introduced to PZT, equivalent
to an acoustic signal. The modulation index of the PZT is 1.9 rad/V < 5 kHz. The PD
receives optical phase changes. The optical phase changes represent acoustic pressure
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signals. Acquired by the DAQ card, the data are transferred to the computer and processed.
The PGC-Arctangent method is used in the PC’s demodulator, and the demodulated results
are displayed on the PC.
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Figure 11. Schematic of experiment setup for acoustic signal measurement (PM: polarization-
maintaining, SM: single mode).

When the pulse width is set to 200 ns, the interferometric pulses are received by PD,
as shown in Figure 12. Each pair of interferometric pulses contains three pulses.
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The acoustic sensing experiments are conducted as shown in Figure 11. The pulse
width and repetition frequency are set to 200 ns and 160 kHz, separately. The IOC device is
sinusoidally modulated with a peak amplitude of 3.14 V when the modulation frequency is
5 MHz. The demodulation results are shown in Figures 13–15, which demonstrate that a
high SNR of 20.28 dB can be achieved. Figure 15 shows that signals can be demodulated at
a frequency of 1 kHz with an amplitude of approximately 22.8 rad. Furthermore, the SNR
can reach 18.48 dB. Moreover, it also can be seen from the demodulation results that the
SNR slightly decreases when the signal intensity rises.
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4. Discussion

A novel PMDI-FOH design using an IOC modulator is proposed in this paper. The
critical parameter of the device is the modulation bandwidth. A conclusion is proposed
by combining theory and simulation: the proposed scheme can primarily improve the
system’s detectable acoustic frequency and upper limits of the dynamic range due to its
high modulation bandwidth. The system’s detectable frequency and upper limit of dynamic
range mainly depend on the carrier frequency and the demodulation technique [22]. The
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maximum amplitude that can be demodulated has the following relationship with the
modulation frequency [9]:

Dmax =
fm

2 fsig
(14)

where Dmax is the maximum amplitude of the demodulated acoustic signal in radians,
Dmax also represents the upper limit of dynamic range, fsig is the frequency of the acoustic
signal, and fm is the modulation frequency.

The simulation effect of the modulation frequency on the dynamic range is shown in
Figure 16. When the modulation frequency is increased, the detectable frequency and the
upper limit of the dynamic range are increased. The IOC-based modulator can achieve a
high modulation frequency due to its high bandwidth. Therefore, the proposed scheme
demonstrates advantages in large dynamic range and high frequency in hydroacoustic
detection applications.
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