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Abstract: A new class of stationary electromagnetic sources radiating outward from the surface
of an infinitely long cylinder is introduced via vectorial coherent mode representation. First, two
particular types of such sources are discussed: with either an electric or magnetic field aligned
with the cylinder’s axis. The former case represents a scalar scenario, while the latter leads to the
two-component electric field. The combination of these two types of sources is then considered by
forming the three-component electric field vector. An extension to the stationary case is then made in
which the electric field correlations are shown to be described by the intrinsically 3× 3 cross-spectral
density matrix. Several known theories of electromagnetic coherence and polarization are then
invoked for the analysis of radiation, on and off the source surface. The results for the spectral density,
degree of coherence, and degree of polarization are then discussed in detail. The effects of mutual
correlation of modes are also outlined. The new family of sources is of importance for any application
involving cylindrical sources with controllable radiation.

Keywords: partial coherence; polarization; cylindrical sources

1. Introduction

With a very few exceptions, partially coherent and partially polarized fields treated in
the optical literature are assumed to be emitted by planar sources and propagate into a half-
space [1–19]. Several papers, however, have appeared in need of studying radiation emitted
by the Sun, which have considered spherical sources and propagation into the entire three-
dimensional space, e.g., [20–22]. Another fundamental type of non-planar sources that have
been recently studied are cylindrical sources. Just like planar and spherical geometries,
cylindrical geometry enjoys the analytical solution of the Helmholtz equation. Recently,
the spectral density and coherence state of the radiation on the surface of the cylinder
and on its propagation outward were analyzed in the scalar domain [23]. The spectral
density and polarization characteristics have also been analyzed for the case of cylindrical
electromagnetic sources [24]. In both cases, very interesting results were obtained. It has
been found that the scattering of stationary electromagnetic fields by a cylinder leads to
a highly oscillatory cross-spectral density whose characteristics cannot be modified at
will [25]. Other authors have also analyzed the propagation of cylindrical electromagnetic
waves in non-linear and inhomogeneous media [26,27].

In this work, we study in detail the polarization and especially the coherence character-
istics of the radiation emitted by cylindrical sources in the electromagnetic case. From the
new examples included, the full potential of this type of non-planar source is elucidated.
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The article is structured as follows. This section constitutes the Introduction. In
Section 2, the formalism and the different parameters that we are going to use in this work
are briefly reviewed. The basis functions of the axial, tangential, and radial components
and their propagation are studied in Sections 3 and 4, respectively. The particular case of a
partially coherent beam with uncorrelated expansion coefficients is analyzed in Section 5,
with special emphasis on polarization. In Section 6, some examples are presented where
the coherence and polarization properties of the radiation, both across the source and in
propagation, are studied for different choices of the correlations among the expansion
coefficients. Section 7 briefly summarizes the most important results of this work.

2. Preliminaries

Assuming cylindrical symmetry, a typical electric field can always be thought of
as arising from the superposition of two orthogonally polarized contributions: one, Ez,
parallel to the axis of the cylinder (in the so-called E-polarization), and the other, Et, lying on
the transverse plane, i.e., the plane perpendicular to the cylinder axis. In the latter case, it is
the magnetic field that is supposed to be parallel to the cylinder axis (H-polarization). Such
a decomposition makes it easier to obtain the solution to problems involving the scattering
and/or the radiation from cylindrical sources [28,29].

Let us start by considering E-polarization (see Figure 1a). We denote by a the radius
of the cylinder and use cylindrical coordinates z, r, and ϕ, and assume the cylinder to
be of infinite extent along z. Since, due to the cylindrical symmetry, the emitted field is
assumed to be independent of z, the electric field in the space outside can be expressed
as a function of r and ϕ only. Denoting with k the wavenumber, according to [28,29] the
outgoing irradiated field can be expanded into the series

Ez(r, ϕ) =
∞

∑
n=−∞

bn Hn(kr) einϕ ẑ ; (r ≥ a), (1)

with a suitable set of bn coefficients. Here, Hn denotes an outgoing Hankel function [29],
generally written as H(1)

n to distinguish it from the inward going function H(2)
n , which we

will not use [28].
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Figure 1. Section of an infinitely long cylinder of radius a showing the generated electric field compo-
nents in an arbitrary point (r, ϕ) for (a) E-polarization, (b) H-polarization, and (c) general polarization.

It is convenient to write the field component appearing in Equation (1) as

Ez(r, ϕ) =
∞

∑
n=−∞

cn Zn(kr) einϕ (r ≥ a), (2)

with

cn = bn Hn(ka) ; Zn(kr) =
Hn(kr)
Hn(ka)

, (3)

because in such a way, since Zn(ka) = 1 ∀n, the cn coefficients correspond to the usual
Fourier coefficients of Ez along a circle r = a.
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Analogous expansions hold in the H-polarization for the components of the electric
field across the transverse plane (see Figure 1b). In this case, the electric field in Equation (2)
is replaced by B (magnetic induction) and we have

Bz(r, ϕ) =
∞

∑
n=−∞

dn Zn(kr) einϕ ẑ (r ≥ a), (4)

where a different set of coefficients, {dn}, is used.
Assuming that the field propagates in vacuo, the corresponding electric field can be

evaluated from Equation [29,30]

Et(r) =
ic
k
∇× Bz(r) , (5)

with c being the speed of light, which provides, for the two transverse components,
Er(r, ϕ) =

ic
kr

∂Bz

∂ϕ
= −c

∞

∑
n=−∞

n dn
Zn(kr)

kr
einϕ ,

Eϕ(r, ϕ) = − ic
k

∂Bz

∂r
= −ic

∞

∑
n=−∞

dn Z′n(kr) einϕ ,

(6)

the prime denoting derivative with respect to the argument.
As for the case of E-polarization, we can set

an = −i c dn , (7)

and

Rn(kr) =
−in

Hn(ka)
Hn(kr)

kr
, Φn(kr) =

H′n(kr)
Hn(ka)

. (8)

Considering the contribution of the two polarizations [see Figure 1c], the following
expressions for the three components (namely, radial, tangential, and axial) of the electric
field all over the space can be written:

Er(r, ϕ) =
∞

∑
n=−∞

an (Rn(kr) einϕ ,

Eϕ(r, ϕ) =
∞

∑
n=−∞

an Φn(kr) einϕ ,

Ez(r, ϕ) =
∞

∑
n=−∞

cn Zn(kr) einϕ .

(9)

Note that, differently from the cn coefficients, an does not represent the Fourier co-
efficients of any of the two transverse field components along the circle r = a because
neither Rn(ka) nor Φn(ka) equal one. We will refer to the functions Rn, Φn, and Zn as radial,
tangential, and axial basis functions of the field, respectively.

Let us now pass to the partially coherent case, where the coefficients an and cn become
random variables. We make use of the 3× 3 cross-spectral density matrix Ŵ(r1, r2), which
gives account of the two-point second-order correlations between the pairs of all the field
components, and whose elements are defined as [1,31,32]

Wst(r1, r2) = 〈E∗s (r1)Et(r2)〉 (s, t = r, ϕ, z) , (10)

with the angle brackets denoting ensemble average.
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The following are the explicit expressions of the nine elements of the CSD matrix in
Equation (10), for the most general case:

Wrr(r1, r2) = ∑
n,m
〈a∗nam〉 R∗n(kr1) Rm(kr2) e−inϕ1+imϕ2

Wϕϕ(r1, r2) = ∑
n,m
〈a∗nam〉 Φ∗n(kr1) Φm(kr2) e−inϕ1+imϕ2

Wzz(r1, r2) = ∑
n,m
〈c∗ncm〉 Z∗n(kr1) Zm(kr2) e−inϕ1+imϕ2

Wrϕ(r1, r2) = ∑
n,m
〈a∗nam〉 R∗n(kr1) Φm(kr2) e−inϕ1+imϕ2

Wrz(r1, r2) = ∑
n,m
〈a∗ncm〉 R∗n(kr1) Zm(kr2) e−inϕ1+imϕ2

Wϕz(r1, r2) = ∑
n,m
〈a∗ncm〉 Φ∗n(kr1) Zm(kr2) e−inϕ1+imϕ2

Wϕr(r1, r2) = W∗rϕ(r2, r1); Wzr(r1, r2) = W∗rz(r2, r1); Wzϕ(r1, r2) = W∗ϕz(r2, r1).

(11)

The local properties of the field at the point r are taken into account by the matrix

P̂(r) = Ŵ(r, r) , (12)

referred to as the polarization matrix. In particular, the spectral density of the field is

S(r) = Tr{P̂(r)} , (13)

with Tr{·} denoting the trace.
Several definitions of a degree of polarization (DOP) have been given for 3D fields.

One of these, proposed in [33] reads

PQ(r) =

√√√√3
2

[
Tr{P̂2(r)}
Tr2{P̂(r)}

− 1
3

]
. (14)

It is always limited to the interval [0, 1], the two limiting cases corresponding to
completely unpolarized or perfectly polarized fields, respectively. It is also interesting to
note that the following relation holds:

Tr{P̂2}
Tr2{P̂}

=
λ2

1 + λ2
2 + λ2

3

(λ1 + λ2 + λ3)
2 , (15)

where λi (i = 1, 2, 3) are the eigenvalues of P̂, so that PS takes the form

PQ(r) =

√
(λ1 − λ2)2 + (λ1 − λ3)2 + (λ2 − λ3)2

√
2 (λ1 + λ2 + λ3)

. (16)

A significant aspect of this definition is that the DOP of a completely unpolarized 2D
field turns out to be 1/2 (in such a case one of the eigenvalues is zero and the two remaining
are equal to each other), denoting that a certain "polarization” exists, due to the fact that
one of the three field components is missing.



Photonics 2023, 10, 831 5 of 18

Alternative definitions for a 3D DOP have been given. For example, Ellis et al. [34]
introduced the following parameter, which reduces to the usual one for 2D field:

PL(r) =
λ1 − λ2

λ1 + λ2 + λ3
, (17)

with the eigenvalues ordered in such a way that λ1 ≥ λ2 ≥ λ3. In fact, if the field is 2D, then
λ3 = 0, and PE gives 0 for completely unpolarized fields (λ1 = λ2) and 1 for completely
polarized fields (λ2 = 0). Comparisons and relationships between the above definitions
can be found in [35–37].

On the other hand, several scalar quantities have been proposed to account for the
coherence properties of the field [31,38–43], but most of them refer to paraxial fields,
where the longitudinal field component can be neglected and the CSD matrix reduces to
a 2× 2 matrix. In the most general case, an electromagnetic degree of coherence can be
introduced as [31]

µQ(r1, r2) =

√√√√Tr
{

Ŵ†(r1, r2)Ŵ(r1, r2)
}

S(r1)S(r2)
. (18)

Since the following relation holds:

Tr
{

Ŵ†(r1, r2)Ŵ(r1, r2)
}
= ∑

st
|Wst(r1, r2)|2 (s, t = r, ϕ, z) , (19)

µQ(r1, r2) gives account of all correlations among the field components equally. According
to such definition, the relation µQ(r, r) = 1 does not hold in general, as it does for the scalar
case, because a non-perfect correlation may exist among the various field components at
a single point. This happens when the field is non-perfectly polarized. In fact, it can be
shown that

µQ(r, r) =

√
2PS(r) + 1

3
, (20)

denoting that µQ(r, r) = 1 only attains to perfectly polarized fields.
Another definition for three-dimensional fields’ degree of coherence was introduced

in Ref. [39]:

µL(r1, r2) =
Tr{Ŵ(r1, r2)}√

S(r1)S(r2)
, (21)

being consistent in form with that of the classic coherence theory, as it involves the linear
CSD matrix norm. Since it is based on the trace of the CSD matrix alone, it carries informa-
tion about correlations as are, in the absence of any devices of polarization optics. It also
preserves the phase information, which has proven to be crucial in the remote directional
control and singular optics.

3. The Basis Functions

All coherence and polarization properties of any field endowed with cylindrical
symmetry are determined by the quantities in angular brackets in Equation (11), which
give the correlations among the modes involved in the field expansions. However, some
general features concerning the propagation of the fields expressed by those CSD elements
can be deduced.

First of all, the asymptotic behaviors of the basis functions can be obtained from the
corresponding expressions of the Hankel functions. In fact, applying the relation [44]

H′n(kr) = n
Hn(kr)

kr
− Hn+1(kr) (22)
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and the asymptotic formula for large arguments (kr → ∞),

Hn(kr) ∼
√

2
πkr

exp
[
i
(

kr− nπ

2
− π

4

)]
(23)

yields

Rn(kr) ∼
√

2
π

n(−i)n+1

Hn(ka)

(
1
kr

)3/2
ei(kr−π/4) , (24)

Φn(kr) ∼
√

2
π

(−i)n

Hn(ka)

( n
kr

+ i
)( 1

kr

)1/2
ei(kr−π/4) , (25)

Zn(kr) ∼
√

2
π

(−i)n

Hn(ka)

(
1
kr

)1/2
ei(kr−π/4) . (26)

In particular, if kr � n, Φn turns out to be proportional to Zn, and the two correspond-
ing components decrease with r at the same rate.

In Figure 2, the behaviors of |Φn(kr)|, |Rn(kr)|, and |Zn(kr)| are shown for ka = 100 and
different orders, as functions of the propagation distance normalized to the cylinder
radius (p = r/a).

Figure 2. Absolute value of the basis functions as a function of radial distance (p = r/a) for
ka = 100 and some values of the order n.

Since for any value of the index n, the expansion coefficients of the radial and the
tangential components coincide (see Equation (9)), the comparison of the corresponding
curves (blue and red, respectively) also gives information about the relative weight of
such components.

The asymptotic behaviors predicted by Equations (24)–(26) can be recognized: as
r/a−1/2 for both the tangential and axial components (red and green curves, almost coin-
ciding) and as r/a−3/2 for the radial component (blue curve). This implies that the latter
component becomes decreasingly significant on moving away from the cylinder surface, in
such a way that the electric field always turns out to be almost perpendicular to the radial
direction at points far enough from the surface. On the other hand, it is interesting to note
that the normalized distance where the asymptotic expression holds depends on the index
n, being of the order of 1 + n/ka.
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At shorter distances different behaviors are observed, depending on the ratio n/ka.
For small n (compared to ka), the tangential component is slightly lower than the axial one
on the cylinder surface, but they reach very similar values at distances in the asymptotic
limit, when r/a > 1 + n/ka. The radial component is significantly lower than the other ones
already on the cylinder surface and decreases faster.

When the mode order increases (n comparable to ka), near the cylinder surface, the
radial component becomes comparable to the axial one, while the tangential component
is quite lower. During propagation, when the asymptotic behavior is reached, the ax-
ial and tangential components become comparable while, as expected, the radial one
becomes negligible.

For orders n above ka, a very fast decrease of all components can be noted in a small
region in the vicinity of the cylinder surface, where their absolute values drop to a few
percent of their initial ones for r/a > 2 (for n = 110). The decreasing rate becomes faster
and faster on increasing n.

The above behaviors fully determine the evolution of the electric field components
upon propagation and, consequently, the coherence and polarization properties of the
radiated field.

4. Evolution of the Expansion Coefficients

The effect of propagation, from the cylinder surface outward, can be interpreted as a
filtering process on the coefficients of the expansions appearing in Equation (9). The latter,
in fact, can be written as

Er(r, ϕ) =
∞

∑
n=−∞

an ρn(kr)Rn(ka) einϕ ,

Eϕ(r, ϕ) =
∞

∑
n=−∞

an φn(kr)Φn(ka) einϕ ,

Ez(r, ϕ) =
∞

∑
n=−∞

cn ζn(kr)Zn(ka) einϕ .

(27)

with

ρn(kr) =
Rn(kr)
Rn(ka)

, φn(kr) =
Φn(kr)
Φn(ka)

, ζn(kr) =
Zn(kr)
Zn(ka)

. (28)

Such quantities, which, of course, equal 1 when r = a, represent the weights by
which the coefficients are multiplied during propagation. Their absolute values are shown
in Figure 3 as functions of n/ka, for different choices of the cylinder radius a and the
propagation distance p = r/a. Although n takes integer values, continuous curves are
presented for better visualization.

It can be noticed that the radial component of the field becomes negligible with respect
to the other ones for any n when the propagation distance exceeds some multiple of the
cylinder radius. This is a consequence of the behavior of the basis function shown in
the previous section. Furthermore, all components vanish for values of n sufficiently
greater than ka, except very close to the surface. Since the parameter ka expresses the ratio
between the circumference of the cylinder base and the wavelength, and the expanding
basis functions are accompanied by the angular Fourier component exp(inϕ), when n
exceeds ka the involved phase details become smaller than the wavelength. The cutoff
around n = ka means that such contributions do not propagate, exactly as happens for the
evanescent waves produced by planar sources.

Analogous behavior has been observed in the past for spherical and cylindrical scalar
sources [23,24,45].
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Figure 3. Absolute value of the weighting functions for different values of the radial distance (p = r/a)
and the cylinder radius (ka), as functions of order n normalized to ka.

5. The Basis Functions as Coherent Vector Modes

One of the simplest cases of a partially coherent field is obtained when all the involved
expansion coefficients are mutually uncorrelated, that is, when in Equation (11) we take

〈a∗nam〉 = αnδnm ; 〈c∗ncm〉 = γnδnm ; 〈c∗nam〉 = 0 , (29)

where αn and γn are positive quantities and δnm is the Kronecker delta. The elements of
Ŵ(r1, r2) then become

Wrr(r1, r2) = ∑
n

αn R∗n(kr1) Rn(kr2) ein(ϕ2−ϕ1);

Wϕϕ(r1, r2) = ∑
n

αn Φ∗n(kr1) Φn(kr2) ein(ϕ2−ϕ1);

Wzz(r1, r2) = ∑
n

γn Z∗n(kr1) Zn(kr2) ein(ϕ2−ϕ1);

Wrϕ(r1, r2) = W∗ϕr(r2, r1) = ∑
n

αn R∗n(kr1) Φn(kr2) ein(ϕ2−ϕ1);

Wrz(r1, r2) = Wzr(r1, r2) = 0 ; Wϕz(r1, r2) = Wzϕ(r1, r2) = 0 ,

(30)

which depend on r1, r2, and the angle difference. We would say that the above CSD matrix
is angularly homogeneous [24].

This choice corresponds to considering the partially coherent field as the incoherent
superposition of perfectly coherent and perfectly polarized vector modes [46,47]. In fact, it
turns out that the following Mercer expansion holds:

Ŵ(r1, r2) = ∑
n

λnΨ†
n(r1)Ψn(r2) , (31)
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with the modes given by

Ψ2`(r) =

 R`(kr)
Φ`(kr)

0

 ei`ϕ , Ψ2`+1(r) =

 0
0

Z`(kr)

 ei`ϕ , (` integer) (32)

and the eigenvalues by
λ2` = α` , λ2`+1 = γ` . (33)

In fact, the above vector functions turn out to be orthogonal, i.e.,∫
Ψ†

n(r)Ψm(r) dr = 0 (n 6= m) , (34)

but they are not normalized, as required by the modes of a source. However, to simplify
the equations to come, we prefer not to add normalization factors and consider them as the
modes of the source. This will not affect the presented results.

A simpler form is taken by the polarization matrix, too:

P̂(r) = ∑
n

λn|Ψn(r)|2 , (35)

whose explicit expression is

P̂(r) =

 Prr(r) Prϕ(r) 0
P∗rϕ(r) Pϕϕ(r) 0

0 0 Pzz(r)

 , (36)

with
Prr(r) = ∑

n
αn |Rn(kr)|2, Pϕϕ(r) = ∑

n
αn |Φn(kr)|2,

Prϕ(r) = ∑
n

αn R∗n(kr) Φn(kr), Pzz(r) = ∑
n

γn |Zn(kr)|2 .
(37)

They are apparently independent of ϕ, as are the spectral density

S(r) = ∑
n

αn

(
|Rn(kr)|2 + |Φn(kr)|2

)
+ γn|Zn(kr)|2 , (38)

and all polarization properties of the radiated field. This is, of course, a consequence of
the angular homogeneity of the corresponding CSD matrix. Some examples pertinent to
the effects of different choices of the eigenvalues on the field across the source and on the
propagated one will be shown in the next section.

6. Discussion

In this section, the main coherence and polarization characteristics of cylindrical
sources are studied by means of some examples. In the first example, the results for
each component (E- or H-polarization) are presented separately. The superposition of the
two components is then considered, both when all modes are mutually uncorrelated [see
Equation (29)] and when a certain correlation between them exists.

6.1. E-Polarization

When αn vanishes for all n, the field consists only of modes polarized along z, as can
be observed in Figure 1a, and its polarization is complete for any choice of coefficients γ .
Conversely, interesting results are obtained as far as its coherence properties are concerned,
which is taken into account by the element Wzz of the CSD matrix (see Equation (30)). In
this case, the formalism used for scalar sources and fields can be used profitably [23].
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In this case, αn = 0. Let us consider the following example:

γn = A (|n| ≤ N) ; γn = 0 (|n| > N) . (39)

Figure 4a shows the degree of coherence given in Equation (18) between a point located
along a given radial line perpendicular to the cylinder axis and another point located at the
intersection of this radial line with the source surface. Note that in this case, the degree
of coherence given in Equation (20) coincides with the absolute value of the conventional
degree of coherence for scalar sources [1]. Figure 4b shows the degree of coherence between
two points on the same radial line, one of them at a distance p2a from the cylinder axis
and the other at p1a. It is observed that when these two points coincide, the coherence
is complete.

Figure 4. Degree of coherence between two points along the same radial line, one of them at a
distance r1 = p1a and the second one (a) on the cylinder surface for several values of N (b) at several
distances from the surface for N = 50. E-polarization source with correlation coefficients is given by
Equation (39). The cylinder radius corresponds to ka = 100.

The behavior of the degree of coherence between two points located on the cylinder
surface but with different angular coordinates is shown in Figure 5a for various values of
N. Figure 5b shows the behavior when the two points are at the same distance pa from the
cylinder axis. This angular behavior is similar to a sync function [23].

Figure 5. Degree of coherence between two points located at angles ϕ1 and ϕ2 = 0 for several
values of N (a) on the cylinder surface; (b) on a cylindrical surface at a given distance pa for N = 20.
E-polarization source with correlation coefficients given by Equation (39). The radius of the cylinder
corresponds to ka = 100.
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This field is completely polarized on the surface of cylinder and in the whole space
outside of it.

6.2. H-Polarization

If we choose γn = 0 for all n, the E-polarization is zero and the z component vanishes.
The resulting field is a two-dimensional field with nonzero radial and azimuthal compo-
nents as it can be seen in Figure 1b. In general, the field will be partially polarized on the
cylinder surface. Consider the following example:

αn = A (|n| ≤ N) ; αn = 0 (|n| > N) . (40)

Figure 6 shows a comparison of the degree of polarization outside the cylinder for
several values of N when calculated following the definition of Setalä et al. [31] or that of
Ellis et al. [34]. It can be observed that in the first case, the degree of polarization is always
greater than 0.5, which is characteristic of a 2D field with that definition [31].

Figure 6. Degree of polarization of the source given by Equation (40) vs. the radial distance
(p = r/a) for a cylinder radius ka = 100 and several values of N. Degree of polarization given
by: (a) Equation (16); (b) Equation (17).

Figure 7a,b show the behavior of the degree of coherence between two points located
on a given radial line. Although they are similar to the E-polarization case studied earlier,
several differences are observed. The main one is that, in general, full coherence µε = 1 is
not achieved. This is particularly evident on the cylinder surface when more and more
modes are considered. This fact is also observed in Figure 8a where the degree of coherence
between two points located at different angles on the cylinder surface is shown. It should be
noted that this angular behavior deviates from a sinc, especially with respect to successive
relative minima that no longer reach zero.

Figure 7. Degree of coherence between two points along the same radial line, one of them at a
distance r1 = p1a and the second one (a) on the cylinder surface for several values of N (b) at several
distances from the surface for N = 50. H-polarization source with correlation coefficients given by
Equation (40). The radius of the cylinder corresponds to ka = 100.
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In Figure 8b it can be seen that when the field has propagated some distance from the
cylinder surface, the angular behavior changes slightly with respect to the E-polarization
case, and the field becomes slightly less coherent with the propagation distances.

Figure 8. Degree of coherence between two points located at angles ϕ1 and ϕ2 = 0 for several
values of N (a) on the cylinder surface; (b) on a cylindrical surface at a given distance pa for N = 20.
H-polarization source with correlation coefficients given by Equation (40). The radius of the cylinder
corresponds to ka = 100.

Let us now consider another example where the E-polarization is not present γn = 0,
and the H-polarization modes are mutually uncorrelated, but their weights increase with the
order of the modes following the relation:

αn = An2 (|n| ≤ N) ; αn = 0 (|n| > N) . (41)

It is interesting to note that the degree of polarization following the definition of
Equation (16) is, for this case, PS ≥ 0.5 as can be seen in Figure 9a where this degree of
polarization outside the cylinder is plotted for various values of N. However, using the
definition of Equation (17), Figure 9b shows that at a given distance and sufficiently high
values of N, the field is practically unpolarized (PE ' 0). This can be explained if the
radial component is equal to the azimuthal component for a given distance and they are
incoherent (sufficiently large number of modes).

Figure 9. Degree of polarization of the source given by Equation (41) vs. the radial distance
(p = r/a) for a cylinder radius ka = 100 and several values of N. Degree of polarization given
by: (a) Equation (16); (b) Equation (17).

As for the degree of coherence between two points, its behavior when the two points
are located on the same radial line is similar to the previous cases but with lower values. In
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fact, Figure 10a shows that its value drops to almost zero when 100 modes are taken and
the degree of coherence between a point more than 1.5a from the cylinder axis and a point
on the source surface is calculated.

Figure 10. Degree of coherence between two points along the same radial line, one of them at a
distance r1 = p1a and the second one (a) on the cylinder surface for several values of N (b) at several
distances from the surface for N = 50. H-polarization source with correlation coefficients given by
Equation (41). The radius of the cylinder corresponds to ka = 100.

Now, the degree of coherence between two points located at different angles on the
source surface presents minima well over zero and secondary lobes with relative maxima
that are close to the absolute maximum (at least the first two or three secondary lobes), as
can be observed in Figure 11a. For a given selection of the number of modes involved in the
generation of the source, the minima observed in Figure 11a decrease with the propagation
distance (see Figure 11b).

Figure 11. Degree of coherence between two points located at angles ϕ1 and ϕ2 = 0 for several
values of N (a) on the cylinder surface; (b) on a cylindrical surface at a given distance pa for N = 20.
H-polarization source with correlation coefficients given by Equation (41). The radius of the cylinder
corresponds to ka = 100.

6.3. E- and H-Polarization

Consider a simple case where both E- and H-polarization are present, for example, if
we take the values of the coefficients as

αn = γn = A (|n| ≤ N) ; αn = γn = 0 (|n| > N) . (42)

In this case, there are three non-zero orthogonal components of the electric field as it
can be observed in Figure 1c. Figure 12a shows that the 3D degree of polarization defined
in Equation (16) takes values less than 0.5 denoting the presence of all three components of
the field. However, when the field propagates, the radial component decreases faster than
the other two components, as can be seen in Figure 2. Therefore, the degree of polarization
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approaches 0.5 as the field propagates out of the cylinder. On the contrary, the degree of
polarization calculated with Equation (17), evolves from a given value to almost zero as the
field propagates, as can be seen in Figure 12b, denoting that the two remaining components
reach a similar value and are uncorrelated.

Figure 12. Degree of polarization of the source given by Equation (42) vs. the radial distance
(p = r/a) for a cylinder radius ka = 100 and several values of N. Degree of polarization given by:
(a) Equation (16); (b) Equation (17).

Figure 13 shows the degree of coherence defined by Equation (18) (Figure 13a,b) and
by Equation (21) (Figure 13c,d) along a radial line, for several choices of parameters. From
Figure 13a,b it can be noted that the degree of coherence between two points along a radial
line is quite lower than in previous cases, but it follows a similar behavior. On the other
hand (see Figure 13c,d) the degree of coherence given by Equation (21) shows the same
qualitative behavior, although its absolute value is higher than that shown in Figure 13a,b.
In fact, a nearly complete correlation is found for N = 10 using Equation (21), while the
degree of correlation drops to nearly 0.7 using Equation (18).

Figure 13. Degree of coherence between two points along the same radial line. One of them is at
the radial coordinate r1 = p1a, while the second is: on the cylinder surface, for several values of N
(a,c); at several distances from the surface, for fixed N = 50 (b,d). The degree of coherence is defined
according to Equation (18) (a,b) or to Equation (21) (c,d). The correlation coefficients are given by
Equation (42) and the radius of the cylinder corresponds to ka = 100.
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The angular behavior of the degree of coherence for this case is also calculated using
the two definitions presented in Section 2. It can be seen from Figure 14a,b that the degree
of coherence calculated according to Equation (18) reaches lower values than in the cases
where only E- or H-polarization was present. It can also be observed that the relative minima
do not reach zero and that there are even some oscillations that disappear if the number of
terms considered is sufficiently large. On the contrary, the absolute value of the degree of
coherence given by Equation (21) is one for coincident points and goes to zero at several
angles, as can be seen in Figure 14c,d. It is interesting that the angular behavior remains
almost invariant in propagation (see Figure 14d).

Figure 14. Degree of coherence between two points located at the angles ϕ1 and ϕ2 = 0, for several
values of N: on the cylinder surface (a,c); on a cylindrical surface of radius pa, for N = 20 (b,d). The
degree of coherence is defined according to Equation (18) (a,b) or to Equation (21) (c,d). The correlation
coefficients are given by Equation (42) and the radius of the cylinder corresponds to ka = 100.

6.4. Mutually Correlated Modes

We now turn to the most general case considered so far, in which different ans and
cns are correlated, restricting ourselves only to the spectral density and the degree of
polarization analysis. For example, we set all the coefficients in Equation (29) to vanish
except for the following ones:

〈a∗nam〉 = nm ; 〈c∗ncm〉 = nm ; 〈c∗nam〉 = 0 , (|n− D| ≤ N, |m− D| ≤ N). (43)

Here D plays a role of an asymmetry parameter: for D = 0 the modes symmetric with
respect to mode n = m = 0 are drawn, while for D 6= 0 such a symmetry shifts to mode
n = m = D. On examining the spectral density and the degree of polarization radiated
outwards from such a cylinder (see Figure 15), we notice that for D = 0 both quantities form
azimuthally dependent distributions radiating at right angles to the cylinder’s surface. In
particular, the spectral density has a multi-petal structure (with the number of petals being
2N), various petals carrying different amounts of energy. The degree of polarization has a
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more complex azimuthal distribution, with a global minimum of 0.5 and is a combination
of very thin petals in which it varies between 0.5 and 1. In the case of D 6= 0 an additional
tilt effect is observed, i.e., the spectral density and the degree of polarization form petals
that are not orthogonal to the cylinder’s surface. It is observed that such a tilt becomes
more and more pronounced as the absolute value of the parameter D increases, and that it
changes direction as the sign of this parameter changes. Such an effect is comparable to
a tilt produced by linearly correlated phases of fields radiated from planar surfaces (see
Ref. [48] for the scalar case and [49] for the electromagnetic case).

Figure 15. (a–c) Spectral density and (e–h) degree of polarization outside the cylinder for coefficients
in Equation (43) with N = 7 and (a), (e) D = 0; (b), (f) D = 2; (c), (g) D = 4; and (d), (h) D = −4. The
radius of the cylinder is ka = 10 and the representation is for a < r < 5a.

7. Conclusions

Light sources bearing cylindrical geometry constitute a very special case for statistical
optics. First, they are more advanced than planar and spherical sources in the sense that
their surface curvature depends on orientation (while planar and spherical surfaces have
trivial and constant curvatures, respectively). This immediately implies that the properties
of various single-point and, moreover, pair-point electric fields are expected to depend
on the chosen points’ orientations, both on and off the cylinder’s surface. Second, the
alignment of either the electric or magnetic field with the cylinder’s axis results in entirely
different structures for the source and the radiated field, even in the purely deterministic
radiation case. The combination of the two cases leads to the intrinsically 3D electric
field in which all three components exhibit distinct behavior, being dependent on differ-
ent basis functions. Third, on extending from deterministic (single-mode) to stationary
(multi-mode or infinite-mode) electric vector field distributions, one obtains a 3× 3 ten-
sor in which six out of nine components are governed by structurally different functions,
whose strength is determined by three different sequences of mode coupling coefficients
(an and cn self-correlations and their cross-correlations). Such complexity results in the
unprecedentedly rich variety of possible spectral density distributions as well as those in
coherence and polarization states, on and off the cylinder’s surface. More importantly, the
access to individual electric-field components’ coupling coefficients delivers fine control
over all the radiation’s statistics. In order to numerically illustrate possible outcomes for
the spectral density, the degree of coherence, and the degree of polarization, we have
separately discussed the E-polarization, H-polarization and mixed polarization cases and re-
vealed qualitatively different behaviors of light in these scenarios. We have also illustrated
through a number of examples that the specific choice of the mode coupling coefficients
efficiently enhances/suppresses/redirects the light statistics in the planes orthogonal to the
cylinder axis. We envision the use of such fine 360-degree control of radiation in directional
illumination and sensing applications.



Photonics 2023, 10, 831 17 of 18

Author Contributions: Conceptualization, M.S., O.K., R.M.-H. and F.G.; methodology, M.S., J.C.G.d.S.,
G.P. and O.K.; software, M.S., J.C.G.d.S., G.P. and O.K.; formal analysis, M.S., J.C.G.d.S., G.P., O.K.,
R.M.-H. and F.G.;investigation, M.S., J.C.G.d.S., G.P., O.K., R.M.-H. and F.G.; writing—original draft
preparation, M.S., J.C.G.d.S., G.P. and O.K.; writing—review and editing, M.S., J.C.G.d.S., G.P. and
O.K.; visualization, M.S., J.C.G.d.S., G.P. and O.K.; supervision, R.M.-H. and F.G.; project adminis-
tration, R.M.-H.; funding acquisition, R.M.-H. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by Spanish Ministerio de Economía y Competitividad, project
PID2019-104268 GB-C21. O.K. acknowledges the Copper Fellowship program at the University
of Miami.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:
CSD Cross-spectral density
DOP Degree of polarization

References
1. Mandel, L.; Wolf, E. Optical Coherence and Quantum Optics; Cambridge University Press: Cambridge, UK, 1995. [CrossRef]
2. James, D.F.V. Change of polarization of light beams on propagation in free space. J. Opt. Soc. Am. A 1994, 11, 1641–1643.

[CrossRef]
3. Gori, F.; Santarsiero, M.; Vicalvi, S.; Borghi, R.; Guattari, G. Beam coherence-polarization matrix. Pure Appl. Opt. J. Eur. Opt. Soc.

Part A 1998, 7, 941. [CrossRef]
4. Tervo, J. Azimuthal polarization and partial coherence. J. Opt. Soc. Am. A 2003, 20, 1974–1980. [CrossRef]
5. Ramírez-Sánchez, V.; Piquero, G.; Santarsiero, M. Synthesis and characterization of partially coherent beams with propagation-

invariant transverse polarization pattern. Opt. Commun. 2010, 283, 4484–4489. [CrossRef]
6. Santarsiero, M.; Ramírez-Sánchez, V.; Borghi, R. Partially correlated thin annular sources: The vectorial case. J. Opt. Soc. Am. A

2010, 27, 1450–1456. [CrossRef] [PubMed]
7. Guo, L.; Tang, Z.; Liang, C.; Tan, Z. Intensity and spatial correlation properties of tightly focused partially coherent radially

polarized vortex beams. Opt. Laser Technol. 2011, 43, 895–898. [CrossRef]
8. de Sande, J.C.G.; Santarsiero, M.; Piquero, G.; Gori, F. Longitudinal polarization periodicity of unpolarized light passing through

a double wedge depolarizer. Opt. Express 2012, 20, 27348–27360. [CrossRef]
9. Santarsiero, M.; de Sande, J.C.G.; Piquero, G.; Gori, F. Coherence-polarization properties of fields radiated from transversely

periodic electromagnetic sources. J. Opt. 2013, 15, 055701. [CrossRef]
10. Chen, Y.; Wang, F.; Liu, L.; Zhao, C.; Cai, Y.; Korotkova, O. Generation and propagation of a partially coherent vector beam with

special correlation functions. Phys. Rev. A 2014, 89, 013801. [CrossRef]
11. Mei, Z.; Korotkova, O. Electromagnetic Schell-model sources generating far fields with stable and flexible concentric rings

profiles. Opt. Express 2016, 24, 5572–5583. [CrossRef]
12. Xu, H.F.; Zhou, Y.; Wu, H.W.; Chen, H.J.; Sheng, Z.Q.; Qu, J. Focus shaping of the radially polarized Laguerre–Gaussian-correlated

Schell-model vortex beams. Opt. Express 2018, 26, 20076–20088. [CrossRef] [PubMed]
13. Senthilkumar, M.; Rajesh, K.; Udhayakumar, M.; Jaroszewicz, Z.; Mahadevan, G. Focusing properties of spirally polarized sinh

Gaussian beam. Opt. Laser Technol. 2019, 111, 623–628. [CrossRef]
14. Hyde, M.W.; Xiao, X.; Voelz, D.G. Generating electromagnetic nonuniformly correlated beams. Opt. Lett. 2019, 44, 5719–5722.

[CrossRef] [PubMed]
15. Yu, J.; Zhu, X.; Lin, S.; Wang, F.; Gbur, G.; Cai, Y. Vector partially coherent beams with prescribed non-uniform correlation

structure. Opt. Lett. 2020, 45, 3824–3827. [CrossRef] [PubMed]
16. Hyde IV, M.W. Synthesizing General Electromagnetic Partially Coherent Sources from Random, Correlated Complex Screens.

Optics 2020, 1, 8. [CrossRef]
17. Tong, R.; Dong, Z.; Chen, Y.; Wang, F.; Cai, Y.; Setälä, T. Fast calculation of tightly focused random electromagnetic beams:

controlling the focal field by spatial coherence. Opt. Express 2020, 28, 9713–9727. [CrossRef]
18. Zhu, X.; Yu, J.; Wang, F.; Chen, Y.; Cai, Y.; Korotkova, O. Synthesis of vector nonuniformly correlated light beams by a single

digital mirror device. Opt. Lett. 2021, 46, 2996–2999. [CrossRef]

http://doi.org/10.1017/CBO9781139644105
http://dx.doi.org/10.1364/JOSAA.11.001641
http://dx.doi.org/10.1088/0963-9659/7/5/004
http://dx.doi.org/10.1364/JOSAA.20.001974
http://dx.doi.org/10.1016/j.optcom.2010.04.081
http://dx.doi.org/10.1364/JOSAA.27.001450
http://www.ncbi.nlm.nih.gov/pubmed/20508715
http://dx.doi.org/10.1016/j.optlastec.2010.10.002
http://dx.doi.org/10.1364/OE.20.027348
http://dx.doi.org/10.1088/2040-8978/15/5/055701
http://dx.doi.org/10.1103/PhysRevA.89.013801
http://dx.doi.org/10.1364/OE.24.005572
http://dx.doi.org/10.1364/OE.26.020076
http://www.ncbi.nlm.nih.gov/pubmed/30119323
http://dx.doi.org/10.1016/j.optlastec.2018.10.048
http://dx.doi.org/10.1364/OL.44.005719
http://www.ncbi.nlm.nih.gov/pubmed/31774762
http://dx.doi.org/10.1364/OL.397316
http://www.ncbi.nlm.nih.gov/pubmed/32630964
http://dx.doi.org/10.3390/opt1010008
http://dx.doi.org/10.1364/OE.386187
http://dx.doi.org/10.1364/OL.428508


Photonics 2023, 10, 831 18 of 18

19. Martínez-Herrero, R.; Piquero, G.; Santarsiero, M.; Gori, F.; González de Sande, J.C. A class of vectorial pseudo-Schell model
sources with structured coherence and polarization. Opt. Laser Technol. 2022, 152, 108079. [CrossRef]

20. Agarwal, G.S.; Gbur, G.; Wolf, E. Coherence properties of sunlight. Opt. Lett. 2004, 29, 459–461. [CrossRef]
21. Gori, F.; Korotkova, O. Modal expansion for spherical homogeneous sources. Opt. Commun. 2009, 282, 3859–3861. [CrossRef]
22. de Sande, J.C.G.; Korotkova, O.; Martínez-Herrero, R.; Santarsiero, M.; Piquero, G.; Failla, A.V.; Gori, F. Partially coherent

spherical sources with spherical harmonic modes. J. Opt. Soc. Am. A 2022, 39, C21–C28. [CrossRef]
23. Martínez-Herrero, R.; Korotkova, O.; Santarsiero, M.; Piquero, G.; de Sande, J.C.G.; Failla, A.V.; Gori, F. Cylindrical partially

coherent scalar sources. Opt. Lett. 2022, 47, 5224–5227. [CrossRef] [PubMed]
24. Santarsiero, M.; Sande, J.C.G.D.; Korotkova, O.; Martínez-Herrero, R.; Piquero, G.; Gori, F. Three-dimensional polarization of

fields radiated by partially coherent electromagnetic cylindrical sources. Opt. Lett. 2023, 48, 2476–2479. [CrossRef] [PubMed]
25. Hyde, M.W.; Bogle, A.E.; Havrilla, M.J. Scattering of a partially-coherent wave from a material circular cylinder. Opt. Express

2013, 21, 32327–32339. [CrossRef]
26. Petrov, E.Y.; Kudrin, A.V. Exact Axisymmetric Solutions of the Maxwell Equations in a Nonlinear Nondispersive Medium. Phys.

Rev. Lett. 2010, 104, 190404. [CrossRef]
27. Xiong, H.; Si, L.G.; Huang, P.; Yang, X. Analytic description of cylindrical electromagnetic wave propagation in an inhomogeneous

nonlinear and nondispersive medium. Phys. Rev. E 2010, 82, 057602. [CrossRef] [PubMed]
28. Panofsky, W.K.H.; Philips, M. Classical Electricity and Magnetism; Addison-Wesley: Mineola, NY, USA, 1962.
29. Gbur, G.J. Mathematical Methods for Optical Physics and Engineering; Cambridge University Press: New York, NY, USA, 2011.
30. Arfken, G.B.; Weberr, H.J. Mathematical Methods for Physicists, 6th ed.; Elsevier Academic Press: New York, NY, USA, 2005.
31. Setälä, T.; Tervo, J.; Friberg, A.T. Complete electromagnetic coherence in the space–frequency domain. Opt. Lett. 2004, 29, 328–330.

[CrossRef]
32. Wolf, E. Introduction to the Theory of Coherence and Polarization of Light; Cambridge University Press: Cambridge, UK, 2007; p. 222.
33. Setälä, T.; Shevchenko, A.; Kaivola, M.; Friberg, A.T. Degree of polarization for optical near fields. Phys. Rev. E 2002, 66, 016615.

[CrossRef]
34. Ellis, J.; Dogariu, A.; Ponomarenko, S.; Wolf, E. Degree of polarization of statistically stationary electromagnetic fields. Opt.

Commun. 2005, 248, 333–337. [CrossRef]
35. Auñón, J.M.; Nieto-Vesperinas, M. On two definitions of the three-dimensional degree of polarization in the near field of

statistically homogeneous partially coherent sources. Opt. Lett. 2013, 38, 58–60. [CrossRef]
36. Luis, A. Degree of polarization for three-dimensional fields as a distance between correlation matrices. Opt. Commun. 2005,

253, 10–14. [CrossRef]
37. Gil, J.J.; Ossikovski, R. Polarized Light and the Mueller Matrix Approach; CRC Press Taylor & Francis Group: Boca Raton, FL,

USA, 2016. [CrossRef]
38. Tervo, J.; Setälä, T.; Friberg, A.T. Degree of coherence for electromagnetic fields. Opt. Express 2003, 11, 1137–1143. [CrossRef]
39. Korotkova, O.; Wolf, E. Spectral degree of coherence of a random three-dimensional electromagnetic field. J. Opt. Soc. Am. A

2004, 21, 2382–2385. [CrossRef]
40. Gori, F.; Santarsiero, M.; Borghi, R. Maximizing Young’s fringe visibility through reversible optical transformations. Opt. Lett.

2007, 32, 588–590. [CrossRef]
41. Martínez-Herrero, R.; Mejías, P.M. Maximum visibility under unitary transformations in two-pinhole interference for electromag-

netic fields. Opt. Lett. 2007, 32, 1471–1473. [CrossRef] [PubMed]
42. Luis, A. Degree of coherence for vectorial electromagnetic fields as the distance between correlation matrices. J. Opt. Soc. Am. A

2007, 24, 1063–1068. [CrossRef]
43. Martínez-Herrero, R.; Mejías, P.M.; Piquero, G. Characterization of Partially Polarized Light Fields; Springer Series in Optical Science;

Springer: Berlin/Heidelberg, Germany, 2009.
44. Erdelyi, A. Higher Trascendental Functions; McGraw-Hill: New York, NY, USA, 1953; Vollume II.
45. Borghi, R.; Gori, F.; Korotkova, O.; Santarsiero, M. Propagation of cross-spectral densities from spherical sources. Opt. Lett. 2012,

37, 3183–3185. [CrossRef]
46. Gori, F.; Santarsiero, M.; Simon, R.; Piquero, G.; Borghi, R.; Guattari, G. Coherent-mode decomposition of partially polarized,

partially coherent sources. J. Opt. Soc. Am. A 2003, 20, 78–84. [CrossRef]
47. Tervo, J.; Setälä, T.; Friberg, A.T. Theory of partially coherent electromagnetic fields in the space–frequency domain. J. Opt. Soc.

Am. A 2004, 21, 2205–2215. . [CrossRef] [PubMed]
48. Korotkova, O.; Chen, X. Phase structuring of the complex degree of coherence. Opt. Lett. 2018, 43, 4727–4730. [CrossRef]

[PubMed]
49. Korotkova, O.; Chen, X.; Setälä, T. Electromagnetic Schell-model beams with arbitrary complex correlation states. Opt. Lett. 2019,

44, 4945–4948. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.optlastec.2022.108079
http://dx.doi.org/10.1364/OL.29.000459
http://dx.doi.org/10.1016/j.optcom.2009.06.057
http://dx.doi.org/10.1364/JOSAA.473201
http://dx.doi.org/10.1364/OL.471516
http://www.ncbi.nlm.nih.gov/pubmed/36181227
http://dx.doi.org/10.1364/OL.486628
http://www.ncbi.nlm.nih.gov/pubmed/37126303
http://dx.doi.org/10.1364/OE.21.032327
http://dx.doi.org/10.1103/PhysRevLett.104.190404
http://dx.doi.org/10.1103/PhysRevE.82.057602
http://www.ncbi.nlm.nih.gov/pubmed/21230630
http://dx.doi.org/10.1364/OL.29.000328
http://dx.doi.org/10.1103/PhysRevE.66.016615
http://dx.doi.org/10.1016/j.optcom.2004.12.050
http://dx.doi.org/10.1364/OL.38.000058
http://dx.doi.org/10.1016/j.optcom.2005.04.046
http://dx.doi.org/10.1201/b19711
http://dx.doi.org/10.1364/OE.11.001137
http://dx.doi.org/10.1364/JOSAA.21.002382
http://dx.doi.org/10.1364/OL.32.000588
http://dx.doi.org/10.1364/OL.32.001471
http://www.ncbi.nlm.nih.gov/pubmed/17546158
http://dx.doi.org/10.1364/JOSAA.24.001063
http://dx.doi.org/10.1364/OL.37.003183
http://dx.doi.org/10.1364/JOSAA.20.000078
http://doi.org/10.1364/JOSAA.21.002205
http://www.ncbi.nlm.nih.gov/pubmed/15535379
http://dx.doi.org/10.1364/OL.43.004727
http://www.ncbi.nlm.nih.gov/pubmed/30272725
http://dx.doi.org/10.1364/OL.44.004945
http://www.ncbi.nlm.nih.gov/pubmed/31613235

	Introduction
	Preliminaries
	The Basis Functions
	Evolution of the Expansion Coefficients
	The Basis Functions as Coherent Vector Modes
	Discussion
	E-Polarization
	H-Polarization
	E- and H-Polarization
	Mutually Correlated Modes

	Conclusions
	References

