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Abstract: Fiber fault detection is crucial for maintaining the quality of optical communication,
especially in well-established optical access networks with extended distances and a growing number
of subscribers. However, the increasing insertion loss in fiber links presents challenges for traditional
fault-detection methods in capturing fault echoes. To overcome these limitations, we propose a
modulation-enhanced external-cavity-resonant-frequency method that utilizes a laser for fault echo
reception, providing improved sensitivity compared to traditional photodetector-based methods.
Our previous work focused on analyzing key parameters, such as sensitivity and spatial resolution,
but did not consider practical aspects of selecting optimal modulation parameters. In this study, we
develop a model based on Lang–Kobayashi rate equations for current-modulated optical feedback
lasers and validate it through experimental investigations. Our findings reveal that optimal detection
performance is achieved with a modulation depth of 0.048, a frequency sweeping range of 0.6 times
the laser relaxation oscillation frequency, and a frequency sweeping step of 0.1 times the external
cavity resonant frequency.

Keywords: fiber fault detection; high-sensitivity detection; optical feedback; modulation resonance
effect; external cavity signature

1. Introduction

The development of optical access networks has accelerated the emergence of the
“Internet of Things” era [1–5]. Consequently, ensuring the maintenance of optical fiber links
has become increasingly crucial to prevent communication interruptions and associated
losses [6]. An optical time-domain reflectometer (OTDR) [7] is commonly employed for
detecting faults in fiber links. However, as transmission distance and the number of
subscribers continue to increase, the inherent insertion loss in the transmission link also
rises. For instance, in a single-mode fiber with a transmission distance of 100 km, the
one-way transmission loss is approximately 20 dB (calculated by 0.2 dB/km attenuation).
In the prevalent time-division-multiplexing passive-optical-network (TDM-PON) structure,
where 64 branches are transmitted over a 20 km distance, the one-way transmission loss
can reach 22 dB. Considering the −14 dB reflection caused by mismatches between the fiber
and the air refractive index at the fault point, the detection sensitivity at the control center
should support a path loss of at least −58 dB. As the transmission distance or the number
of branches increases, the requirement for detection sensitivity will inevitably grow [8,9].
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In current methods of fiber fault detection, the fault echo is detected by the photodetec-
tor. But the sensitivity of the commercial photodetector cannot support too weak (<−60 dBm)
laser detection, and the noise generated by the dark current of the photodetector also sig-
nificantly impacts the quality of signal processing. Although denoising algorithms [10–12],
pulse coding detection [13–16], optical frequency-domain reflectometry [17–19], and chaotic
light [20,21] can partially enhance the dynamic range of fiber fault detection, they still
rely on the photodetector as a fundamental component. While the use of single-photon
detectors can push the detection sensitivity to its limit, their inherent limitations and high
cost hinder their widespread adoption in the OTDR market [22–26]. Increasing the power
of the detection light can accommodate larger path losses in the fiber link without affecting
the detector’s sensitivity. However, the high-energy pulse induces the nonlinear effects of
the fiber, which actually impacts the detection of fault locations.

In our previous research, we introduced a method for improving detection sensitiv-
ity and achieving precise fault localization using a modulated laser [27]. Unlike optical
frequency-domain reflectometry, this technique is not restricted by the coherent length [28]
of the laser and employs the laser itself to receive fault echo, thereby eliminating the sensi-
tivity limitation associated with the photodetector. Theoretical analyzations demonstrated
that this method enables the detection of the fault echo in a system with an insertion loss
of up to −118 dB, which is significantly higher than the detection sensitivity achievable
with conventional methods (limited to a maximum of 60 dB of insertion loss with an
output power of 0 dBm and a detection sensitivity of −60 dBm). In our previous study, we
primarily focused on elucidating the reasons for sensitivity enhancement and exploring the
influence of various parameters. However, we did not consider the bandwidth and cost
limitations of the electronic devices involved in generating the modulation signal during
the implementation process. Whether the corresponding requirements can be met and the
optimal strategies for parameter settings were not provided.

Therefore, this study extends this method by conducting a comprehensive analysis
of the optimal parameter values for modulation signal intensity, frequency sweeping
range, and frequency sweeping step. By combining theoretical analysis with experimental
investigations, it aims to enhance the detection sensitivity and provide valuable insights into
the development of future prototypes. This research offers essential guidance for striking a
balance between high-frequency device considerations and measurement performance.

2. Principle and Theoretical Model
2.1. Principle

The principle of the method for high-sensitivity fault detection using frequency modu-
lation to enhance the external cavity resonant frequency is depicted in Figure 1. The laser
receives the echo from the fiber fault point, and due to the presence of optical feedback,
the modulation response curve of the laser becomes non-smooth and exhibits periodic
oscillations centered around the external cavity resonant frequency (f ) [29]. By analyzing
the periodic fluctuations in this modulation response curve, the position of the feedback
can be calculated (L = c/2nf, where c represents the speed of light in vacuum and n denotes
the refractive index of the fiber). The simplest approach to analyze the periodicity is to
perform inverse Fourier transform (IFT) calculations. In this case, the peak corresponding
to the fault position in the calculated IFT curve is referred to as the feedback delay signature
(FDS). The signal-to-noise ratio (SNR) is defined as the ratio of the FDS height to the noise,
while the spatial resolution is represented by the full width at half maximum (FWHM) of
the FDS peak.
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Figure 1. Schematic of the modulation-enhanced external cavity resonant frequency in fiber
fault detection.

In this method, once the laser is selected, the primary factor influencing the measure-
ment performance is the modulation signal parameters. The frequency sweeping range (∆F)
and the step size (∆f ) of the modulation signal directly determine the sensitivity and spatial
resolution of the method. Moreover, these parameters have implications for the measure-
ment time and the selection of electronic devices during the implementation. For instance, a
wide range with a small step size in the frequency sweep signal will inevitably increase the
detection and subsequent processing time. Excessively high modulation frequency imposes
high demand on the high-frequency electronic devices for signal generation and reception.
Thus, the practical implementation of this method hinges on the rational selection and
configuration of parameters to meet the conventional fiber-fault-detection requirements.

2.2. Theoretical Model

Theoretical simulations are conducted based on the Lang–Kobayashi rate equations [30].
By neglecting the spontaneous emission noise of the laser, the rate equations can be ex-
pressed as follows:
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where A and ϕ represent the amplitude and phase of the electric field, respectively, while
N represents the carrier density. Γ is the optical confinement factor, Gn is the gain coef-
ficient, ε is the gain saturation coefficient, and N0 is the transparency carrier density. τn
and τp represent the lifetimes of carriers and photons, respectively. The round-trip time
within the laser cavity is denoted by τin. The amplitude feedback coefficient is given by
k = (1 − r0

2)r/r0, where r and r0 represent the amplitude reflectivity of the fiber fault and
the laser facet, respectively. The feedback phase is given by θ(t) = ωτ + f (t) − f (t − τ),
where τ = 2nL/c represents the round-trip time between the laser facet and the fiber fault
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at a distance L. Here, ω, n, and c denote the angular oscillation frequency, refractive index
of the fiber, and speed of light in vacuum, respectively. The linewidth enhancement factor,
electron charge, and volume of the laser cavity are denoted by α, q, and V, respectively.
The modulation current is given by Im(t) = Ib + MD(Ib − Ith)cos(2πf mt), where Ib and Ith
represent the bias current and threshold current, respectively, and MD and f m denote the
modulation depth and modulation frequency, respectively. In the fault-detection process,
considering that the actual feedback intensity measured is the feedback strength entering
the laser after undergoing line losses, the feedback intensity is defined using kf = 10log(r2)
(unit: dB). The parameter values are set to be the same as those in reference [27]. As the
optical-path loss increases, kf decreases, and consequently, the FDS height obtained through
IFT calculation also decreases. We define kf corresponding to SNR < 3 dB as the achievable
detection sensitivity of this method.

3. Numerical Simulation
3.1. Sweeping Method

In this method, the practicality implementation is primarily limited by the modulation-
frequency sweeping range (∆F). In the original approach, the modulation response curve
exhibits maximum oscillation amplitude near the relaxation oscillation frequency (f r) of the
laser. Consequently, ∆F was defined to extend from f r towards both sides, as depicted in
Figure 2a1. However, the typical f r of the semiconductor laser is generally within the range
of 2.5–5 GHz, making it challenging to directly reduce the frequency of the modulation
signal. To address this issue, several feasible approaches can be considered to alleviate the
requirements. One option is to utilize a lower f r laser, or, alternatively, to narrow down
the range of ∆F in order to reduce the demands on the high-frequency devices. Another
potential approach involves adopting a different frequency-sweeping implementation by
directly sweeping from low to high frequency, as illustrated in Figure 2b1. If this sweeping
method can achieve high-sensitivity fault detection within the low-frequency range, it
would significantly reduce the requirements for generating and receiving high-frequency
signals compared to the conventional f r-centered sweeping approach.
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Figure 2. Expanding from f r to both sides as sweeping method: (a1) schematic, (a2) effects of
frequency sweeping range ∆F on SNR and FWHM, and (a3) map of feedback strength and ∆F.
Expanding from 100 MHz to high frequency as sweeping method: (b1) schematic, (b2) effects of
sweeping range ∆F on SNR and FWHM, and (b3) map of feedback strength and ∆F.

We compare and evaluate the effects of these two sweeping methods on the measure-
ment results, including the signal-to-noise ratio (SNR) and spatial resolution. In these
analyzations, the key parameter settings in the model are as follows: the laser linewidth
enhancement factor is set to 5, the cavity length is set to 200 µm, and the facet reflectivity is
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set to 0.3. The fault point is set at 23 ns (corresponding to f = 43.5 MHz), under Ib = 1.5 Ith,
∆f = 5 MHz, MD = 0.05, and kf = −60 dB. The resulting modulation response curve is
demonstrated in Figure 2a1,b1, with f r approximately around 2.6 GHz.

Figure 2a2 presents the detection results obtained using the f r-centered frequency
sweeping method. In this case, when ∆F is set to 0.1 f r, the sweeping range extends
from 2.47 GHz to 2.73 GHz, covering six oscillation periods and enabling the retrieval of
fault information. However, the performance, in terms of the SNR and FWHM, is subpar,
measuring 4.26 dB and 0.56 m, respectively. As ∆F increases, the SNR rapidly improves,
while the FWHM decreases sharply until ∆F = 2f r, following with a gradually stabilizing
trend. Throughout this transition, the SNR remains above 3 dB and reaches its peak value
of 16.6 dB at ∆F = 0.6f r. Subsequently, due to the influence of the overall envelope shape
of the modulation response curve, the noise in the IFT calculation increases, leading to a
decrease in the SNR. Once ∆F increases to a certain range, a balance is achieved between
the oscillation peaks and other noise present in the modulation response curve during the
IFT calculation, resulting in a stable SNR of approximately 12.5 dB after ∆F = 2 f r. Similarly,
the FWHM exhibits a similar trend, reaching its minimum value of 0.12 m at ∆F = 0.6f r and
then remaining stable.

The sensitivity of the detection method in the modulated resonance-enhanced external
cavity resonant frequency is directly determined by the SNR magnitude under different
parameter settings. To analyze the sensitivity under different ∆F values, we adjust the kf
and examine the SNR result, as shown in Figure 2a3. While the ∆F remained constant,
the SNR values varied as the feedback strength changed, but the overall trend remained
consistent. The maximum SNR was achieved when the feedback strength ranged from
−70 dB to −55 dB. The influence of ∆F followed the same pattern as in the previous study,
with a significant impact observed before reaching 2f r. The highest sensitivity of −86 dB
was achieved at 0.6f r, followed by a gradual decrease to −75 dB. The region above the
white curve in the graph (SNR = 3 dB) corresponds to feedback strengths where FDS peaks
can be observed.

We further demonstrate the effects of starting the sweeping from 100 MHz using the
same modulation response curve. The SNR and FWHM results are shown in Figure 2b2.
Noticeably, the inflection points of both parameter curves shift towards higher values of
∆F. The maximum SNR of 15.5 dB is achieved at ∆F = 3.6 GHz, followed by a signifi-
cant decrease to 11 dB and subsequent stabilization. Conversely, the FWHM reaches its
minimum within the range of 2.5 GHz and remains relatively stable as ∆F changes. This
phenomenon can be primarily attributed to the low-frequency range before f r, where the
laser is less affected by the external cavity resonant frequency, resulting in less pronounced
periodic behavior in the modulation response curve. Consequently, the calculated FDS
height by IFT is lower, which affects the SNR results. However, the FWHM reaches its
optimal value when the SNR is above 3 dB. The relationship between ∆F and kf for this
sweeping method is illustrated in Figure 2b3, where the sensitivity reaches its lowest value
of −80 dB at ∆F = 4.4 GHz and then stabilizes after 5 GHz. A clear comparison with the
results in Figure 2a3 reveals that the sweeping method of the f r-centered mode can achieve
the optimal performance at ∆F = 0.6f r = 1.56 GHz, allowing for a larger range of detectable
feedback strengths. In contrast, the sweeping method starting from lower frequency only
achieves a sensitivity of −61 dB at 1.56 GHz.

Considering the high demands on electronic devices for high-frequency wide-range
sweeping, it is preferable to have a small sweeping range. Based on the comparative
analysis results mentioned above, the sweeping method with f r as the center expanding
towards both sides exhibits several advantages. Firstly, it has a significantly smaller
frequency sweeping range and maximum frequency compared to the alternative sweeping
method. Secondly, it is less affected by low-frequency components, resulting in higher SNR
values. Therefore, in the subsequent research, all frequency sweeping methods are based
on the f r-centered sweeping mode.
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3.2. Optimization of Sweeping Range

The sweeping range centered around f r faces a challenge due to the impact of bias-
current variations on the laser-diode characteristics, including f r and damping rate. Figure 3a
demonstrates the distinct modulation response curves of the laser diode under different
bias-current conditions. Increasing the bias current from 1.5Ith to 10Ith leads to an increase
in f r from 2.6 GHz to 9.5 GHz. Moreover, the height of the peak at f r in the modu-
lation response curve decreases, accompanied by a reduction in the amplitude of the
periodic oscillations caused by the external cavity resonant frequency. Consequently, if
the sweeping range is still determined based on the multiples of f r, the value of ∆F will
increase significantly.
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frequency sweeping range ∆F on SNR at different Ib. (c) The influence of Ib on absolute value of ∆F.
(d) The influence of feedback strength on SNR at different Ib when ∆F = 1.1 GHz.

To address this issue, we investigated the influence of bias-current variations on the
selection of ∆F, building upon the previous section. Figure 3b illustrates the trend of the
SNR calculated by IFT under different bias currents as a function of ∆F. The trend follows a
similar pattern to previous research results, initially increasing rapidly and then leveling off.
The position of the maximum SNR value noticeably shifts towards lower multiples of f r.
However, it is important to note that this observation is relative, and a detailed calculation
is necessary to determine the absolute change in the sweeping range with increasing f r.
Additionally, the change in the curve’s height is not consistently in a single direction; it
may increase or decrease depending on the specific conditions. Nonetheless, the range
of SNR variation consistently remains above 3 dB, satisfying the requirement for fault
extraction. Thus, we conducted further analysis to determine the absolute change in the
sweeping range.

As shown in Figure 3c, the accurate range of the optimal frequency range ∆F varies
with different Ib, exhibiting an overall increasing trend. When the bias current is set to 10Ith,
the frequency range reaches a maximum of 2.45 GHz. However, at lower bias currents,
there is some fluctuation, and even at a bias current of 2.5Ith, the frequency range achieves
the minimum of 1.1 GHz. This indicates that at a bias current of 2.5Ith, the desired effect
of fiber fault detection, can be achieved with the minimum scanning range. In Figure 3d,
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using this 1.1 GHz frequency range, the variation of SNR with feedback strength was tested
at three bias currents. The feedback strength corresponding to an SNR of 3 dB represents
the sensitivity of this method. It can be observed that under ∆F = 1.1 GHz, the trend of SNR
variation with feedback strength remains consistent, and the difference in sensitivity is less
than 2 dB, fully satisfying the detection requirements for fiber faults using this method.

Upon careful observation of the modulation response curves at different Ib, it is evident
that the number of oscillation cycles included within ∆F varies for the same multiple of
relaxation oscillation frequency. Figure 4 illustrates the modulation response curves for
∆F = 0.6f r at three different bias currents. As the bias current increases, f r also increases,
resulting in a larger number of oscillation cycles being included. However, according to
Figure 3b, even though 2.5Ith includes more oscillation cycles under the same condition
of 0.6f r, its SNR value is significantly lower than that of 1.5Ith. Based on Figure 4, it can
be inferred that in the IFT calculation, the impact of oscillation amplitude on the SNR is
much greater than the impact of the number of oscillation cycles. Moreover, the overall
envelope of the modulation response curve also varies. This envelope acts as noise in the
IFT calculation, affecting the accurate value of the SNR and the sensitivity performance.
Therefore, a compromise between the oscillation amplitude and the number of oscillation
cycles is necessary. This finding aligns with the conclusion in Figure 3c that the optimal
sweeping range is the smallest at 2.5Ith. Thus, selecting a sweeping range of 1.1 GHz at
2.5Ith as the optimal parameter choice is consistent with the objective of achieving good
detection performance while reducing the frequency requirements of electronic devices.
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Similarly, the number of oscillation cycles within the sweeping range is determined
by the distance to the fault. If the external cavity resonant frequency f corresponding to
the fault location is greater than or close to ∆F, the IFT calculation may not accurately
determine the frequency associated with the periodic oscillation. For example, when the
fault is located at a distance of one meter, assuming a refractive index of 1.5 for the single-
mode fiber, the corresponding f is 100 MHz. The chosen sweeping range ∆F must be
greater than this value. However, it requires detailed research to determine the optimal
number of oscillation cycles to be included in the sweeping range to achieve the optimal
detection performance. Therefore, as shown in Figure 4b, we analyze the optimal ∆F at
different L by the maximum SNR standard (like the process of Figure 2a2). When the
external cavity length is one meter, the optimal ∆F needs to be approximately 3.5 GHz to
achieve the maximum SNR. As L increases, the f corresponding to the oscillation cycle
in the modulation response curve gradually decreases, leading to a rapid decrease in the
required sweeping range. When L reaches three meters, the optimal sweeping range drops
below 1 GHz and exhibits minimal changes with further increases in the external cavity
length, stabilizing around 1 GHz.
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This suggests that once the number of oscillation cycles in the modulation response
curve caused by the external cavity resonance reaches a certain threshold, the optimal value
of ∆F will be relatively constant. A balance is achieved between the noise introduced by
additional oscillation cycles and the periodic characteristics provided by the IFT calculation.
Therefore, in the practical implementation of this method, a three-meter fiber jumper can be
added to preset the zero point. This ensures improved SNR performance when ∆F is small,
guaranteeing accurate distance measurement results with ∆F = 0.6fr while maintaining a
high SNR.

4. Experimental Verification

To validate the optimized parameters obtained from theoretical simulations, we im-
plemented the experimental setup shown in Figure 5. The signal output port of a Rohde
& Schwarz ZNB40 vector network analyzer (VNA) was connected to the RF port of a
laser diode. The laser output was directly through a polarization controller (PC) and
split into two paths by an optical coupler (OC). One path was used as the probing light,
which was coupled into the fiber under test (FUT), while the other path was connected
to a photodetector (PD) (Finisar XPDV2120RA) to convert the optical signal to electrical
signal. The electrical signal feedback was connected to the receiving port of the VNA.
This setup allowed us to obtain the modulation response curve of the laser with optical
feedback conditions. To precisely control the feedback strength of the laser, we inserted an
optical fiber mirror (M) and a variable fiber attenuator (VOA, EXFO FVA-600) in the DUT
section. The basic performances of the laser were Ith = 7.7 mA, 0.148 mW/mA for the slope
efficiency, and about a 1550 nm wavelength. Both the VNA and PD had a bandwidth of
40 GHz. The length of the fiber under test was set to 50 m.
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The selected frequency-sweeping method was experimentally verified under Ib = 1.5 Ith,
where f r = 4.26 GHz. The variations of the SNR and FWHM with respect to ∆F in the
f r-centered sweeping method are investigated in Figure 6a. The experimental results
aligned with the theoretical predictions. The SNR reached its maximum value of 18.3 dB
at ∆F = 0.6 f r and decreased as ∆F increased, stabilizing after exceeding 2f r. Similarly, the
FWHM exhibited a rapid decrease followed by a plateau, consistent with the theoretical
findings. The transition point of the FWHM occurred slightly earlier than that of the SNR,
indicating that the FWHM is primarily determined after the IFT calculation, which formed
the delayed peak shape. Figure 6b demonstrates the results obtained by sweeping the
frequency from low to high. Both the SNR and FWHM showed similar patterns of rapid
variations followed by a plateau. The optimal absolute value of ∆F is about 5.2 GHz. It is
noteworthy that the experimental setup exhibited significant background noise, unlike the
numerical simulations. Consequently, as ∆F moved away from f r, it became more suscepti-
ble to noise interference. Thus, compared to the simulations, both methods demonstrated
earlier inflection points to some extent, and the SNR curve exhibited more fluctuations in
the experimental data. It should be pointed out that the value of the SNR in the experiment
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is a little higher than the simulation result because of the high-performance VNA drawing
the perfect modulation response curve.
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In modulation-based frequency sweeping, the choice of step size for the sweeping
interval is crucial. Previous studies have highlighted that the step size is equivalent
to the precision of the laser’s modulation curve and the accuracy of representing the
periodic oscillations induced by external cavity resonance. Insufficient sampling points
will lead to an inaccurate representation of the periodic oscillation waveform, similar to
the concept of the Nyquist theorem in waveform sampling, where an inadequate number
of samples cannot fully reconstruct the waveform’s characteristics. To address this, the
optimal approach is to associate the sweeping step size with the estimated distance to be
measured, setting it to one-tenth of the frequency corresponding to that distance. This
ensures that each period oscillation in the modulation response curve is represented by ten
data points. The results presented in Figure 7a demonstrate that the optimal measurement
performance is achieved when there are ten sampling points within each period oscillation
caused by the resonance frequency. However, this approach presents a challenge when the
distance to be measured increases while the sweeping range is kept fixed. In such cases,
the number of sweeping points increases, leading to longer sweeping and subsequent
processing times. In such scenarios, a trade-off is necessary, where the sweeping range is
shortened based on the desired detection performance.
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The current-modulated laser can be classified into two categories: large-signal mod-
ulation and small-signal modulation, based on the modulation depth of the modulation
signal. Previous research has indicated that the method described in this paper requires



Photonics 2023, 10, 822 10 of 11

operating the laser in a small-signal modulation state, where modulation depths below 0.1
can achieve high sensitivity for fault detection. However, within the modulation depth
range below 0.1, there is still significant room for optimization. Therefore, in this study, we
conducted the experimental tests within the modulation depth range of 0.01~0.1, using the
optimized parameters obtained from the previous analysis (sweeping range ∆F = 0.6f r and
bias current 1.5 Ith). The aim was to measure the SNR results at different modulation depths
under the same feedback intensity. The results are shown in Figure 7b. From the graph, it
can be observed that at lower modulation depths, the SNR was significantly higher com-
pared to the previous modulation depth of approximately 14.8 dB at 0.1. The highest SNR
point occurred at a modulation depth of 0.048, where the SNR reached 18.3 dB. However,
increasing the modulation depth beyond this point led to a rapid decrease in SNR.

5. Conclusions

This paper presents a practical analysis of the method for high-sensitive fiber fault
detection based on modulating resonance-enhanced external cavity resonant frequency.
This study explored the optimal frequency-sweeping approach, taking into consideration
various practical factors. This research revealed that sweeping from the laser’s relaxation
oscillation frequency towards both sides requires a smaller sweeping range compared
to the traditional sweeping approach from low to high frequency. The detection results
achieved a maximum signal-to-noise ratio (SNR) and minimum full width at half maximum
(FWHM) when the sweeping range was set at 0.6 times the relaxation oscillation frequency.
Furthermore, it was determined that a modulation depth of 0.048 and a sweeping step size
of one-tenth of the external cavity resonant frequency were optimal for the method. The
choice of bias current significantly affected the relaxation oscillation frequency. Therefore,
it is recommended to use a lower bias current for better results. The findings of this
study provide crucial insights into the optimal parameter settings for implementing high-
sensitivity fiber fault detection. These results serve as a foundation for the subsequent
development of practical prototypes.
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