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Abstract: It is well known that bright vortex solitons are unstable in the χ(2) nonlinear media due to
the strong azimuthal modulation instability. To solve this problem, a quadratic (χ(2)) LiNbO3 ferro-
electric crystal with a special kind of helical-periodically poled structure is proposed. The proposed
structure is designed by embedding topological charges into the crystal with a quasi-phase matching
technique. Simulation results indicate that vortex solitons containing fundamental-frequency and
second-harmonic waves can robustly propagate over a distance. Two types of vortex states are ob-
tained: double vortices state and vortex–antivortex state. The dependence of effective area, propagation
constants, and maximum light intensity on the control parameters are presented. These results provide
a new solution for robust transmission of bright vortex solitons in a χ(2) nonlinear media.

Keywords: vortex solitons; quasi-phase matching; quadratic nonlinear effect; helical-periodically
poled lithium niobate

1. Introduction

Nonlinear frequency conversion is an important nonlinear process that can gener-
ate new frequency components through nonlinear polarization interactions between light
waves and media. It has attracted wide attention for its applications in resonant nanopho-
tonics [1], sum-frequency generation spectroscopy [2], quantum information processing [3],
etc. To achieve nonlinear frequency conversion, the momentum conservation condition is
crucial. However, it is usually violated due to the dispersion effects in materials. Therefore,
the phase matching technique should be introduced to realize highly efficient nonlinear
frequency conversion. One of the popular phase matching techniques is to make use of
the birefringent effect of a crystal to satisfy the momentum conservation condition [4–6].
However, it has high requirements on the incident angle, crystal orientation, etc., and makes
it difficult to use the maximum nonlinear coefficient of the crystal [7]. Another promising
phase-matching technique that excludes the disadvantages mentioned above is the quasi-
phase matching (QPM) technique. Although it was proposed in advance of the birefringent
phase matching technique [8], it has not been widely used until recently [9,10]. By periodi-
cally changing the polarization state in a bulk nonlinear crystal, a kind of nonlinear photonic
crystal can be created with the QPM technique. It is attracting more and more attention with
the rapid development of this regime [11–14]. In 2019, three-dimensional nonlinear photonic
crystals were fabricated in lithium niobate crystals using femtosecond-laser-engineering
techniques [15], which show great potential in shaping nonlinear processes. The radiation-
induced optical absorption and phase-mismatch for third-order QPM second harmonic
generation (SHG) in congruent LiNbO3 crystals were subsequently investigated [16]. High-
efficiency third-harmonic generation is achieved by designing an inhomogeneous QPM
structure in a quadratic crystal using a Monte Carlo algorithm [17]. Multiplexing linear
and nonlinear Bragg diffractions through volume gratings fabricated by femtosecond laser
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writing in lithium niobate crystals was reported recently [18]. Additionally, a theoretical
study on mid-infrared difference frequency generation (DFG) based on periodically-poled
thin-film lithium niobate was conducted in [19]. Bistable switching, adiabatic geometric
phasing, Stern–Gerlach, and optical solitons [20,21] are some of the current interesting
research topics in the field of nonlinear photonic crystals. In this letter, optical solitons are
mainly studied.

As the knowledge in the field of optical solitons increases, the more complex solitons
are studied. Among them, vortex solitons are particularly typical. Vortex solitons with vor-
ticity are nonlinear modes that have been extensively investigated in fields such as nonlinear
optics and Bose–Einstein condensates (BECs) in ultracold atomic gases [22,23]. There are
various applications for vortex optical solitons that carry topological charges, such as light
manipulation [24], optical tweezers [25], and quantum communication [26–28]. Fundamen-
tal solitons in quadratic (χ(2)) media can stably exist in free space [29–32]. However, vortex
optical solitons with embedded vorticity will decay into low-order solitons (fundamental
solitons) during propagation because of the instable azimuthal modulation [33–35]. In order
to obtain stable vortex optical solitons, a common approach is to introduce competing
nonlinearities [36–40]. In this way, stable 2D vortex optical solitons have been observed
experimentally [41]. Additionally, competitive nonlinear phenomena can also be found
in a BEC system for investigating vortex self-localized states and the formation of quan-
tum droplets [42–46]. However, these competing nonlinearities rely on a high-power light
source, and the effect of it is relatively weak. Another method to achieve stable vortex
solitons is to introduce a spatially uniform lossy background and a ring-shaped gain in
a χ(2) medium [47]. It is reported that rhombus and square vortex optical solitons can be
obtained in nonlinear photonic crystals with a checkerboard structure by the QPM tech-
nique [48]. Therefore, generating stable vortex optical solitons in pure χ(2) media is proved
to be feasible and valid. However, QPM crystals with a checkerboard structure, as in Ref-
erence [48], result in the intensity distribution of the vortex solitons having a four-peak
profile rather than a ring-shaped profile. Additionally, these vortex solitons only exist in
the fundamental-frequency (FF) component, while the second-harmonic (SH) component
exhibits quadrupole mode behavior. Thus, the problems of vortex soliton splitting and the
possibility of generating vortex soliton modes in both the FF and SH components remain in-
triguing and worth further investigation. Recent research reported that vortex beams can be
generated directly through a nonlinear process by introducing a spiral periodic polarization
structure in a ferroelectric crystal [49,50]. Inspired by this concept, a new method to generate
vortex solitons is proposed. Specifically, spiral periodic polarization in a ferroelectric crystal
structure is introduced so as to embed the topological charge in the χ(2) crystal. By this
method, accurate phase matching of the second harmonic process is ensured according to
the QPM condition. Simulation results show that quasi-stable vortex optical solitons can be
formed in realistic parameter space. Two types of vortex states are obtained: double vortices
states and vortex–antivortex states. The relations of effective area, propagation constants,
maximum light intensity with the input power, and effective detuning are discussed. It is
proved to be a new method for stabilizing optical vortex solitons in a pure χ(2) medium.

2. Theory and Model

In this study, quadratic solitons in the process of second harmonic generation are
investigated. The structure of the nonlinear crystal is designed by the QPM technique.
The coupled equations under the slowly varying amplitude approximation of this process
are as follows:

i∂z A1 = − 1
2k1
∇2 A1 −

2d(r, θ, z)ω1

cn1
A∗1 A2e−i∆kz, (1)

i∂z A2 = − 1
2k2
∇2 A2 −

d(r, θ, z)ω2

cn2
A2

1ei∆kz. (2)
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where the amplitude of FF and SH waves are denoted by A1, A2, respectively. ∇2 =
∂2

x + ∂2
y = ∂2

r + r−1∂r + r−2∂2
θ is the paraxial-diffraction Laplacian. The speed of light in a

vacuum is c. k1,2, n1,2, and ω1,2 (ω2 = 2ω1) are the carrier wavenumbers, refractive indices,
and frequencies of FF and SH waves, respectively. The phase mismatch between two waves
is defined by ∆k = 2k1 − k2. d(r, θ, z) is a modulation coefficient that characterizes the
spatially varying magnitude of the χ(2) susceptibility. It can be represented by the Fourier
series expansion as:

d(r, θ, z) = deff ∑
m 6=0

2
mπ

sin[mπD] exp{im[Kz + φd(r, θ)]}. (3)

where K = 2π/Λ (Λ is the modulation period) is the modulation wave-vector of the QPM
and the duty cycle D is set to 1/2. deff represents the corresponding component of the χ(2)

susceptibility tensor, and φd(r, θ) is the modulation phase factor created by a spatial function
with a helical-periodically poled structure. Specifically, we set φd = n · θ(n = ±1,±2, ...),
which is equivalent to embedding the topological charges in a ferroelectric crystal. It is
proved that this Fourier series expansion provides a specific representation of the helical
periodic polarization structure in cylindrical coordinates (r, θ, z). The phase factor φd serves
as a modulation phase factor, where the magnitude of the index, n, determines the degree
of distortion in the ferroelectric crystal. Through this phase-twisted modulation, a helical
periodic polarized ferroelectric crystal can be formed. Subsequently, we restrict our analysis
to the fundamental harmonics associated with m = 1 and m = −1 in Equations (1) and (2),
respectively, as they reflect the domain effect of the QPM.

By utilizing the definitions introduced in References [51,52], the following equations
are derived:

I0 =
2

∑
j=1

nj

ωj
|A0|2, (4)

Ψj = Aj

√
nj

ωj I0
exp[i(∆k− K)z], j = 1, 2, (5)

z−1
d =

2deffω1

πcn1

√
ω2

n2
I0, (6)

Z = z/zd, R = r
√

k1/zd, (7)

∆Γ = zd(∆k− K). (8)

Here A0 denotes a characteristic amplitude of the electromagnetic field, while ∆Γ represents
the effective detuning. To simplify the analysis, Equations (1) and (2) are normalized by dis-
regarding the material-dependent difference between n1 and n2. Additionally, by truncating
the Fourier series expansion in Equation (3), the following expressions are derived:

i∂ZΨ1 = −1
2
∇2Ψ1 − ∆ΓΨ1 − 2eiφd(R,θ)Ψ∗1Ψ2, (9)

i∂ZΨ2 = −1
4
∇2Ψ2 − ∆ΓΨ2 − e−iφd(R,θ)Ψ2

1, (10)

where ∇2 = ∂2
X + ∂2

Y = ∂2
R + R−1∂R + R−2∂2

θ . Equations (9) and (10) possess a dynamical
invariant. The total power (also known as the Manley-Rowe invariant [53]) is,

P =
∫∫

(|Ψ1|2 + 2|Ψ2|2)dXdY ≡ P1 + P2. (11)

The input power P, the effective detuning ∆Γ, and the modulation phase factor φd are
the control parameters of the system.

The bright vortex solitons of Equations (9) and (10) can be expressed as
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Ψ1(X, Y, Z) = ψ1(X, Y)exp(iβZ), (12)

Ψ2(X, Y, Z) = ψ2(X, Y)exp(2iβZ), (13)

where ψ1 and ψ2 are the stationary shape of the FF and SH components, respectively.
The propagation constants of them are β and 2β, respectively. The phase matching condi-
tions of Equations (9) and (10) are given by:

ϕ2 = 2ϕ1 − φd. (14)

As mentioned previously, φd = n · θ(n = ±1,±2, ...), which implies that vortex
solitons with different topological charges can exist when n takes different integer values.
The sign of n represents the rotation direction of the vortex soliton. By satisfying the phase
matching conditions, we can achieve the effect of embedding topological charges in the
crystal. If we set φd = θ (namely n = 1), then the lowest solution of the phase matching
conditions can be represented as:

ϕ1 = ϕ2 = θ. (15)

The resulting topological charges of two vortex solitons are S1 = S2 = +1, which
leads to a double vortices states with identical directions of rotation. By setting φd = 3θ,
the lowest solution of the phase matching conditions can be expressed as:

ϕ1 = −ϕ2 = θ. (16)

The resulting topological charges of the two vortex solitons are S1 = −S2 = +1,
leading to a special type of vortex state called the vortex–antivortex state (also known as hidden
vortices [42,43]). The numerical simulation results of these states will be extensively discussed
in Section 3. It is worth noting that various states can be obtained for different integer values
of n, which were not discussed in this paper. For instance, when n = 6 and n = 9, the lowest
solutions are S1,2 = ±2 and S1,2 = ±3, respectively. These matching conditions correspond
to vortex–antivortex solitons with high angular momentum. By varying the value of n, three
distinct combinations of high-order vortices can be obtained: equal topological charges in
both components, opposite topological charges in the two components, and unequal absolute
values of the topological charges in the two components. In special cases, it is possible to
achieve a topological charge value of zero in one component, allowing for the generation
of the vortex state or elimination of the vortex state. Thus, it can be proved that under the
condition of phase matching, the transformation of high-order topological charges between
two components can be realized. Therefore, it has significant implications for the design of
data storage devices or converters based on optical vortices, where information is encoded
in the topological charges. Recently, in the study of quasi-two-dimensional hidden vortices of
Bose–Bose mixture condensates trapped by thicker transverse confinement, quantum droplets
with high angular momentum, having topological charges reaching up to S = 4, have been
observed [54].

To estimate the physical parameters of the model, we assumed that the nonlinear
photonic crystal is made by LiNbO3. Then, the relevant parameters were set to: deff =
27 pm/V and n1 ≈ n2 ≈ 2.2. The wavelengths of FF and SH waves were selected as 1064
nm and 532 nm, respectively. According to Reference [30], the electric field amplitude A0
in Equation (4) was set to be 50 kV/cm. The estimated relationships between the scaled
units in Equations (9) and (10) and their physical counterparts are summarized in Table 1.

Table 1. The conversion relationship between dimensionless units and physical units.

z = 1, ∆Γ = 1 0.25 cm, 4 cm−1

x = 1, y = 1 14 µm
|Ψ1|2 = 1, |Ψ2|2 = 1 5 MW/cm2, 10 MW/cm2

P = 1 10 W
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3. Numerical Results
3.1. Double Vortices States

The imaginary time method [55] was employed to obtain the stationary solutions of
the normalized system of Equations (9) and (10), which is subjected to the phase matching
conditions given by Equation (14). The stability of these solitons is then verified through
real-time evolution. A random perturbation noise at a level of 0.1% was added during real-
time evolution. Figure 1 presents typical examples of quasi-stable bright solitons produced
with the phase-matching condition of a helical-periodically poled ferroelectric structure.
Figure 1(a1,a2) show the intensity distributions of the FH and SH components of the soli-
tons, respectively. The phase diagrams of the FH and SH components are displayed in
Figure 1(b1,b2), respectively. The color distribution of the phase in Figure 1(b1,b2) exhibits a
continuous rotation from red to blue, indicating that the FH and SH components of these
solitons are vortex solitons. This implies that the helical-periodically poled scheme intro-
duces a phase φd through QPM techniques, which is equivalent to embedding a topological
charge (TC) in the crystal. The stability of these solitons is demonstrated in Figure 1(c1,c2),
which show the results of direct simulations. The approximate stable propagation distance
is 3.6 cm, which is sufficient for robust transmission in most commercially available crystals.
In contrast, Figure 2(a1,a2) depict typical examples of bright solitons produced with the
phase-matching condition of a nonhelical-periodically poled ferroelectric structure. In this
case, without a helical-periodically poled ferroelectric structure, the bright vortex soliton
cannot even be stably transmitted to 0.05 cm. This indicates that the phase-matching condi-
tion of a helical-periodically poled ferroelectric structure can greatly enhance the stability
of bright vortex solitons. In contrast to the case where φd is a constant and cannot support
stable vortex bright solitons, a helical-periodically poled structure can significantly improve
their stability. This can be achieved by designing φd as a spatial function, particularly in a
helical-periodically poled LiNbO3 (HPPLN) crystal [50].

Figure 3 presents the characteristic curves of three key parameters, namely Aeff, β, and
Imax, plotted as functions of the input power (P) and effective detuning (∆Γ). Here, Aeff
represents the effective area of the bright vortex solitons, β is the propagation constant, and
Imax is the maximum light intensity. Notably, changes in P and ∆Γ have significant effects
on Aeff, β, and Imax.

Figure 1. (Color online) Typical examples of quadratic solitons generated by quasi-phase matching
in a helical-periodically poled ferroelectric crystal, HPPLN, with topological charges of two com-
ponents, S1 = S2 = +1, respectively. (a1,a2) Intensity distributions of FH and SH components.
(b1,b2) Phase diagrams of FH and SH components. (c1,c2) Stability of FH and SH components in a
helical-periodically poled ferroelectric structure. The random perturbation noise of direct simulation
is 0.1%. This soliton example is obtained with (P, ∆Γ) = (300 W, 0 cm−1).
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Figure 2. (Color online) Typical examples of quadratic solitons generated by quasi-phase matching
in a nonhelical-periodically poled ferroelectric crystal, with topological charges of two components,
S1 = S2 = +1, respectively. (a1,a2) Stability of the FH and the SH components. The random
perturbation noise of direct simulation is 0.1%. This soliton example is produced by (P, ∆Γ) = (300 W,
0 cm−1).

Figure 3. (Color online) The characteristics of Aeff, β, and Imax with respect to P (a1,b1,c1) and ∆Γ
(a2,b2,c2) are presented in this figure. The solid and dotted curves correspond to the FH and SH
components of the solitons, respectively. All soliton solutions represented by the curves in those
figures can stably propagate in the physical parameter space. The effective detuning ∆Γ = 0 cm−1 is
fixed for the first row, while the input power P = 300 W is fixed for the second row.

In Figure 3(a1), the symbols ω1 and ω2 refer to the FH and SH components, respectively.
Here, Aeff exhibits a decreasing trend with an increasing P and a fixed ∆Γ = 0 cm−1. This
decrease is due to the stronger self-focusing effect that occurs at higher powers, which
causes the area of the solitons to shrink. Figure 3(b1) shows that dβ/dP > 0, indicating
that the vortex solitons satisfy the Vakhitov–Kolokolov (VK) criterion for stability in self-
focusing media. This conclusion is verified by direct numerical simulations everywhere
along this curve. Finally, in Figure 3(c1), Imax increases with P as expected.

The bottom row of Figure 3 depicts the relationship between ∆Γ and the three charac-
teristic parameters. In Figure 3(a2), Aeff increases with ∆Γ when P = 300 W. However, if ∆Γ
becomes too large (e.g., ∆Γ = 4 cm−1), the QPM condition is not well satisfied, resulting
in soliton expansion. Figure 3(b2) indicates that the propagation constant β decreases
with increasing ∆Γ. Finally, in Figure 3(c2), the Imax of the SH component decreases as ∆Γ
increases, whereas the FH component initially increases and then decreases.

3.2. Vortex–Antivortex States

When the topological charges of the two components of a vortex soliton have opposite
signs, a special mode known as the vortex–antivortex state is formed, where the vortices
disappear due to the opposite topological charges carried by the two components. Figure 4
illustrates typical examples of the vortex–antivortex state. In Figure 4(b1,b2), the phase
distributions of the vortex solitons are opposite, and the intensity distributions of the FH
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and SH components for the solitons are presented in Figure 4(a1,a2). The stability of the two
components is displayed in Figure 4(c1,c2), indicating that the vortex–antivortex states can
stably propagate in the physical parameter space. Figure 5(a1,a2) illustrate typical examples
of bright solitons generated using the phase-matching condition of a nonhelical-periodically
poled ferroelectric structure, which cannot be stably transmitted to 0.05 cm. Interestingly,
under identical parameter conditions, the characteristic curves of Aeff, β, and Imax versus P
and ∆Γ exhibit degeneracy for both the vortex–antivortex states and double vortices states.

Figure 4. (Color online) Typical examples of quadratic solitons generated by quasi-phase matching in
a helical-periodically poled ferroelectric crystal, HPPLN, with topological charges of two components
are S1 = +1 and S2 = −1, respectively. (a1,a2) Intensity distributions of FH and SH components.
(b1,b2) Phase diagrams of FH and SH components. (c1,c2) Stability of FH and SH components in a
helical-periodically poled ferroelectric structure. The random perturbation noise of direct simulation
is 0.1%. This soliton example is obtained with (P, ∆Γ) = (300 W, 0 cm−1).

The relationship between the input power P(W) and the stability propagation distance
z(cm) of the solitons is investigated in Figure 6. As depicted in the figure, it is observed that
as the input power P increases, the propagation distance z decreases. The stable propagation
distance is a function of the power. For larger input powers, spatial solitons exhibit stronger
nonlinear effects, leading to enhanced self-focusing and beam convergence. This results in
the gradual contraction of the soliton during propagation, accompanied by an increase in its
energy density. Consequently, the nonlinear effects are further intensified. As a consequence,
the soliton experiences stronger nonlinear interactions, such as self-phase modulation and
self-phase modulation-induced optical pumping, which distort the soliton and reduce its
propagation distance. Thus, as the input power increases, the stable propagation distance
of the soliton decreases. This finding suggests that utilizing lower input power may be
advantageous in achieving vortex solitons with longer propagation distances.

Figure 5. (Color online) Typical examples of quadratic solitons generated by quasi-phase matching
in a nonhelical-periodically poled ferroelectric crystal, with topological charges of two components,
S1 = +1 and S2 = −1, respectively. (a1,a2) Stability of the FH and the SH component. The random
perturbation noise of direct simulation is 0.1%. This soliton example is produced by (P, ∆Γ) = (300 W,
0 cm−1).
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Figure 6. (Color online) The relationship diagram of the stable transmission distance z (cm) of
optical vortex solitons for different actual powers P(W). The solitons consist of two components with
topological charges of S = +1 each. Both components exhibit the same stability characteristics. The
other parameter is ∆Γ = 0 cm−1.

4. Conclusions

The primary objective of this study is to employ ferroelectric crystals with helical-
periodically poled structures to modulate quadratic bright vortex solitons using the QPM
technique and achieve robust transmission of vortex solitons in pure χ(2) nonlinear media
in the actual parameter space. The theoretical model is based on the coupled equations of
the second harmonic generation process under the slowly varying amplitude approxima-
tion. The modulation coefficient d(r, θ, z) in the equations represents the spatially varying
magnitude of the χ(2) susceptibility, which is expressed by a Fourier series expansion
containing a modulation phase factor. By setting the modulation phase factor, the effect of
embedding topological charges in the crystal is realized. Furthermore, the actual parame-
ters of the model in the specific QPM material LiNbO3 are discussed, and the conversion
relationship between dimensionless units and physical units is presented. By taking dif-
ferent values of n, different lowest value solutions generated by different modulation
phase factors are discussed, and two kinds of lowest vortex states are condensed: double
vortices state and vortex–antivortex state (hidden vortices is a special type of vortex–antivortex
state). In the numerical results section, the intensity distributions, phase diagrams, and
real-time evolution stability of the bright vortex solitons obtained in the double vortices
states and vortex–antivortex states are discussed. The dependence of three characteristic
parameters, effective area Aeff, propagation constant β, and maximum light intensity Imax,
on the input power P and effective detuning ∆Γ are studied numerically. The two states
are characterized by degeneracy. The real-time evolution results demonstrate that vortex
solitons can be stably transmitted for 3.6 cm in the quasi-phase matching-modulated crystal
with helical-periodically poled structures, exceeding most commercially available crystals.
In contrast, if in a crystal with a nonhelical-periodically poled structure, vortex solitons
cannot even be stably transmitted to 0.05 cm. This result demonstrates that the azimuthal
modulation instability of vortex solitons can be effectively overcome under these conditions,
providing a novel solution for the quasi-stable transmission of bright vortex solitons.

It would be intriguing to extend this research to vortex–antivortex with higher angular
momentum. A challenging yet promising possibility is to investigate a vortex soliton with
a smaller topological charge embedded in a vortex soliton with a larger topological charge,
resulting in a novel state known as a nested vortex.
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