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Abstract: Inspiring development in optical imaging enables great applications in the science and
engineering industry, especially in the medical imaging area. Photonic time-stretch imaging is one
emerging innovation that attracted a wide range of attention due to its principle of one-to-one-to-one
mapping among space-wavelength-time using dispersive medium both in spatial and time domains.
The ultrafast imaging speed of the photonics time-stretch imaging technique achieves an ultrahigh
frame rate of tens of millions of frames per second, which exceeds the traditional imaging methods
in several orders of magnitudes. Additionally, regarding ultrafast optical signal processing, it can
combine several other optical technologies, such as compressive sensing, nonlinear processing, and
deep learning. In this paper, we review the principle and recent development of photonic time-stretch
imaging and discuss the future trends.
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1. Introduction

Recent developments in optical imaging have paved the way for diversified ap-
plications in science and industry, especially around medicine, biochemistry, and biol-
ogy [1–28]. For example, noninvasive diagnosis of biomedical tissue using optical coher-
ence tomography (OCT) [1–10], ultrafast optical imaging based on photonic time-stretch
structure [10–31], data compressive optical imaging systems [10–22], blood screening and
abnormal cell screening using contrast microscopy [23–27], these developments of optical
imaging are with the support of digital technologies [32–39] and the growing industry.

The developments of optical imaging are mainly two parts. One part is to improve
the imaging resolution, either in the spatial domain (spatial resolution) [40–54] or the
time domain (temporal resolution) [10–23,55–60]. The methods of improving the spatial
resolution of imaging systems are mainly stochastic optical reconstruction microscopy
(STORM) [40–43] imaging, photoactivated localization microscopy (PALM) [44,45] imaging,
structured illumination microscopy (SIM) imaging [48–54], and stimulated emission deple-
tion (STED) microscopy imaging [55]. The technique of improving the temporal resolution
of imaging systems in this review is mainly focused on the photonic time-stretch (PTS)
technique [10–23]. The other part is to improve sensitivity and specificity. In order to
improve the sensitivity, 2D devices, such as charge-coupled devices (CCD) and comple-
mentary metal oxide semiconductors (CMOS), 1D devices, such as photomultiplier tubes
(PMT), avalanche photodetector (APD), and infrared-coated photodetector (PD) [60,61] are
applied to improve the sensitivity of the imaging system. In order to obtain more specific
information on the imaging systems, more techniques such as fluorescence imaging with
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biomarkers [62–64], phase-contrast imaging with interferometric structure for transparent
sample imaging [65,66], and polarization-sensitive imaging are employed [67].

Among the improvement of current imaging systems, improving temporal resolution
attracts a large amount of attention and obtained fruitful achievement. The most sparking
technique for improving temporal resolution for imaging systems is PTS [1–31,66–74]—a
technique that encodes the spatial profile of sample imaging information into the temporal
profile data for ultrafast imaging using the dispersive medium in both spatial and temporal
domains based on the dispersive properties of broadband light. It was proposed and
demonstrated by Goda et al. in 2009 for the first time [59]. Additionally, it can achieve
a continuous ultrafast imaging speed of millions of frames per second, which is several
magnitudes higher compared to traditional imaging techniques. Moreover, due to its inher-
ent nature, it can combine other several recent optical technologies such as compressive
sensing [10–18,22,29,75,76], nonlinear processing [76–78], amplification [4,79], and deep
learning [80,81], which are beyond the capabilities of other imaging techniques.

In this paper, we review the principles and applications of time-stretch imaging sys-
tems. In Section 2, we review the principles and introduce key components of time-stretch
imaging systems. In Section 3, we review serval applications of time-stretch imaging. In
Section 4, we discuss the future trends of time-stretch imaging. In Section 5, we summarize
this paper.

2. Principles and Key Components

The purpose of PTS imaging is to map the spatial imaging information into the
spectrum of the incident broadband-pulsed light. The spectral information, which is already
encoded by the spatial imaging information, is time-stretched into 1D temporal profile
data. Then the temporal profile data is detected by a single-pixel PD [59]. The two steps of
PTS imaging are essential. The first step is called space-to-wavelength conversion, which
maps the spatial imaging information into the spectrum of incident broadband-pulsed
light using spatial dispersive devices in the spectral domain. The second step is called
wavelength-to-time conversion, which maps the imaging-encoded spectral information
into 1D temporal profile data using temporal dispersive devices in the time domain.

The schematic of the ultrafast PTS imaging system is shown in Figure 1a. The incident
broadband-pulsed light from a mode-locked laser is emitted into the imaging object via a
spatial disperser, where space-to-wavelength conversion is obtained. The light information
in space, wavelength, and time domain at point (1) is shown in Figure 1b. Different
spectrum of light is illuminated to the corresponding spatial coordinates of the imaging
object. The reflected light returned to the same spatial disperser and was combined
into a single pulse. The shape of the light pulse, which shows the imaging coordinates
of the object, is encoded into wavelength. The light information in space, wavelength,
and time domain at point (2) are shown in Figure 1c. Then the light pulse propagates
the temporal disperser, where wavelength-to-time conversion is acquired. Usually, due
to the nonlinear effect of the temporal disperser, the femtosecond pulse is stretched to
nanoseconds level. After the wavelength-to-time conversion, the shape of the light pulse
in the wavelength domain is mapped to the time domain based on the one-to-one linear
mapping. The light information in space, wavelength, and time domain at point (3) are
shown in Figure 1d. Figure 1e shows the light pulse change in the spectral domain. Light
from a pulsed broadband light source passes through the grating and then scatters into
space with angular dispersion achieved. The pulses propagate the two-bar sample, and the
spectral shape is obtained. Figure 1f shows the light pulses change in the time domain. The
femtosecond pulse is stretched into nanosecond pulse after passing through the temporal
dispersive devices. Then, space-to-wavelength-to-time one-to-one-to-one conversion is
achieved [21,29]. Afterward, the femtosecond pulse is stretched into a 1D temporal profile
data for a single pixel PD detection. The data then are acquired and displayed by the
oscilloscope. The pulse is repeated for imaging acquisition, and the frame rate of the PTS
imaging system equals the repetition rate of mode-locked laser.
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Figure 1. (a) Schematic of ultrafast PTS imaging system; (b–d) are the space-to-wavelength mapping
and wavelength-to-time encoding shape at points of (1), (2), and (3) in space, wavelength, and time
domain; (e) is the pulse change in the spectral domain; (f) is the pulse change in the time domain.

Compared to imaging systems using charged coupled devices (CCD) or complemen-
tary metal oxide semiconductors (CMOS) [82,83], it removes the limitation of low speed
of image acquisition and low readout speed. Additionally, it prevents the drawback of
a low signal-to-noise ratio (SNR) at a high frame rate [84–86]. Compared to the other
imaging systems using a beam-scanning method based on single-pixel PD, it avoids the low
imaging frame rate that inherently exists in the scanning methods [87] while at the same
time maintaining the same level of SNR. This PTS-based imaging system is confirmed to
have the merits of ultrafast imaging speed that conquers the traditional trade-off limitation
between imaging speed and SNR.

The key elements of PTS imaging systems are spatial disperser [88,89] and temporal
disperser [3,59]. A spatial disperser is used to enable wavelength-to-space conversion
at the imaging coordinates plane; thus, the light of different wavelengths will be emit-
ted to different physical positions. Figure 2a illustrates the 1D spatial dispersion using
a diffraction grating to produce a 1D rainbow light beam. Figure 2b shows the 2D spa-
tial dispersion based on a pair of virtually imaged phased arrays (VIPA) [90–92] and a
diffraction grating [93]. The VIPA has a structure of etalon, which has one surface with a
high-reflectivity coating and another with partial-reflectivity. The 2D spatial dispersion
process is shown in Figure 2b. VIPA generates 1D continuous multiple wavelengths of
the light beam and further unfolded by the diffraction grating, and thus a 2D rainbow
light beam is generated. A temporal disperser is used to obtain the wavelength-to-time
conversion—a process called PTS or dispersive Fourier transformation (DFT) [94,95]. This
process is based on the light of different wavelengths traveling in the medium at different
speeds; upon certain propagating length, the light of varied wavelengths will reach the
garget at different times. PTS or DFT enables real-time imaging measurement at ultrafast
speed. Normally linear and large (more than 100 ps/nm) temporal dispersion is required
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for PTS or DFT process, and the light bandwidth for imaging application is at least 10 nm
with a center wavelength of around 1550 nm [28]. Figure 3a shows the temporal disperser
based on dispersive compensating fiber (DCF) [21], which provides chromatic dispersion
and normally has a large linear temporal dispersion (more than 100 ps/nm). Figure 3b
describes another way to perform temporal dispersion based on a chirped fiber Bragg
grating (CFBG), which provides a wavelength-dependent time delay [96,97]. The pulsed
incident light passes through port 1 and then port 2 of the circulator, and then the light
reaches the CFBG and returns into port 2 by the reflection of CFBG, the light then goes
through the circulator form port 2 to port 3. Figure 3c reveals the realization of temporal
dispersion using multimode fiber (MMF) based on large chromo-modal dispersion [98].
Additionally, excess temporal dispersion should be avoided as this will lead to the 1D data
stream being overlapped among the adjacent laser time-stretched pulses.
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3. Applications

The recent development of PTS imaging systems are mainly in four categories: first,
PTS imaging systems combined with shorter wavelength bands for better imaging resolu-
tions and rich applications [68–73]; second, PTS imaging systems with faster
speed [21,22,26–29,57,58,74,79]; third, PTS imaging systems combined with data com-
pression [11–18,75–78]; and the last, PTS imaging systems combined with deep learning for
target classification [23–25,32,66].

3.1. Shorter Wavelength Band for PTS Imaging

In the first category, the shorter wavelength band in the PTS imaging method results in
better spatial resolution in principle. The “short” stands for wavelength spans from visible
to near IR. Three examples will be displayed in this part, first is the 932 nm laser generation
and dual color imaging with customer-designed light source revision; the second is the
710 nm imaging using special customer-designed device-FACED with the spatial dispersive
device revision; last is the 1064 nm phase imaging with the systematic structure revision.

The first example of the PTS imaging system uses a 932 nm laser with the assistance of
a new highly dispersive fiber (HDF), enabling MHz optical imaging [68]. The configuration
of the swept source at 932 nm is shown in Figure 4. The configuration of a swept source
contains three main elements: short pulse generation, wavelength sweeping, and power
booster. Nonlinear polarization rotation mode-locking is applied in the fiber ring resonator,
where a short pulse is generated. A 20-m double-cladding neodymium-doped fiber (NDF)
is employed as the gain medium to boost laser output power. The wavelength sweeping is
realized by using a custom-made HDF operating at a wavelength band of 800–1100 nm.
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Figure 4. The schematic diagram of the MHz fiber-based swept source at 932 nm. HDF—highly
dispersive fiber; NDF—neodymium-doped fiber; LD—laser diode; WDM—wavelength division
multiplexing; Col—collimator; BS—beam splitter; ISO—isolator; λ/2: half-wave plate; λ/4: quarter-
wave plate; PS—pump stripper [68].

The schematic diagram of the ultrafast dual-color imaging system based on HNF is
shown in Figure 5. The wavelength-swept source has a center wavelength of 932 nm and a
bandwidth of 7.2 nm at full width at half maximum. Light from the swept source is spatially
dispersed by the diffractive grating, which has a groove density of 600 mm. A nonlinear
BBO crystal is placed at the Fourier plane of L1 for second-harmonic generation (SHG) in
order to demonstrate dual-color imaging at visible and near-infrared (NIR) wavelength
bands. After the BBO crystal, 932 nm and 466 nm co-existed. After light illumination, light
propagation, and light detection after wavelength separating using a dichroic mirror, the
dual-color light information is processed to recover imaging.
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Figure 5. The schematic diagram of an ultrafast dual-color imaging system based on HNF. HNF—
highly dispersive fiber; SS—swept-source; M—mirror; G—grating; L—lens; OL—objective lens;
DM—dichroic mirror; PD—photodiode [68].

To demonstrate the capability of the PTS imaging system, a 7.6 MHz line-scan imaging
is performed. The white-light imaging of the USAF-1951 resolution target is shown in
Figure 6a. Figure 6b describes the line scanning result at varied bandwidths and sampling
rates (from 1 GHz, 2.5 GS/s to 20 GHz, 40 GS/s).
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40 GS/s) are employed for real-time oscilloscope [68].

The second example of the PTS imaging system is called free-space angular-chirp-
enhanced delay (FACED) [70]. FACED generated high temporal dispersion and low intrin-
sic loss at a visible wavelength (~710 nm). FACED also enabled fluorescence and colorized
time-stretch imaging while at the same time having the benefit of low intrinsic loss.

Figure 7 shows the working principle of FACED. A pair of highly reflective plane
mirrors placed at a distance of S with a minute mirror misalignment angle α (typically
10−3 rad) is employed to realize the working principle of time-stretch at visible wavelength.
The pulse is propagated and stretched in free space within the space between two reflective
plane mirrors, shown in Figure 7a. The pulse stretching resulted from the misalignment
of two mirrors, which generated ample and configurable time delay among the cardinal
rays. To stretch the pulse within the two mirrors, the pulse is demanded to focus at the
entrance point of the FACED device, O. This results from the application of an angular
disperser module. The scheme of an angular disperser module is depicted in Figure 7b. In
the spectral encoding (SE) scheme, a diffraction grating is used as an angular disperser. In
the SE-free scheme, a focusing lens is applied as the angular disperser. The main concept
of FACED is shown in Figure 7c. It not only can perform pulse stretching in the temporal
domain but also can transfer an input simultaneous pulse beam into a time-encoded serial
scanned beam in space.

The demonstration of FACED-based PTS microscopy working on SE scheme in an
ultrafast microfluidic flow with a speed of 2 m/s at a line-scan rate of 80 MHz. The imaging
results are shown in Figure 8. In comparison with the images detected by high-speed
CMOS camera (15,000 fps, Figure 8a), FACED-based PTS microscopy captured images of
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Scenedesmus acutus cells (Figure 8b,c), monocytic leukemia cells (THP-1; Figure 8d,f), and
human red blood cells (RBSs; Figure 8e,g), are blur-free and at the same time have higher
resolution, showing the fine subcellular features. For example, the blebs of the THP-1 and
the biconcave shapes of the RBCs are displayed in Figure 8d,e.
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Figure 7. Working principle of FACED. (a) Overall schematic of the PTS imaging system based on
FACED. (b) Schematic of the angular dispersers employed in (top) the SE scheme and (bottom) the
SE-free scheme. (c) Overall concept of FACED. SE—spectral encoding [70].
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Figure 8. FACED-based microscopy using SE scheme in an ultrafast microfluidic flow at 710 nm.
Images of Scenedesmus acutus in an ultrafast microfluidic flow captured by (a) a CMOS camera
(15,000 fps.) and (b) the FACED-based microscope. (c) Images of Scenedesmus acutus captured by
the FACED-based microscope. Images of (d) monocytic leukemia cells (THP-1) and (e) human red
blood cells (RBCs) in an ultrafast microfluidic flow. Images of (f) THP-1 and (g) RBCs captured by
the FACED-based microscope [70].
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Figure 9 shows the FACED-based microscopy working on the SE-free scheme. The
bright-field and FACED-based microscopy images on the smallest element of group 9 of
resolution target USAF-1951 are shown in Figure 9a,b, respectively. The FACED-based
image has a slightly lower resolution. The slightly lower resolution of the FACED images
is owing to the smaller number of scanned spots, and this resolution can be improved
by adjusting both the mirror misalignment angle and the input cone angle. The static
sample of a hematoxylin-and-eosin (H&E)-stained lung tissue section is also applied for
bright-field (Figure 9c) and FACED-based microscopy (Figure 9d) imaging. An ultrafast
microfluidic flow at 2 m/s of RBCs and peripheral blood mononuclear cells (PBMCs)
are illustrated in Figure 9e,f, respectively. Additionally, the fluorescence FACED-based
microscopy working on the SE-free scheme with a line-scan rate of 8 MHz is demonstrated
using a 10 µm fluorescent bead in the ultrafast microfluidic flow at 2 m/s. The result is
shown in Figure 9g.
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One beam is treated as the signal beam passing through the biomedical samples. The other 
beam is regarded as the reference beam, reflected by mirrors. Then the two beams com-
bined into one via the same beam splitter and propagated through the dispersive fiber. 
After pulse amplification and detection, the pulse information is ready for processing. 
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Figure 9. FACED-based microscopy using the SE-free scheme at 710 nm. (a) Bright-field transmission
and (b) FACED-based microscopy images of resolution target USAF-1951. (c) Bright-field transmission
and (d) FACED-based microscopy images of a hematoxylin-and-eosin (H&E)-stained lung tissue
section. Time-stretch images of (e) RBCs and (f) peripheral blood mononuclear cells (PBMCs) in a
microfluidic flow. (g) Fluorescence FACED-based microscopy image of a 10 µm fluorescent bead in a
microfluidic flow. Scale bars 10 µm [70].

The third example is interferometric PTS (IPTS)-based microscopy for ultrafast quanti-
tative cellular and tissue imaging at 1 µm wavelength band [72]. IPTS-based microscopy
could overcome the traditional imaging speed limitation of the quantitative phase imaging
method. The line-scan rate of IPTS-based microscopy could be as high as 20 MHz, and the
ultrafast flowing cells with a flow speed of 8 m/s are several orders of magnitude higher
than conventional quantitative phase imaging.

The overall schematic of the IPTS-based microscopy is illustrated in Figure 10a. A
laser source with a center wavelength of 1064 nm, a bandwidth of 10 nm, and a repetition
rate of 26.3 MHz or bandwidth of 60 nm and a repetition rate of 20 MHz is provided as the
microscope source. The pulsed laser is split into two beams through a beam splitter. One
beam is treated as the signal beam passing through the biomedical samples. The other beam
is regarded as the reference beam, reflected by mirrors. Then the two beams combined
into one via the same beam splitter and propagated through the dispersive fiber. After
pulse amplification and detection, the pulse information is ready for processing. Figure 10b
shows the waveforms of temporal and spectral domains of different stages.
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Figure 10. (a) Schematic of IPTS-based microscopy. (b) The corresponding temporal and spectral
waveforms are in different stages (steps 1 to 4, as shown in (a)). R and S refer to the reference and the
sample arms in a Michelson interferometer configuration [72].

The result of fixed epithelial cells by IPTS-based microscopy at a line-scan rate of 1 MHz
and conventional phase contrast microscopy is described in Figure 11a,b, respectively.
When the ultrafast flowing cells with a flow speed of 8 m/s and 0.4 m/s, a cluster and
single HeLa cells and normal hepatocyte cells (MIHA) are captured by the IPTS-based
microscopy, which is shown in Figure 11c,d and Figure 11e,f, respectively. The ultrafast
flow speed (8 m/s) corresponding to an imaging throughput as high as 80,000 cells/s. Thus,
this IPTS-based microscopy is proved to be an ultrafast quantitative phase imaging.
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Figure 11. IPTS−based microscopy of fixed and flow cells. Fixed epithelial cells were captured by
(a) IPTS−based microscopy at 1 MHz line-scan rate and (b) conventional phase contrast microscopy.
IPTS−based microscopy with a flowing speed of 8 m/s at (c) clusters of HeLa cells and (d) single
HeLa cells. IPTS-based microscopy with a flowing speed of 0.4 m/s at (e) clusters of MIHA cells and
(f) single MIHA cells [72].

3.2. Fast Speed for PTS Imaging

The second category describes the world’s fastest frame rate based on PTS microscopy.
The frame rate of PTS microscopy equals the repetition rate of the pulsed laser.

In this category, a pulsed laser source with a repetition rate of 10 GHz, a center
wavelength of 1549.2 nm, a 3 dB bandwidth of 1.2 nm, and a pulse width of 2 ps is
employed [74]. The schematic of the superfast PTS imaging system is shown in Figure 12.
The frame rate, in theory, can be as high as 10 Gfps. Due to the dispersion limitation (a
dispersion of 1377 ps/nm), a gated Mach–Zehnder amplitude modulator is utilized to
reduce the repetition rate to 1 GHz. The pulse propagated through the diffraction grating
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and sample and reflected for data detection with the same path back. The high temporal
dispersion leads to pulse overlapping; thus, a wavelength division technique is utilized,
which can overcome the trade-off between a high frame rate and spatial resolution. In
practice, the temporal signal is equally split into two channels by varied wavelength-band
filters at the receiver end.
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Figure 12. Experimental setup of the superfast PTS imaging system with 1 GHz. AM, amplitude
modulator; EDFA, erbium-doped fiber amplifier; BS, beam splitter; PD, photodetector [74].

The principle of the wavelength division technique is shown in Figure 13. The dis-
persed pulses are linearly chirped, and adjacent pulses overlap in the time domain. As
shown in Figure 13, T stands for the period of the pulse laser, Z is the temporal width of
the dispersed whole pulse, B is the spectral bandwidth of the optical pulse, D is the group
velocity dispersion (GVD), and W is the width of pulse filtered from each channel. Then the
two channels without temporal overlap are detected by high-speed PD, and then further
data processing is applied to recover the image.
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Figure 13. The principle of wavelength-division technique [74].

A USAF-1951 resolution target is utilized for imaging at element 2, group 4, with a line
width of 28 µm. The same 2D image is reconstructed at a 100 MHz scan rate (Figure 14a)
and 1 GHz scan rate (Figure 14b); the quality of the image does not degrade with the
increasing line scan rate. The state-of-art of this demonstration validates the capability of
the PTS-based 1 GHz microscopy with wavelength-division technique.
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3.3. Data Compression for PTS Imaging

The third category describes the data compression techniques combined with PTS-
based microscopy. The high amount of real-time digital data generated by the equipment
leads to an unintended consequence of extremely high throughput imaging acquisition,
which brings a heavy burden for the data acquisition and, following data processing, sets
the barrier to real-time imaging. Here, two techniques will be discussed in this category.

The first technique is called anamorphic time stretch (AST) or warped time
stretch [13–15,77], which is realized via nonlinear GVD. AST reshapes the spectro-temporal
profile of optical signals so that the signal envelope’s time-bandwidth product is com-
pressed. The compression is obtained from the nonlinear time-stretch or nonlinear spectral-
to-time mapping.

Figure 15 shows the linear and AST dispersive Fourier transforms [14]. Orange points
depict the linear time stretch between spectrum and time. The constant straight slope line
reveals the linear GVD. The spectral components of the pulse train are linearly distributed
in time, even in the silent time zone, which increases the amount of invalid data. In a linear
time stretch scheme, the spectrum of the pulse and the waveform are uniform with the
same sampling resolution. In contrast, blue points show a nonlinear GVD that varied GVDs
over the spectrum can stretch the spectrum nonlinearly. With nonlinear GVD, regions of
the spectrum are stretched more than others, leading to the nonlinear mapping between
the spectrum and waveform. If the sparsity of the spectrum of the under-testing imaging
is known, thus a dense spectral zone with large GVD while a silent spectral zone with
small GVD could increase the imaging resolution and, at the same time, maintains the same
amount of data.
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The experimental result of the PTS-based imaging system with nonlinear time stretch
over the spectral bandwidth is shown in Figure 16. Figure 16a illustrates how the test
sample (with a width of 5 cm) reflected one-dimensional rainbow illumination pulses (with
a repetition rate of 36 MHz). Figure 16b states the shape of the nonlinear time stretch
between the GVDs and spectral components. It is designed and performed by a custom
chirped fiber Bragg grating (CFBG) with a nonlinear group delay profile. If a high linear
dispersion (same as the warped stretch at the center frequency) is linearly distributed
among all the spectral components, the recovered image size is 24.3 KB in Figure 16c. With
the nonlinear time stretch of the waveform owing to the utility of CFBG, the reconstructed
imaging is shown in Figure 16d with an image size of 8.3 KB and an obvious warping effect
in the letter “S”. With the assistance of the unwarping algorithm, the uniform image with a
size of 8.3 KB is reconstructed and illustrated in Figure 16e. It reveals a data compression
ratio of 34% and maintains the same imaging resolution.
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The second technique is named compressive sensing (CS) [16–18,73,99–102]. Due to
the sparsity of the desired imaging, the extensively used CS method can reduce the number
of measurements and offers a high-efficient data acquisition process. For example, in
reference [10], in a PTS-based imaging system, a laser with a repetition rate of 50 MHz and
an acquisition rate of 50 MHz is obtained via CS. Without CS, the traditional acquisition
rate is much higher. For example, a laser with the same repetition rate of 50 MHz and
an acquisition rate of 100 GHz is applied [26] in a PTS-based imaging system. Hence,
the utilization of CS can greatly reduce the acquisition rate. With the combination of CS
and PTS-based imaging, the data information can be compressed to a high level [13]. The
extensively utilized CS technique uses random patterns to mix the imaging sampling and
then reconstruct the image based on its algorithms.

The schematic of the combination of the CS technique and PTS-based imaging system
is shown in Figure 17 [13]. Compared to classical PTS-based imaging systems, the CS and
PTS-based imaging systems added a pulse pattern generator (PPG) that generated pseudo-
random binary sequences (PRBSs). The RPBSs mixed the pulse signal when the light pulses
propagated through the Mach-Zehnder modulator (MZM). The light pulses, reached the
target and were detected by PD for imaging reconstruction based on CS algorithms.
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Reconstructed images are displayed in Figure 18. Captured 2D images without CS are
shown in Figure 18a. Figure 18b–e reveals the reconstructed images at different compression
ratios of 5%, 6.25%, 12.5%, and 18.75%, respectively. The imaging recovery precision of
varied compression ratio is evaluated by the peak-SNR (PSNR) of the reconstructed images,
shown in Figure 18. This technique can achieve a data compression ratio of 5% with fair
image recovery precision.
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3.4. Deep Learning for PTS Imaging

The last category falls into the combination of PTS-based imaging systems with deep
learning for classification [23–25]. PTS-based imaging can generate a large number of
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images; hence, high throughputs of images of the imaging system are compatible with
deep learning methods for classification.

A sample of PTS-based quantitative phase imaging (QPI) with deep learning is stated
in this category. The schematic of the PTS-based QPI and analytics system is shown in
Figure 19 [23]. The system has three key parts: first (in the yellow box), QPI based on
Michelson structure enables blur-free imaging with a high throughput of 100,000 cells/s;
second (in the green box), amplified time-stretch system provides not only wavelength-to-
time one-to-one mapping but also optical power amplification for the following optical
pulse detection; last (in the blue box), the big data analytics offers images reconstruction,
images analysis and images classification based on machine learning method.
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Figure 19. PTS-based quantitative phase imaging (QPI) and analytics system [23].

The principle of the feedforward neural network learning model pipeline is shown
in Figure 20 [23]. First, the images are fused, and the major features from the quantitative
images are extracted. Then, the biophysical feature space is fed into the neural network,
which has the purpose of decision-making. This machine learning model is globally trained
with the objective of improving receiver operating characteristics (ROC). The learning
algorithm maximizes the area under the ROC curve (AUC). Then, the training network
results in a robust and repeatable classifier, which improves sensitivity and specification. A
successful demonstration of cell classification of white blood T-cells, colon cancer cells, and
lipid-accumulating algal strains are obtained.
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4. Discussion

The future trends of optical time-stretch imaging emphasize more intelligence, more
integration, and more bandwidth extension.

With the emerging development of ChatGPT [103], artificial intelligence and deep
learning have been employed in varied applications. Optical time-stretch imaging is
inherently compatible with a variety of imaging processing algorithms, which has the
benefit of easy access to intelligent imaging processing, such as trained deep learning
for imaging recognition and classification. Previously, imaging classification was already
utilized [23]. With the development of hashrate, intelligent time-stretch imaging processing
will be faster and more precise.

Conventionally, nearly all illustrations of optical time-stretch imaging are performed
using an oscilloscope for real-time display, ADC for signal sampling, and then offline
signal processing. Few demonstrations show the integration of hardware to handle the
high throughput. That is to say, advanced computational techniques are required to
be embedded in the hardware, such as in FPGA, to process the streaming mass data.
This is so-called computational integration. Another type of integration is systematic
integration, which is the miniaturization of all-optical time-stretch imaging systems thanks
to the Silicon photonics platform. Varied optical devices, such as silicon nanowires as
the waveguide, and high-speed integrated photodetector on a silicon chip, have already
been demonstrated [104]. Therefore, highly integrated miniaturized all-optical time-stretch
imaging is promising for future application.

Another trend of time-stretch imaging is to extend its application bandwidth. Previ-
ously, the optical time-stretch imaging operating wavelength bands were limited to around
710 nm, 800 nm, 932 nm, 1060 nm, and 1550 nm, which are confined by the broadband pulse
laser sources and other commercial devices. Currently, with the application of OPO [105],
OPA [106], and second harmonic generation [69], extended wavelengths for diverse ap-
plications can be obtained. In principle, optical time-stretch imaging can extend to other
spectral bands, such as mid-infrared, THz, and even X-ray, under the condition that light
sources, spatial disperser, temporal disperser, and light detection devices are available.

There still have physical limits to current PTS-based imaging systems in detection
speed, resolution, and sensitivity. The detection speed of the current PTS-based imaging
system is limited by the bandwidth of PD and data acquisition card cards. The resolution
is determined by the spatial dispersion limited spatial resolution, diffraction-limited spa-
tial resolution, stationary-phase-approximation (SPA) limited spatial resolution, and the
digitizer limited spatial resolution. The sensitivity of the PTS-based imaging system is
limited by a number of noise sources, such as the inherent shot noise of the input light, the
dark current noise, and the thermal noise of the PD [107]. In PTS-based imaging systems,
different wavelengths are cast at different pixels spatially; due to different absorption or
scattering of the sample at different wavelengths, and potential distortions or information
loss of the image are induced. Hence, to compensate for intensity differences at different
pixels and in the time domain, calibration is required. Additionally, different wavelengths
cause variations in the axial focusing drift. Those above parameters are required to consider
in the PTS-based imaging system to obtain desired images.

5. Conclusions

In conclusion, we have reviewed the principles and applications of PTS-based imaging,
which is a superfast imaging method that improves conventional temporal resolution.
The key elements of PTS-based imaging are introduced. Additionally, four categories of
PTS-based imaging systems (PTS-based imaging systems with shorter wavelengths, with
faster speed, with data compression, and with deep learning) are introduced for various
applications. Compared to the traditional imaging, PTS-based imaging already achieved a
sparking world record and astonishing imaging results. Moreover, it is expected to develop
further in the science, industry, and medicine fields.
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