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Abstract: This work presents a generalized angle-dependent ray transfer function that can accurately
map the angular and spatial distribution of light intensities on the tissue surface onto a camera
image plane in a non-contact camera-based imaging system. The method developed here goes
beyond existing ray transfer models that apply to angle-averaged tomographic data alone. The angle-
dependent ray transfer operator was constructed using backward ray tracing based on radiation
surface theory. The proposed method was validated using numerical phantoms and experimental
data from an actual non-contact imaging system.

Keywords: radiative transfer; free space; angle-dependent light intensity; ray transfer matrix;
distributed ray tracing; contact-free; diffuse optical tomography

1. Introduction

Diffuse optical tomography (DOT) has increasingly been applied in many clinical
areas, such as breast imaging [1–3], joint imaging [4–6], brain imaging [7,8], vascular
imaging [9,10], and small animal imaging [11–13], through model-based image reconstruc-
tion algorithms [14–16], due to its non-ionizing radiation, portability, real-time imaging,
and low instrumentation cost.

DOT systems have long relied on optical fibers to deliver and measure light over
the tissue of interest. These fibers are typically in contact with the tissue [17–19]. This
has often limited the number of detectors, thus restricting DOT image reconstruction’s
spatial resolution. Furthermore, the fibers need to be rearranged according to the geometry
of the object for every different experiment, which brings lots of inconveniences and
may introduce very strong noise if any fiber does not well contact the tissue surface. In
recent years, non-contact measurements involving so-called charged-coupled device (CCD)
or complementary metal-oxide-semiconductor (CMOS) cameras have been explored to
overcome these disadvantages. These approaches have shown significant advantages in
detection sensitivity, image quality, and system simplicity [20–23]. In non-contact imaging,
a way to model photon transport in free space, i.e., a measurement operator Q that projects
the surface light distribution onto an image plane of the camera, is required, in addition to
a model for light propagation inside the tissue. All proposed numerical algorithms [24,25]
to simulate light propagation in tissue are very computationally expensive for the photon-
transport process in free space. Fiber-based systems usually have a simpler measurement
operator Q (i.e., equivalent to the partial current operator), but they can be cumbersome
to use when handling complex geometries and may introduce higher measurement noise
due to contact issues. To overcome these difficulties and achieve better performance,
contact-free imaging systems are becoming more popular in the DOT. For these imaging
systems, accurate modeling by the measurement operator Q is crucial for quality image
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reconstruction but is not as straightforward as for fiber systems. As a stochastic method,
Monte-Carlo simulation [25–27] can handle this problem. However, many photons are
needed for the simulations to obtain a reasonable result, leading to relatively low efficiency.

To overcome this problem, Ripoll et al. proposed an efficient free-space light transport
model [20] that does not employ statistical MC methods. Instead, they compute an integral
of light intensity for every point on the focal plane over the directions that can lead the
photon to the aperture through that point. Based on this model, Schulz et al. proposed
a simplified model [21] using the perspective projection method by replacing the camera
lens with a virtual pinhole. In 2009 and 2010, Chen et al. published two improved
models [28,29] based on the hybrid radiosity-radiance theorem. The influence of the
camera lens was analyzed with the thin lens assumption in both models. In addition, the
radiometric vignetting coefficient [30] and generalized rectangular central obscuration [31]
were also studied as factors that impact the performance evaluation of realistic imaging
instrument design.

Yet, existing models so far still have two major limitations. First, they do not fully
consider the angular dependency of the light intensity in the model, so they only work
in the limit of the diffusion equation (DE). It should be noted that angularly resolved
measurement data substantially improves both localization and quantification accuracy
of radiative transfer equation (RTE)-based DOT reconstruction [32]. Second, they do
not take additional optical elements that are typically used into account. An optical
system, such as a mirror system or lens group, is often placed between the object and the
CCD camera to gather more information on the surface light intensity distribution. The
lack of consideration for such cases also limits the application of the research mentioned
above in practice.

To overcome these problems, a distributed-backward-ray-tracing model is proposed
here to simulate the photon transport process in free space. In this model, pseudo photons
are shot from the CCD chip and transported back to the object’s surface. In this way, a
mapping is established between the angular-dependent photons on the object’s surface
and those on the detector of the CCD camera. Furthermore, a coordinate transformation is
applied to convert the integral over the solid angle on the object surface to an integral over
the solid angle on the CCD chip. The determinant of the transformation Jacobian matrix is
estimated with the perturbation method. With this model, the contribution of photons from
different surface locations and directions to signals received on the CCD camera can be
expressed as a linear operator, which is required for formulating the optimization problem
in DOT. The proposed model fully considers the angular dependency of light intensity and
thus can be applied in RTE-DOT, which provides higher accuracy in many cases. Moreover,
this proposed model could handle photon transport problems with a general optical system
between the object and the CCD camera to collect more signals, which are often limited by
the size of the aperture. That can greatly improve the performance of receiving photons
from more perspectives. Thus, it is reasonable to expect a better performance and a more
reliable result in non-contact DOT with this proposed model.

The remainder of this paper is organized as follows. The detailed derivation of the
novel backward ray-tracing algorithm is given in Section 2. This model is then validated
with numerical experiments and reconstruction results in Section 3. This work finally
concludes with a discussion in Section 4.

2. Material and Methods

The basic concept for DOT imaging is to find a spatial distribution of optical prop-
erties inside the medium that minimizes the difference between model predictions P and
measurements z at detector locations as,

min
x

1
2
‖P− z‖2 (1)
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where x is the optical property that is to be reconstructed and ψ is the light intensity
distribution within the imaging object. Here, the prediction P can be described as a linear
functional of radiative light intensity distribution ψ and measurement operator Q as given
by P = ψQ. In non-contact DOT systems, Q is the mapping between radiative light
intensity distribution and camera pixel measurement. Therefore, the construction of Q
requires a theory of surface radiation and light propagation in free space, especially between
surfaces, and how the radiant power can be evaluated on each surface element.

2.1. Surface Radiation Theory

According to the knowledge of surface radiation theory [33,34], once the radiative
light intensity distribution ψ(r, s) [W/mm2/sr] in an object O has been already given, the
total emission power of Psurf [W] on a small area Γ on its surface ∂O as shown in Figure 1,
can be given by

Psurf(Γ) =
∫

Γ

∫
2π
ψ(r, s)(1− R(s · n(r)))s · n(r)ds dr, (2)

where r is a position vector that indicates the location on the surface of the object; s and n(r)
are two-unit vectors that represent the photon’s propagation direction and the outgoing
normal vector on the surface respectively, where the normal vector is a function of the
location; R(·) represents the reflectivity on the tissue-air boundary.
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Figure 1. Surface radiation and emissive power.

As shown in Figure 1, the surface can emit light in infinitely many directions, and
light intensity has different strengths in different directions and also in different fields of
view. The solid angle is a measure of the amount of the field of view that is covered by
a surface or object at a particular point. When an infinitesimal surface dA is seen from a
point P, the infinitesimal solid angle dΩ is defined as the projection of the surface onto
a plane normal to the direction vector, divided by the square of the distance S between
dA and P, as given by dΩ = dA/S2, and it is measured in steradians [sr]. If the surface is
projected onto the unit hemisphere above the point, the solid angle is equal to the projected
area itself. Thus, an infinitesimal solid angle is simply an infinitesimal area on a unit sphere,
or dΩ = sin θdθdψ on a spherical coordinate.

Therefore, the infinitesimal power dP(r, s) that emits from the infinitesimal solid
angle dΩ constructed around the direction s centered at r is given by

dPsurf(r, s)= ψ(r, s)(1 − R(s · n(r)))s · n(r)dsdr, r ∈ Γ. (3)

To use Equation (3) numerically, we express the vector r and s with a parametric
coordinate system. The direction vector s is commonly represented by the spherical
coordinate system.

s = s(θ, ϕ) := (sin θ cosϕ, sin θ sinϕ, cos θ). (4)
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Since the location vector r in (3) is on a local piece Γ of a 2D manifold ∂O, it is
convenient to parameterize it by a locally differentiable parametric equation with two free
parameters (λ1, λ2),

r = r(λ1, λ2). (5)

Options for λ1 and λ2 are not unique. However, the tetrahedron mesh discretization
discretizes the object surface with triangle elements correspondingly (see a cylinder example
in Figure 2a). It is natural to assume Γ is a triangle element on the surface (See Figure 2b)
and to consider the parametric coordinate system for r ∈ Γ.
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Figure 2. An illustration of (a) surface discretization with triangle elements and (b) a triangle element
Γ and a location vector r.

Here the 2D barycentric coordinate system [35] (also called the areal coordinates
system) is briefly introduced. Assuming the location vectors of the three vertices of the host
triangle element are rA, rB, and rC, we define three vectors vAB := rB − rA, vAC := rC −rA
and v := r − rA (See Figure 2b). Therefore, equation v = λ1vAB+λ2vAC has a unique
pair of solution (λ1, λ2) and it is used as r’s local parametric coordinates. This coordinate
system leads to a straightforward expression of r(λ1, λ2), which is given by

r(λ1, λ2) := λ1vAB+λ2vAC+rA. (6)

Another benefit of this coordinate system is that the normal vector n is a constant and
does not depend on the location r within Γ. Therefore, according to (4) and (6), we have{

ndr =(∂r/∂λ1) × (∂r/∂λ2)dλ1dλ2= 2|Γ|dλ1dλ2,
sds = sin θsdϕdθ,

(7)

where |Γ| is the area of triangle element Γ and can be pre-calculated after the mesh generation.
With (7), we can construct a four-dimensional coordinate system to express the

angularly dependent light intensity on A and the infinitesimal power dP(Γ) in (3) can
be given by

dPsurf(Γ) =
x

Ωr(Γ) × Ωs(Γ)

qsurf(λ1, λ2,ϕ, θ)dϕdθdλ1dλ2, (8)

where Ωr(Γ) and Ωs(Γ) represents the feasible set for location vector r and direction vector
s under this coordinate system,

Ωr(Γ) := {(λ1, λ2): r(λ1, λ2) ∈ Γ},
Ωs(Γ) := {(ϕ, θ): s(ϕ, θ) · n(Γ) > 0}. (9)

qsurf(λ1, λ2, ϕ, θ) is the power density function on the surface under this coordinate
system, which is given by

qsurf(λ1, λ2, ϕ, θ)= 2 sin θ|Γ|(1− R(s · n))ψ(r, s). (10)
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In practice, ψ(r, s) is solved with discretized forward solvers, thus it is only available
for the triangle vertices {rA, rB, rC} and for certain solid angles {si}NSA

i=1 , so we can approx-
imate ψ(r, s) for any s and r ∈ Γ with the linear interpolation in the spatial domain and
the nearest neighbor method in the solid angle domain.

ψ(r(λ1, λ2), s) ≈ (1 − λ1 − λ2)ψ(rA, s)+λ1ψ(rB, s)+λ2ψ(rC, s)

≈ (1 − λ1 − λ2)ψ(rA, sk)+λ1ψ(rB, sk)+λ2ψ(rC, sk), (11)

where k =argmin
k
‖s− sk‖.

2.2. CCD Camera Acceptance Coordinates System

To reduce the complexity of the model, the CCD camera is assumed to only consist of
a single thin lens Ωlens (the aperture) with a radius as Rlens [mm] and a CCD chip ΩCCD
with size lCCD,1[mm] × lCCD,2[mm] (See Figure 3). Under this assumption, the readings
on the CCD chip are contributed by effective photons that pass through the aperture and
finally reach the CCD chip after the refraction (the red solid arrow line in Figure 3). Any
effective photon can be uniquely identified with two location vectors: (1) rlens defined as
the intersection point between its optical path and Ωlens and (2) rCCD defined as its final
position on ΩCCD (see Figure 3). Therefore, the total energy that is received by the CCD
chip, PCCD [W], can be calculated with an integral over the light intensity J(rlens, rCCD) on
Ωlens × ΩCCD,

PCCD =
∫

Ωlens×ΩCCD

J(rlens, rCCD)(rCCD − rlens) · nCCDdrlensdrCCD, (12)

where nCCD is the normal vector of the CCD chip that points to the other side of rlens.
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Based on the circular shape of the aperture and the rectangular shape of the CCD chip,
we represent rlens and rCCD with the polar coordinate system{

rlens= rlens(ρ, ω), 0 ≤ ρ ≤ Rlens, 0 ≤ ω < 2π,
rCCD= rCCD(x, y), 0 ≤ x ≤ lCCD,1, 0 ≤ y ≤ lCCD,2 .

(13)

With this parametric expression, (12) can be written as

PCCD =
∫ lCCD,2

0

∫ lCCD,1

0

∫ 2π

0

∫ Rlens

0
qCCD(ρ, ω, x, y)dρdωdxdy, (14)
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where the energy density qCCD(ρ, ω, x, y) [W/mm 3 /sr] under this coordinate system is
to be calculated in the next section.

2.3. Light Propagation in Free Space and Coordinate Transformation

The status of any photon that emits from the object surface and is finally received
by the CCD chip (also referred to as the effective photons) can be described with the
coordinates (ρ, ω, x, y) or with a triangle element Γ, and its corresponding ordinates
(λ1, λ2, ϕ, θ). Therefore, we can define two sets based on these two coordinate systems to
describe the status of effective photons.

Ssurf := {(Γ, λ1, λ2,ϕ, θ): photon with status (Γ, λ1, λ2,ϕ, θ) is effective },
SCCD := {(ρ,ω, x, y): photon with status (ρ,ω, x, y) is effective }. (15)

Therefore, for any (Γ, λ1, λ2, ϕ, θ) ∈ Ssurf, we have (λ1, λ2) ∈ Ωr(Γ)
and (ϕ, θ) ∈ Ωs(Γ); for any (ρ, ω, x, y) ∈ SCCD, 0 ≤ ρ ≤ Rlens, 0 ≤ ω < 2π,
0 ≤ x ≤ lCCD,1 and 0 ≤ y ≤ lCCD,2 are satisfied. We can also consider Ssurf as the initial
status set of effective photons since it characterizes the starting positions and directions.
On the other hand, SCCD can be considered as the final status set of effective photons since
it contains information on the CCD camera side.

In non-contact imaging, some optical systems, such as conical mirrors, are often
employed to magnify the signal received by the CCD camera. To track the contribution of
photons in the complex optical system, we represent the light propagation in free space
with an operator F, which maps from the initial status set Ssurf to its final status set SCCD.
In this work, the following assumptions are imposed on the operator F:

• The operator F is a one-to-one and deterministic function from Ssurf to SCCD. Therefore,
the light propagation operator G := F−1 is well defined.

• The operator F is locally differentiable. In other words, FΓ: (λ1, λ2, ϕ ,θ) → (ρ, ω, x, y) ,
which is defined as F constrained on the surface triangle element Γ, and its inverse GΓ
are differentiable.

• There is no energy loss during the light’s travel from the surface to the CCD chip.

These assumptions are not strong and are not satisfied by most of the general optical
systems. Under these assumptions, we consider the total energy received from an infinitesi-
mal unit volume dρdωdxdy around (ρ, ω, x, y) by the CCD chip, which is given by

dPCCD(ρ, ω, x, y)= qCCD(ρ, ω, x, y)dρdωdxdy. (16)

On the other hand, we can assume dPCCD(ρ, ω, x, y) is all contributed from pho-
tons emitted from one triangle element Γ. Therefore a coordinate transformation can be
conducted on (16) to express dPCCD(ρ, ω, x, y) with (λ1, λ2, ϕ, θ) in Γ,

dPCCD(ρ, ω, x, y)= qCCD(FΓ(λ1, λ2, ϕ, θ))
∣∣∣∣∂FΓ(λ1, λ2,ϕ, θ)

∂(λ1, λ2,ϕ, θ)

∣∣∣∣dλ1dλ2dϕdθ, (17a)

where ∂FΓ(λ1, λ2, ϕ, θ)/∂(λ 1, λ2 , ϕ, θ) is the Jacobian matrix of the coordinate transfor-
mation, |·| represents the absolute value of the determinate of a matrix. In short, (17a) is
also written as

dPCCD(ρ, ω, x, y)= qCCD(FΓ(λ1, λ2, ϕ, θ))|∇FΓ|dλ1dλ2dϕdθ. (17b)

In (17b), qCCD(FΓ(λ1, λ2, ϕ, θ))|∇FΓ| on the right-hand can also be interpreted as the
power density under coordinates (λ1, λ2, ϕ, θ), which should be identical to qsurf(λ1, λ2, ϕ, θ)
in (10). Thus, we have{

qsurf(λ1, λ2, ϕ, θ)= qCCD(FΓ(λ1, λ2, ϕ, θ))|∇FΓ|, in Γ,
qCCD(ρ, ω, x, y)= qsurf(GΓ(ρ, ω, x, y))|∇GΓ|.

(18)
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where ∇G is the Jacobian matrix of the coordinate transformation from the CCD chip to
the object surface.

Since qsurf’s values are known according to (10) if the intensity distribution ψ(r, s) is
derived, (18) provides an analytical solution for qCCD(ρ, ω, x, y) in (14).

2.4. Numerical Algorithm for Measurement Operator

In non-contact DOT, the detector reading of the ith pixel centered at (xi, yi) on the
CCD chip is given by

Mi ≈ Apixel

∫ 2π

0

∫ Rlens

0

−
qCCD(ρ, ω, xi, yi)dρdω ≈ Apixel∆ρ∆ω

Nρ

∑
j=1

Nω

∑
k=1

−
qCCD

(
ρj, ωk, xi, yi

)
, (19)

where Apixel represents the area of a pixel on the CCD chip,
{
ρj

}Nρ

j=1
and {ωk}Nω

k=1 are

uniform discretization point sets for [0, RCCD] and [0, 2π), with ∆ρ and ∆ω as the step

size, respectively, and
−
qCCD(ρ, ω, x, y) is the extended energy density function which is

given by
q CCD(ρ, ω, x, y) := qCCD(ρ, ω, x, y)1SCCD(ρ, ω, x, y) (20a)

= qsurf(GΓ(ρ, ω, x, y))|∇GΓ|1SCCD(ρ, ω, x, y), (20b)

= 2 sin θ|Γ|(1− R(s · n))|∇GΓ|1SCCD(ρ, ω, x, y)ψ(r, s) (20c)

where 1SCCD(ρ, ω, x, y) is the indicator function that returns 1 if (ρ, ω, x, y) ∈ SCCD and
returns 0 otherwise. With (10), Equation (20c) is obtained from Equation (20b). In (20), Γ
and GΓ(ρ, ω, x, y) can be obtained by the backward ray-tracing technique that tracks the
photon reversely from the CCD chip to the object surface. |∇GΓ| can then be estimated with
the perturbation method [36]. For example, when a small change in ρ in the CCD coordinate
is considered,∇G can be calculated as∇G ≈ (G(ρ+ε, ω, x, y)−G(ρ, ω, x, y))/εwhere
ε is a sufficiently small number.

In this model Equation (20a–c), one can notice that the non-contact DOT system’s de-

tector readings
−
qCCD are a linear function concerning the object’s light intensity distribution

ψ(r, s). In the discretized model, the light intensity is only given on the jth solid angle in the
ith control volume, which is represented with ψi,j (1 ≤ i ≤ NCV, 1 ≤ j ≤ NSA), where
NCV is the number of control volumes and NSA is the number of solid angles. In practice,
one usually uses a vector ψ :=

(
ψ1,1,ψ1,2ψ1,NSAψNCV,1ψNCV,NSA

)T to save all the ψi,js and

a vector M :=
(

M1, M2MNpixel

)T
to represent readings from the pixels on the CCD chip,

where Npixel is the total pixel number used for measurement collection. Furthermore, the
model for light propagation in free space between the object’s light intensity distribution ψ
and CCD chip readings M can be represented with

M = Qψ, (21)

where Q is a sparse matrix with its row indices corresponding to the pixels on the CCD chip
and its column indices corresponding to the control volumes and solid angles. Matrix Q is
also called the measurement operator, a mandatory component in optimization problems.
This model provides a way to derive Q with (19), (20), (10) and (11). We employ backward
ray tracing [37] for the construction of Q. The backward ray tracing starts with casting
multiple rays reversely from each pixel into the imaging object. Each ray is then traced from
the pixel through the lens all the way to the point where the object’s surface is intersected by
the ray. Once the intersection point is found, the surface light intensity at that intersection
point contributes to the CCD pixel intensity. The same procedure is repeated for other
rays. Thus, the number of rays traced to the object surface is proportional to the CCD pixel
intensity. The step-by-step procedure of this algorithm is given in Algorithm 1.
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Algorithm 1: Distributed backward ray-tracing algorithm for Q’s construction

1. Discretize [0, RCCD] and [0, 2π) uniformly with
{
ρj

}Nρ

j=1
and {ωk}Nω

k=1 with step size equal

to ∆ρ and ∆ω.

2. Set Q as a Npixel × (NCVNSA) matrix with all entries equal to 0.

3. for i = 1 : Npixel

Get the coordinates (xi, yi ) and the pixel size Ai.

for j = 1 : Nρ
for k = 1 : Nω

Backtrack the photon with
(
ρj, ωk, xi, yi

)
as its final status.

if this photon hits a triangle element Γ on the object surface
• Get the three node indices i1, i2, and i3 of the vertices of Γ (the control volume

indices in finite element mesh)
• Get the normal vector nΓ and the area |Γ|.
• Compute (λ1, λ2, ϕ, θ) = GΓ

(
ρj, ωk, xi, yi

)
, define λ3 := 1 − λ1 − λ2.

• Estimate |∇GΓ| with perturbation method.
• Find the index t of the solid angle closest to the direction s(ϕ, θ)

t = argmin
m
‖s(ϕ, θ) − sm‖

• Compute c = 2Ai ∆ρ ∆ω|∇GΓ|sin θ|Γ|(1 − R(s(ϕ, θ) · nΓ)).
• for l = 1 : 3

Q(i, (i l−1)NSA+t)= Q(i, (i l−1)NSA+t)+λlc
end for

end if
end for

end for
end for

4. Return Q

3. Results and Discussion
3.1. Validation through Analytic Solution

We designed and performed a digital phantom experiment to test the validity and
accuracy of the proposed algorithm. The light propagation in the direct illumination case
(with no intermediary optical components), which has an analytical solution, is examined
in this digital phantom experiment. The experiment setup is shown in Figure 4.
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A thin round plate with radius Rc was set perpendicular to the optical axis, with the
center aligned on the optical axis, beyond the lens with radius Rlens and focal length f . The
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light intensity was set to be uniform on the plate, given asψ. The distance from the aperture
to the plate and the image plane was denoted by l1 and l2, respectively. Furthermore, the
focal length f and two distances l1 and l2 are set to follow the equation 1

f = 1
l1
+ 1

l2
in the

testing system. Furthermore, according to the Cosine fourth Power Law [38], the analytical
solution Me for the received power per area on the image plane under these settings can be
written as:

Me(x, y) =


πψR2

lensl21l22
(l21+R2

lens)(l
2
2+x2+y2)

, x2+y2 ≤ R2
c l22
l21

0, x2+y2 >
R2

c l22
l21

(22)

In the numerical validation, ψ was set as 1 W/mm2/sr; l1, l2 and f were set as
1050 mm, 52.5 mm, and 50 mm, respectively; Rlens and Rc were set as 6.25 mm and
1050 mm, respectively.

For validation purposes, the size of the numerical CCD chip is set to 105 mm × 105 mm.
The CCD chip is discretized by 501 × 501 pixels. The predicted measurement Mc is
computed on every pixel with the light propagation model. The aperture is discretized
with Nρ= 10 and Nω= 10. The comparison between Me and Mc is shown in Figure 4. No
noticeable differences between the analytical measurement Me (Figure 5a) and the predicted
measurement Mc (Figure 5b) were observed. The relative error of Mc is in the range
[0, 5× 10−5 ). To further quantify the performance of the back ray-tracing algorithm, the
correlation factor c(Me, Mc) and deviation factor d(Me, Mc) of the computed measurement
are computed as c(Me, Mc)= 1− 1.4564 × 10−10 and d(Me, Mc)= 3.5114 × 10−5, with
the definitions of c(Me, Mc) and d(Me, Mc) given as:

c(Mc, Me) := ∑N
i=1(Mc

i − Mc)(Me
i − Me)

Nσ(Mc)σ(Me)

d(Mc, Me) :=

√(
∑N

i=1(Mc
i − Me

i )
2)

/N

σ(Me)

(23)

where N is the number of voxels, M and σ(M) are the weighted average and standard
deviation. Therefore, the high correlation factor and low deviation factor, and relative error
indicate that the free space light propagation model has very high accuracy for this case.
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3.2. Validation through the Double Conical Mirror Non-Contact Imaging System

A double conical mirror system has been designed to capture multi-directional views
simultaneously in small animal imaging [39] (See Figure 6). A. The first mirror facing a
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target captures a surface of the target, and the second mirror facing a detection camera
reflects and projects the captured images by the first mirror onto the detection camera.
Depending on the shape of a target, the shapes of the first and second mirrors can vary,
like flat, conical, oval, or two combined shapes. For this system, since the target is a small
animal, like mice, a conical shape is chosen to capture the whole-body surface of a small
animal. The conical mirror size was designed to cover a 40 mm diameter, 80 mm length
cylinder, the size of which is enough to cover a small animal.
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Figure 6. A picture of the double conical mirror system.

This conical-mirror system provides the capability to obtain measurements of angular-
resolved-data. Figure 7 provides a conceptual illustration through ray tracing of how the
angle-resolved data can be obtained with the conical mirror. Consider, for example, a
single point on the cylindrical target object positioned on the concentric axis of two conical
mirrors inside the camera’s field of view. The conical mirrors distribute the viewing angle
of the camera to the entire 360o around a single point. As a result, the camera image
generated using ray tracing is not a point but a ring. Therefore, within the angular coverage
of the conical mirror pairs, angular-resolved data can be obtained. Consequently, the
measurement using the conical mirror imaging head can lead to a substantial improvement
in the image reconstruction results.
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We further tested the performance of our algorithm on this double conical mirror
imaging system. To this end, we used a calibration bar grid as a target for imaging. Figure 8a
shows the positioning of a calibration bar as a target in the imaging unit. The CCD images
were taken by a camera through the double conical mirror system (Figure 8b). Figure 8c
shows the images generated through the measurement operator that was constructed under
the same settings as the actual conical mirror system by using our ray tracing algorithm
as proposed in the previous section. Two experiments were conducted with two different
values of f-number: f/4 and f/11. As shown in Figure 8, there is image distortion because
of the conical shape of the mirrors.
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Figure 8. A picture of the calibration bar with the double conical mirror system. (a) Calibration bar
in the imaging unit; (b) the captured image on the camera; (c) the calculated image using the ray
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quantitative analysis.

As expected, sharper images were obtained with f/11 than with f/4. In other words,
the black and white grid pattern of the calibration bar is clearly visible in both CCD and
predicted images with f/11 used, whereas, for the f/4 case, the reduced depth of field
is observed here that leads to a blurred or distorted image, i.e., the grid pattern in the
foreground area is severely distorted to look like a ring. For quantitative comparison, a
circle (red solid line) was placed over the images, as shown in Figure 8, and the pixel values
were extracted along the circle except for the conical mirror support area for each image.
The pixel values are then rescaled to fall within the same number scale, which mitigates the
effect of the image scale difference between CCD and predicted images. Figure 9 shows
the line profiles from CCD and predicted images obtained with f/4 and f/11, respectively.
As shown in Figure 9, the grid pattern, which is represented by the high and low pixel
values in the line profile, is well preserved with f/11 in both CCD and predicted images,
while such a high-contrast grid pattern was almost lost by blurring in both images when
f/4 was used. These results suggest the CCD images through the conical mirror system can
be reasonably predicted by our ray tracing algorithm shown in the images. The correlation
coefficient and deviation factor were also computed to be c

(
MCCD, MPred

)
= 0.82 and

d
(

MCCD, MPred
)
= 0.64. The large deviation factor is believed to be mainly because of the

mismatch between the illumination conditions used for the experiment and the model.
In fact, the CCD image was taken under ambient light conditions, while the ray tracing
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algorithm assumed a uniform light distribution on the calibration bar surface, although this
may not be true. Discrepancies between measurements and predictions can be minimized
once illumination conditions and system parameters are more accurately known for the
experiment considered.
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3.3. Application to Real Fluorescence Molecular Tomographic Imaging

A small animal fluorescence imaging experiment was conducted with a tumor-bearing
mouse using the double conical mirror imaging system. Osteosarcoma cells (143B), trans-
fected with GFP (pEGF-C1), were sorted to present 80-ek after to mea90% GFP positive
expression. Considering the weak signals of GFP, the tumor cells (1 × 106 cells/mL in
100 µL PBS) were injected subcutaneously near the left kidney of a mouse. Furthermore,
the mouse was imaged one week later to measure the tumor growth through fluorescence
molecular tomography (FMT). The excitation was done with a 475 nm wavelength, and the
emission signal due to GFP-tagged tumor cells was measured with a 515 nm long-pass filter.
The optical properties are µa= 0.4

[
cm−1] and µ

′
s = 15

[
cm−1] for absorption and scatter-

ing coefficients, respectively, τ = 4.0 [ns] for lifetime, and η = 0.95 for quantum yield.
With one single illumination on the tumor area, 37,558 data points were obtained

on the CCD image as measurements and used as input to the reconstruction code. The
reconstructed map of the absorption coefficient µx→m

a of a fluorescent source inside the
mouse clearly shows the tumor location in Figure 10, which was confirmed by the planar
imaging results using the Kodak In-vivo Multispectral Imaging System FX (Carestream
Health, Inc., Rochester, NY, USA). It should be noted that this result is obtained with
one single illumination alone.

Moreover, several published works have already applied the proposed model for
measurement operator derivation and improved DOT results [39–42]. These results support
the validity of the back ray-tracing model for light propagation in free space.
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4. Conclusions

This work developed a novel free-space, angular-dependent photon transport model
for deriving the measurement operator in a non-contact DOT imaging system. This model
employed the backward ray-tracing method to efficiently calculate the surface radiation
contribution to each pixel on the CCD chip by fully considering the angularly dependency
of the light intensity.

The presented algorithm was validated by using both numerical experiments and
actual measurement data. In the numerical experiment, the performance of the proposed
algorithm was compared against an analytic solution and evaluated in terms of correlation
factor, deviation factor, and relative error. It was shown from the results that the correlation
factor was very close to 1 and the deviation factor was very close to 0, which indicates a
solid agreement between the output of the proposed model and the analytical solution.
Furthermore, the proposed algorithm has also been successfully applied to provide the
measurement operator that allows the angle-resolved fluorescence data to be used for 3D
tomographic results.

The results demonstrate that the proposed method based on backward-distributed ray
tracing provides accurate modeling of the angle-dependent ray transfer function, which is
crucial to non-contact camera-based DOT reconstructions with catadioptric systems that
involve conical mirrors.

The backward ray tracing method presented here employed a discretization of the
aperture alone. Therefore, the method can be further improved for more accurate prediction
of CCD pixel measurements. This can be done by using a discretization of each CCD pixel
in addition to the discretized aperture, which will be considered in future work.
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