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Abstract: Controllable surface plasmonic bending beams (SPBs) with propagating along bending
curves have a wide range of applications in the fields of fiber sensors, optical trapping, and micro-
nano manipulations. In terms of designing and optimizing controllable SPB generators, there is
great significance in realizing conversion between multiple SPBs and single SPB without rebuilding
metasurface structures. In this study, a SPB generator, composed of an X-shaped nanohole array, is
proposed to realize conversion between multiple SPBs and a single one by changing the incident
light wavelength. The Fabry–Pérot (F–P) resonance effect of SPPs in nanoholes and localized surface
plasmonic (LSP) resonance of the nanohole are utilized to explain this conversion. It turns out that
the relationship between the electric field intensities of SPBs and the polarization angle of incident
light satisfies the sine distribution, which is consistent with dipole radiation theory. In addition, we
also find that the electric field intensities of SPBs rely on the width, length, and angle of the X-shaped
nanohole. These findings could help in designing and optimizing controllable and multi-functions
SPBs converters.

Keywords: surface plasmon polaritons; surface plasmonic bending beams; phase modulation

1. Introduction

Surface plasmonic polaritons (SPPs), special electromagnetic waves in a two- di-
mensional system consisting of collective electron oscillations and propagating on the
metal interface, have important applications in the fields of photonics and electronics [1–3].
By artificially regulating SPPs, it is possible to create surface plasmonic bending beams
(SPBs), which maintain their forms while traveling through arbitrary bending curves [4].
Due to arbitrary self-accelerating properties of SPBs waves, they have potential applica-
tions in sensors [5–10], optical trapping [11], and photon manipulations [12–14]. Various
SPBs, including focused SPPs [15], Airy beams [16–18], Arbitrary bending beams [4,19,20],
Weber beams, and Mathieu beams [21], have been realized by various artificial microstruc-
tures (such as hole array [4,17,22], grains array [19], two-dimensional binary phase mask
gratings [4,19], and polymethyl methacrylate microsphere [23,24]). Dynamic focusing
SPPs [25,26] were also realized by circular vertical slit array [27] and circular cross slit
array [28]. These nanostructures, as polarization-sensitive nanostructures, were designed
by utilizing phase modulation method [20], and can independently control phase and
amplitude of SPPs by controlling parameters, size, and arrangement of structures [23–29].
However, their size is very small, and it is still a challenge to simultaneously generate the
randomly multiplexed polarization states.

Recently, metasurfaces, two-dimensional (2D) artificial structures composed of arrays
of subwavelength-size unit cells, have been widely used for wavefront reshaping [30–34].
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Compared to traditional three-dimensional (3D) metamaterials, they can deeply interact
with light and exploit new degrees of freedom to manipulate optical fields. Various phys-
ical effects, including the photonic Spin Hall effect [30,31,35,36], the momentum-space
polarization effect [30], the interplay effect of the Pancharatnam–Berry (P-B) phase and
Spin-orbit, and the interplay effect of the geometric phase and the dynamic phase [37,38],
were applied to realize various SPBs by designing various metasurface structures. These
SPBs include focused SPPs [39], orbital angular momentum (OAM) beams [40–43], arbi-
trary vector beams [44], Airy beams [45,46], and Bessel beams [37]. For example, a single
ultrathin metasurface, composed of eight groups of rectangular nanoparticle arrays with
various azimuth angles, was used to generate arbitrary vector beams [47]. An assembly of
circularly polarized (CP) and linearly polarized (LP) states can be simultaneously generated
by a metasurface made of L-shaped resonators with different geometrical features [48]. The
polarization states and propagation direction of the desired output SPB can be accurately
tuned by selecting the geometrical shape, size, and spatial sequence of each resonator in the
unit cell [43–48]. By changing the orientation angle of hyperbolic metamaterials (HMMs)
unit, the local amplitude and phase distributions of the transmitted electromagnetic waves
passing through such HMMs unit can be adjusted to follow the Airy function within a wide
spectral range (generation of broadband Airy beams) [49]. With a well-designed array of
deep sub-wavelength nanostructures, separating photon information can be multiplexed
into different channels or combined with different functions [50]. For the purpose of focus-
ing two separated points in the predetermined plane, a spin-selected metasurface lens was
created [51,52]. The broadband, high-efficiency, and high-quality polarization-controlled
self-accelerating beam were achieved by designing versatile dielectric metasurfaces [53–56].
Novel physical models and artificial metasurfaces have been utilized to increase the depth
and scope of the research on control SPBs. However, there is not enough discussion about
converting multiple SPBs into one without rebuilding structures.

In this study, the phase modulation method was utilized to design an X-shaped
nanohole array and multiple SPBs were generated. The angle between multiple SPBs
was dynamically controlled by changing the incident light wavelength. A conversion
between multiple SPBs and single one was realized by only changing the incident light
wavelength. We applied the Fabry–Pérot (F–P) resonance effect of SPPs in the nanohole
and to the localized surface plasmonic (LSP) resonance of the nanohole to explain this
conversion. The electric field intensities of these SPBs were controlled by the polarization
angle of input light waves. The relationship between the electric field intensities of the
SPBs and the polarization angle of incident light satisfied the sine distribution, consistent
with theoretical analysis of dipole radiation. The effects of the structural parameters on
the SPBs were investigated. The results show that the electric field intensities of SPBs rely
on the structural width and length. Compared to the effect of length, the impact of width
and angle between the two arms of an X-shaped nanohole on the electric field intensities of
SPBs is more obvious. These findings could help in designing and optimizing controllable
bending beam generators.

2. Theoretical Analysis and Structure

SPBs, as an electromagnetic wave propagating in the two-dimensional (x-y) plane, can
be expressed in the Helmholtz equation [9,17,19,20],

∇2Espp(x, y) + k2
sppEspp(x, y) = 0, (1)

where kspp represents the SPPs wave vector. According to the Huygens–Fresnel principle,
the superimposed SPPs field generated by a single nanohole at any position P(x, y) is
written as,

En(x, y) =
1
iλ

∫
E0(x0, y0)

K(θn)

rn
e−(i

→
k spp

→
r n)ds, (2)
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where rn represents the distance between each point on a wavefront. K(θn) is a direction
factor. λ is the incident light wavelength. E0(x0, y0) represents the electric field distribution
by a single nanohole. If only the second order is taken into consideration, rn can be
expressed as follows using the binomial expansions,

rn =
√

z2 + (x− x0)
2 + (y− y0)

2

≈ z
{

1 + 1
2

[
( x−x0

z )
2
+ ( y−y0

z )
2]− 1

8

[
( x−x0

z )
4
+ ( y−y0

z )
4]}

.
(3)

If we consider r2
n ≈ z2 and K(θn) ≈ cos(θn) ≈ z

rn
, we set M = (x− x0)

2 + (y− y0)
2

and Q = (x− x0)
4 + (y− y0)

4. Equation (2) is then expressed as,

En(x, y) ≈ 1
iλz

∫
E0(x0, y0)e

−ikspp [z+ 1
2z M− 1

8z3 Q]ds. (4)

Obviously, according to the superposition of electromagnetic waves, Espp(x, y) =

∑ En(x, y) can be written as,

Espp (x, y) ∝ N
iλz E0(x0, y0)e−iksppr1(1 + ∑ eikspp∆rn))

∝ N
iλz E′0 sin β[1 + (c1/c2) cot β]∑ e−iksppz∑ e−ikspp

M
2z ∑ e−ikspp

Q
8z3

(5)

where c1 and c2 are the SPPs coupling coefficients with x and y polarization, respectively,
and β is the polarization angle of incident light waves. N is the number of sources
∆rn = rn+1 − rn, ϕ(x) = ∑ ϕn(x) = ∑ kspp∆rn represents the phase, and kspp = 2π

λspp

represents the SPPs wave vector. Equation (5) explains theoretically that both the amplitude
and phase of the SPPs waves can be controlled by β, c1, c2, and ϕ(x). The phase ϕ(x) mainly
depends on the arrangement of the structure array. As a result, distinct SPBs propagation
trajectories with fixed c1 and c2 correspond to different phase ϕ(x) distributions. The
different angle β corresponds to different Espp(x, y) with fixed c1, c2, and ϕ(x), and results in
different electric field intensities distribution. In addition, shown in Equation (5), the ϕ(x)
is expressed as,

ϕ(x) = ∑ kspp∆rn ≈ ϕ1(x) + ϕ2(x) ≈∑ kspp
M
2z

+ ∑ kspp
Q

8z3 . (6)

Theoretically, if the E0(x0, y0) is large enough, (|E0(x0, y0)ϕ1(x)| >> |E0(x0, y0)ϕ2(x)|),
just the first term holds true in Equation (5), and a single SPB can be generated as a result.
If the E0(x0, y0) is weak, (|E0(x0, y0)ϕ1(x)| ≈ |E0(x0, y0)ϕ2(x)|), the first two terms at least
are acceptable in Equation (5), and as a result, multiple SPBs can be generated at once.

In this study, to achieve SPBs, the phase modulation method was utilized [9,17,19,20,22].
Under the non-paraxial regimes, sin θ = tan θ/

√
1 + tan2 θ, the phase of required SPBs can

be obtained, φ(x) = −
∫

k0 tan θ/
√

1 + tan2 θdx, where tan θ = f ′(y), and f ′(y) is the first-
order derivative of the designed bending trajectory f (y) [20,50,57,58]. For simplicity, the
paraxial regime (sin θ ≈ tan θ) was also applied, and the required phase can be obtained
by φ(x) = −

∫
k0 sin θdx. In this study, the quadratic curve (f (y) = −ay2) was chosen,

where constant a is 1.13 × 10−2. According to equation φ(x) = −
∫

k0 sin θdx, the desired
phase (φ(x) = −1.33kax1.5) was obtained for paraxial regimes. The location of every
X-shaped nanohole was calculated by solving the equation ϕ(x) = φ(x) [17,19,20,22,59].
The distances Hn = yn+1 − yn were calculated when the number of X-shaped nanohole
was equal to 20, which is shown in Figure 1a. The corner symbol n represents number of
radiation sources.
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Figure 1. (a) Calculated distances Hn of the radiation source. (b) Configuration of the Au/SiO2 struc-
ture. The red block diagram illustrates a local amplification of the structure and structural parameter.

The configuration of an Au/SiO2 structure is shown in Figure 1b. The thickness of the
gold film and SiO2 substrate were fixed at 0.2 µm and 0.1 µm, respectively. The X-shaped
nanohole array (with the number of X-shaped nanohole equal to 20) was designed on
the Au film. The inset is the single X-shaped nanohole in the red wireframe. The values
given for L and w, which stand for the arm length and width of an X-shaped nanohole,
respectively, were 0.3 µm and 0.05 µm. The angle α is the angle between two arms. Dn
represents the distance between adjacent radiation sources, β represents the polarization
angle between the in-plane incident electric E0 and the x axis. W and Hn represent the
distances in x and y direction between adjacent radiation sources, respectively. In this
paper, the distance W was set as 0.6 µm. The distance between adjacent radiation sources,

Dn =
√

W2 + (Hn)
2, is aperiodic. The finite-difference time-domain (FDTD) approach was

used to model the SPPs propagation characteristics. Lumerical FDTD is 3D/2D maxwell’s
solver for nanophotonic devices, processes, and materials. The Au(gold)-CRC material
model in Lumerical FDTD solutions software was selected. Boundary conditions for perfect
matching layers (PML) were utilized. The frequency-domain field profile monitor was
applied. The apodization time width was 100 fs. The mesh type of auto non-uniform was
selected. The minimum mesh step of 2× 10−5 µm was applied. The total number of FDTD
Yee nodes was 176.992 MNodes. A plane wave with black/periodic type was an incident
along direction z into the X-shaped nanohole array. For the calculations, we used an AMD
Ryzen ThreadripperPRO 3945WX 12-Cores @4.00 GHz, with 128.0 GB installed memory. It
took less than 1 h.

3. Results and Discussion

The electric field intensity distribution in the x-y plane is depicted in Figure 2 with
λ = 660 nm and 799 nm with the polarization angles β = 0◦ and α = 60◦. The white dotted
curve depicts the quadratic curve f (y) = −ay2. It demonstrates that the target SPBs—both
numerous and solitary—are produced with the propagation along the required trajectory.
These results demonstrate that SPBs are generated by an X-shaped nanoholes array. A
conversion between multiple SPBs and a single one can be realized by changing the incident
light wavelength. In addition, with λ = 660 nm, the electric field intensities at points A
(20 µm, 16.4 µm) and B (20 µm, −4.2 µm) were about 0.03 times of the intensities of
incident light wave (magnitude 1 V/m). With λ = 799 nm, the electric field intensities at
point B (20 µm, −2.7 µm) were about 0.14 times of the intensities of incident light wave
(magnitude 1 V/m). The electric field intensity of generated SPB is low. It is mainly
related to the structure size, row number of structures, the radiation intensity of SPP wave,
and its attenuation in propagation. The findings well confirm our theoretical discussions
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of generated SPBs in Equations (5) and (6). The findings could help in designing and
optimizing controllable multi-function SPB converters.
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(b) λ = 799 nm.

The electric field intensity distributions with λ = 630 nm, 660 nm, 690 nm, and 710 nm
in the x-y plane with the polarization angles β = 0◦and α = 60◦ are shown in Figure 3a. The
transverse electric field intensity distributions with different incident light wavelengths λ
at x = 20 µm are shown in Figure 3b. It shows that by increasing λ from 630 nm to 710 nm,
the electric field intensity of SPB I increases, and the electric field intensity of SPB II first
increases and then decreases. The distance Dn represents the vertical distance between SPB
I and II in Figure 3c. It shows that with increasing λ, the distance Dn (corresponding to
angle between multiple SPBs) gradually increases. The main reason is that the two SPBs
phases (ϕ1(x) and ϕ2(x), shown in Equation (6)) change at different rates with respecting
to wavelength, resulting in different speeds of two SPBs deviating from the target quadratic
curve trajectory. The findings show that the electric field intensities of multiple SPBs
are controlled with varying the incident light’s wavelength. The angle between multiple
SPBs (corresponding to the distance Dn) is also controlled by changing the wavelength of
incident light.

Figure 4a displays the electric field intensity distributions for λ = 850 nm and 980 nm
in the x-y plane with polarization angles β = 0◦ and α = 60◦, respectively. The transverse
electric field intensity distributions with different λ (from 750 nm to 1150 nm) at x = 20 µm
are shown in Figure 4b. These figures show that a single SPB is generated. These results
demonstrate that a conversion between multiple SPBs and single one is realized by changing
the incident light’s wavelength. The conversion point occurs near λ = 750 nm. Multiple
SPBs are the superposition of SPPs waves from every nanohole, and single SPBs is the
superposition of electric dipole radiation from each resonance of X-shaped nanohole. We
can follow the literatures [45,53] to qualitatively explain these results. These analyses
can be well explained by the Huygens–Fresnel principle in Equation (4). These results
demonstrate that a change from SPPs resonance in the nanohole to LSP resonance of an
X-shaped nanohole is applied to explain this conversion. In addition, the maximum electric
field intensity values of the SPBs with different λ values are shown in Figure 4c. Clearly,
the electric field intensities of SPBs initially increase with λ increasing (from λ = 750 nm to
1150 nm), and thereafter decrease.
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(a) λ = 630 nm, 660 nm, 690 nm, and 710 nm, respectively. (b) Transverse electric field intensity
distributions at x = 20 µm with different λ. (c) The distance Dn with different λ.
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To understand the relationship between the electric field intensities of SPBs and the
polarization angle β, the electric field intensities with different polarization angle β in x-y
plane are depicted in Figure 5. Electric field intensities at the selected points A (x = 20 µm,
y = 15 + ∆D µm) of beam II and B (x = 20 µm, y = −4 + ∆D µm) of beam I are studied to
unveil this polarization-dependent property. Here, ∆D considers the deviation of SPBs. The
polar plots of the electric field intensity values of points A and B with varied polarization
angle β at λ = 630 nm, 670 nm, and 710 nm are shown in Figure 5. The equation to fit these
data is given by,

f = C + D× sin(ϕ− ϕ0), (7)
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where C and D are constant. The solid curve in Figure 5 results in the fitting of Equation (7).
The goodness of fit for beams I and II are 0.98, 0.96, 0.95, and 0.96, for λ = 630 nm, 660 nm,
690 nm, and 710 nm, respectively. These results show the relationship between the electric
field intensities of multiple SPBs and the polarization angle β satisfies the sine distribution.
This analysis is also consistent with our calculation results in Equation (5), satisfying the
sine distributions [60].
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angles β.

It should be emphasized that SPBs can be significantly influenced by the geometrical
characteristics of the X-shaped nanohole. The transverse electric field intensity distributions
of the X-shaped nanoholes array structure and single nanohole structure for different angles
θ at x = 20 µm (with λ = 660 nm, β = 0◦) are shown in Figure 6a. It shows that the electric
intensity values of SPBs for the proposed structure are stronger than that of the single slit
antenna. It further demonstrates that multiple SPBs are also generated by single nanohole
array. At this time, the electric field intensity distributions of SPBs can be controlled by
the angle θ. With the angle θ increasing from 0◦ to 180◦, the electric intensity values of
SPBs first increase and then decrease. The transverse electric field intensity distributions
of the proposed structure at x = 20 µm for different widths (with λ = 660 nm) are shown
in Figure 6b. It shows that as the width w increases from 0.02 µm to 0.07 µm, the electric
intensity values of SPBs increase. An increase in the width of the X-shaped nanohole
will decrease the confinement of SPPs in the nanohole. Therefore, with an increase in w,
the effective aperture of X-shaped nanohole increases and electric field intensity of SPPs
becomes stronger, and as the length L increases from 0.26 µm to 0.4 µm, the electric intensity
values of SPBs first increase and then decrease. Compared with width w, the effect of length
L on the electric field intensities of SPB is inconspicuous. In addition, the electric field
intensities of SPBs are controlled by changing angle α between two arms of X-shaped
nanoholes (shown in Figure 6c). This shows that as the angle α increases, the electric field
intensities of SPBs increase and then decrease.

In addition, to enrich the conversion results, other triangle (height h = 0.15 µm, width
l = 0.2 µm) and circular (radius r = 0.1 µm) nanohole arrays are designed to generate
multiple SPBs. The electric field intensities of multiple SPBs are also controlled by changing
the incident light wavelength. These results demonstrate that this conversion from multiple
SPBs to single SPB can be realized by other structures.
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The experimental preparation of the proposed structures is feasible. For the fabrication
of the proposed structures, an Electron Beam Lithography (EBL) system and a Vacuum
Evaporation Coating (VEC) machine will be applied. S1: 250-nm-thick PMMA (as negative
photoresist) is dumped on the SiO2 substrate. The substrate after dumping is dried on a hot
plate at 150 ◦C for 3 min. Conductive adhesive with 20 nm thick is dumped on the PMMA
to get sample 1. S2: Sample 1 is processed by EBL system, cleaned in deionized water,
washed out conductive adhesive, and then soaked in development solution and finalization
solution for 60 s, then dried to get sample 2. S3: 200-nm-thick Au film is vertically plated
using Vacuum Evaporation Coating Machine to get sample 3. S4: Sample 3 is soaked in
acetone solution for 3h, then peeled off and dried to get the proposed structures.

4. Conclusions

In conclusion, an X-shaped nanohole array was designed to generate multiple SPBs.
The angle between multiple SPBs is dynamically controlled by changing the incident
light wavelength. A conversion between multiple SPBs and a single one is realized by
only changing the incident light wavelength. The relationship between the electric field
intensities of the SPBs and the polarization angle of the incident light satisfies the sine
distribution, and is consistent with theoretical analysis of dipole radiation. The electric
field intensities of SPBs rely on the structural width and length. These findings could help
in the design and optimization of controllable bending beam generators.
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