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Abstract: Obtaining adequate resection margins in small intestinal necrotic tissue remains challenging
due to the lack of intraoperative feedback. Here, we used hyperspectral imaging (HSI), an imaging
technique for objective identification, combined with deep learning methods for automated small
intestine tissue classification. As part of a prospective experimental study, we recorded hyperspectral
datasets of small intestine biopsies from seven white rabbits. Based on the differences in the spectral
characteristics of normal and ischemic necrotic small intestinal tissues in the wavelength range of
400–1000 nm, we applied deep learning techniques to objectively distinguish between these two
types of tissues. The results showed that three-dimensional convolutional neural networks were
more effective in extracting both spectral and spatial features of small intestine tissue hyperspectral
data for classification. The combination of a deep learning model and HSI provided a new idea for
the objective identification of ischemic necrotic tissue in the small intestine.

Keywords: hyperspectral imaging; deep learning; optical biopsy; automatic identification; small
intestine tissue

1. Introduction

Acute mesenteric ischemia (AMI) is a serious clinical condition [1,2]. Blockage of blood
vessels around the small intestine tissue and weakened blood supply can cause ischemic
necrosis of the tissue [3]. Superior mesenteric artery embolism, arterial thrombosis, and
superior venous thrombosis are the main causes of AMI [4]. Signs of AMI are usually
characterized by sudden abdominal pain of varying degrees and persistent pressure or
distension in the abdomen [5]. In the context of AMI, elderly patients may also present
with psychotic symptoms. Different causes of mesenteric ischemia often have different
clinical manifestations and physiological features. The mortality rate of AMI has not
decreased despite improvements in medical care [2]. Moreover, the incidence of AMI
increases with population growth. In recent years, AMI has attracted a lot of attention from
pathologists [6]. Severe necrosis of small intestinal tissue occurs in AMI, leading to a high
mortality rate in cases where patients do not receive timely treatment. Long-term ischemia
of the small intestine can lead to the breakdown of the tissue’s mucosal barrier, which
allows bacteria to move into the intestinal canal and cause gangrene of the intestinal wall. In
addition, bacterial infiltration within the patient’s small intestinal tissue can cause intestinal
obstruction, peritonitis, and even death due to multi-organ failure. Therefore, rapid and
precise excision of necrotic small intestinal tissue is essential. The elevation of blood lactate
in the body is due to the anaerobic metabolism of the ischemic gut. Blood lactate indicators
can be used as a reference for ischemic bowel disease in hospitals. However, elevated
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blood lactate levels in critically ill patients can also be caused by acute liver failure. This
is because liver failure can affect the elimination of lactate, making lactate an insensitive
parameter [7]. CT scans are also sometimes used to identify patients with AMI, but patients
with AMI show a diverse array of imaging presentations. Amber et al. have highlighted
that the chance of detecting ischemic bowel through CT scans is about 50% [8]. Thus, this
method is also unreliable. This fact emphasizes the need for surgical exploration as the
ultimate diagnostic and therapeutic tool in cases of suspected AMI.

Currently, clinical judgment of necrotic small intestinal tissue often relies on the sub-
jective experience of physicians [9]. Based on traits, including the color and morphology
of the small intestine tissue, doctors can distinguish between normal and necrotic regions,
and doctors with varying levels of experience may make different diagnoses. Only skilled
medical professionals can pinpoint the exact location of necrotic small intestinal tissue.
Incomplete removal of necrotic tissue in the small intestine can lead to abdominal inflamma-
tion. After a time, the patient may have to face another resection. If the extent of resection
is too much, it can lead to a reduction in the normal small bowel tissue. This can lead to
short bowel syndrome and affect the patient’s quality of life after surgery. Therefore, there
is an urgent clinical need for an objective way to assist physicians in the identification of
normal and necrotic sites of small intestine tissue.

The propagation of light in biological tissues is fundamental to medical diagnostic
techniques. The irradiating light on biological tissues can undergo scattering, reflection,
and absorption, both at the surface and inside the tissue [10]. The pathological information
of the tissue can usually be reflected based on the interaction of light with the tissue. In this
regard, hyperspectral imaging (HSI) is a non-contact and non-destructive way of acquiring
information [11]. In addition to the spatial data of objects in the field of view, it can also
collect spectral data from numerous wavelength bands across the image pixel points. HSI
was originally applied in the field of remote sensing [12]. Currently, this technology is
used in many fields, such as food quality inspection [13], vegetation observation [14],
archaeological [15], criminal investigation [16], etc. In recent years, HSI techniques have
received increasing attention and applications in the biomedical field [17]. It not only
captures image information of biological tissues but also responds to the pathological
conditions in the area of interest based on spectral information [18]. For example, it can
assist doctors in diagnosing retinal lesions [19], healing skin burns [20], and identifying
cancerous tissue [17]. HSI combined with microscopy can assist pathologists in the exami-
nation of sections such as cholangiocarcinoma [21], acute lymphocytic leukemia cells [22],
and tumor tissue [23]. HSI has been used to detect nanoparticles within cells and applied
to the development of nanomedicines [24,25].

HSI can acquire more wavelengths of image information than traditional RGB imaging,
so each pixel point of a hyperspectral image has a complete line of spectral information [26].
Computers can classify or recognize this rich information based on artificial intelligence
algorithms to assist humans in automating some tasks. Deep learning is a hot topic in
artificial intelligence and has been widely used in recent years for tasks such as target recog-
nition and image classification [27]. It can mine the deep information inside the data and
obtain abstract features. Convolutional neural network (CNN) is the most representative
method in deep learning. Related research has shown that CNNs can achieve better target
object classification results in the HSI application field compared to traditional machine
learning methods [28].

In this study, a self-built HSI system was used to acquire small intestinal tissue data
from seven white rabbits. The normal and necrotic parts of small intestine tissues were
classified by using a CNN model. The 1D-CNN, 2D-CNN, and 3D-CNN models were built
to extract the feature information of spectral dimension, image dimension, and spectral-
image dimension of small intestine tissue hyperspectral data, respectively. The trained
CNN model was used to objectively classify the small intestine tissue of the new sample.
The results showed that the 3D-CNN model achieved better performance with an average
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accuracy of 89.60%, an average sensitivity and specificity of 81.93% and 99.85%, and an
average kappa coefficient of 81.34% for all the predicted samples.

2. Materials and Methods

The experimental framework of this study is shown in Figure 1. Firstly, an ischemic
necrosis model of small intestinal tissues of white rabbits was developed by an experienced
physician. The development of the tissue model was based on the deliberate obstruction of
the mesenteric vessels, thereby rendering a part of the small intestinal tissue inaccessible to
its normal blood supply. The ultimate aim was to create a site of ischaemic necrosis of the
small intestinal tissue. Consequently, the biopsies from the rabbit samples showed both
normal and ischemic necrotic areas in the small intestinal tissue. These conditions were
obtained through biomedical means. Secondly, the hyperspectral data of small intestinal
tissue were acquired by a self-built HSI system. Third, the acquired raw hyperspectral data
were calibrated. In order to facilitate the selection of the region of interest (ROI) of the small
intestine tissue, the background information around the tissue was removed. Finally, the
classification model was constructed using CNN after building the dataset. Additionally,
the classification performance of the model was evaluated.
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Figure 1. Framework for processing hyperspectral data of small intestine tissue.

2.1. Small Intestine Tissue HSI Dataset

In this study, a white rabbit was used as an experimental sample. The rabbit was
treated with cough suppression, analgesia, and anesthesia before the experiment [29]. As
shown in Figure 2a, anesthetic drugs were injected intravenously. After the anesthetic
treatment, the rabbit was in a sleeping state. The hairs on the abdomen of the rabbit were
removed, and dissection was performed (Figure 2b). As shown in Figure 2c, the small
intestinal tissue of the rabbit was exposed by the physician. Then, the blood supply to a
portion of the intestine was blocked, and the model of ischemic necrosis of the small intesti-
nal tissue was developed by experienced doctors. Vascular clamps were used to clamp the
mesenteric vessels in the right place, blocking the flow of blood to the downstream part
of the intestinal tissue. A suture was also used to ligate the site of ischemic necrosis by
blocking the collateral circulation between the normal and ischemic parts of the intestine.
The rest of the mesenteric vessels and intestinal canal were with normal blood flow through
the mesenteric artery to the intestinal tissues [29]. In this way, a control group was formed.

Acquisition of small intestine biopsy data from rabbits using a self-built hyperspectral
acquisition system is displayed in Figure 3. The system mainly consists of a hyperspectral
camera, a halogen light source, data acquisition software, and an optical darkroom [29].
The hyperspectral camera (SOC710VP, San Diego, CA, USA) has a spectral range of
376–1038 nm and a spectral step size of 4.69 nm in 128 bands. The spatial resolution of the
images under each band was 696 × 520. A halogen lamp (LOWEL PRO, Burbank, CA,
USA) was used as the light source for the system, which covered the operating wavelength
of the hyperspectral camera. The hyperspectral camera lens recorded the photographs of
small intestinal tissue vertically downward, and the halogen light source was maintained
at 45◦ on both sides of the sample to provide uniform and stable light intensity to the
sample tissue region. A data acquisition software, Hyper-Scanner (SOC, San Diego, CA,
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USA), was applied, which allows the computer to acquire raw hyperspectral information
of small intestinal tissues. In order to avoid contamination by ambient light, all samples
were collected in a dark room with a size of 2 m × 1.5 m × 2 m. The hyperspectral system
acquired small intestine tissue data with 128 bands of spectral information per pixel point.
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in vivo.

Photonics 2023, 10, x FOR PEER REVIEW 4 of 14 
 

 

Figure 2. Development of ischemic necrosis model of small intestinal tissue by experienced physi-
cians. (a) Anesthetic treatment of sample by injecting anesthetic; (b) Dissection of the sample by the 
doctor; (c) Blocking mesenteric vessels and developing a model of ischemic necrosis of small intes-
tinal tissue in vivo. 

Acquisition of small intestine biopsy data from rabbits using a self-built hyperspec-
tral acquisition system is displayed in Figure 3. The system mainly consists of a hyper-
spectral camera, a halogen light source, data acquisition software, and an optical dark-
room [29]. The hyperspectral camera (SOC710VP, San Diego, CA, USA) has a spectral 
range of 376–1038 nm and a spectral step size of 4.69 nm in 128 bands. The spatial resolu-
tion of the images under each band was 696 × 520. A halogen lamp (LOWEL PRO, Bur-
bank, CA, USA) was used as the light source for the system, which covered the operating 
wavelength of the hyperspectral camera. The hyperspectral camera lens recorded the pho-
tographs of small intestinal tissue vertically downward, and the halogen light source was 
maintained at 45° on both sides of the sample to provide uniform and stable light intensity 
to the sample tissue region. A data acquisition software, Hyper-Scanner (SOC, San Diego, 
CA, USA), was applied, which allows the computer to acquire raw hyperspectral infor-
mation of small intestinal tissues. In order to avoid contamination by ambient light, all 
samples were collected in a dark room with a size of 2 m × 1.5 m × 2 m. The hyperspectral 
system acquired small intestine tissue data with 128 bands of spectral information per 
pixel point. 

 
Figure 3. HSI acquisition system. 

The time required to scan the entire sample was about 6 s. In order to explore the 
direct application of HSI in a real clinical setting, we macroscopically captured small in-
testine biopsy tissue information through a hyperspectral camera. The light penetrated 
the intestinal wall of the small intestine and was absorbed by substances such as water, 
oxyhemoglobin, and deoxyhemoglobin in the biological tissues. Based on the difference 
in the reflected spectral information between normal and ischemic necrotic areas of small 
intestinal tissue, the normal and necrotic areas of small intestinal tissue were identified. 
In the actual acquisition process, specular reflection was observed due to local areas of 
wetness on the surface of the living tissue. This was observed in the localized areas of 
exposure; however, no significant impact was noted on the ability to distinguish between 
normal and necrotic sites of small intestinal tissue. 

2.2. Preprocessing 
In addition, to acquire hyperspectral data of rabbit small intestine tissue, it was nec-

essary to acquire light intensity information from a standard reflectance white plate and 
dark background noise signal of the device in the same environment. A black-and-white 
correction was required to eliminate the interference of uneven light sources and equip-
ment dark background noise on the data [30]. The light intensity values of both the small 
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The time required to scan the entire sample was about 6 s. In order to explore the
direct application of HSI in a real clinical setting, we macroscopically captured small
intestine biopsy tissue information through a hyperspectral camera. The light penetrated
the intestinal wall of the small intestine and was absorbed by substances such as water,
oxyhemoglobin, and deoxyhemoglobin in the biological tissues. Based on the difference
in the reflected spectral information between normal and ischemic necrotic areas of small
intestinal tissue, the normal and necrotic areas of small intestinal tissue were identified.
In the actual acquisition process, specular reflection was observed due to local areas of
wetness on the surface of the living tissue. This was observed in the localized areas of
exposure; however, no significant impact was noted on the ability to distinguish between
normal and necrotic sites of small intestinal tissue.

2.2. Preprocessing

In addition, to acquire hyperspectral data of rabbit small intestine tissue, it was
necessary to acquire light intensity information from a standard reflectance white plate and
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dark background noise signal of the device in the same environment. A black-and-white
correction was required to eliminate the interference of uneven light sources and equipment
dark background noise on the data [30]. The light intensity values of both the small intestine
tissue hyperspectral image and the white standard plate were simultaneously removed
from the device’s dark current signal, and then the ratio operation was performed. Finally,
normalized band by band. As shown in Equation (1):

Xre f =
X − Rdark

Rwhite − Rdark
(1)

The sensitivity of the spectrometer and CCD camera inside the hyperspectral camera
was not high at the first and last edges of the band. It made the noise at the head and tail of
the spectral band large. Therefore, only the spectral information in the range of 400–1000 nm
was retained. To facilitate the selection of the region of interest, the background information
around the small intestinal tissue was removed using the One-class algorithm [31,32]. It is
worth noting that the presence of water on the surface of the small intestine tissue causes
specular reflection on the surface of the tissue. The background information around the
small intestine tissue was removed along with the exposed area. This avoided interference
with the subsequent training and classification of the model. The experienced physician
selected the ROI in the hyperspectral image with the background removed, depending on
the site of ischemia.

The small intestinal tissue data obtained from all rabbits were analyzed. For the raw
data of each sample, we separately performed black-and-white correction, removal of small
intestinal tissue background, and selection of ROI operations [29]. The size of the ROI for
each sample was 120 × 150 for normal and ischemic necrotic sites. The spectral information
of each pixel point was in the range of 400–1000 nm. The number of spectral points in the
ROI for each sample is shown in Table 1.

Table 1. Experimental dataset.

Sample Number of Pixels

Normal Necrosis Sum

S1 10,397 10,821 21,728
S2 11,635 10,806 22,441
S3 5059 7531 12,590
S4 5383 4563 9946
S5 8493 8239 16,732
S6 9859 11,487 21,346
S7 8917 7622 16,539

Total 59,743 61,069 120,812

2.3. Deep Learning

CNN is a classic deep learning algorithm. It is used in pattern recognition and feature
extraction in various scenarios. CNN is a deep feedforward neural network with the
characteristics of local connection and weight sharing [23]. The entire structure of a CNN
consists of an input layer, a hidden layer, and an output layer, where the hidden layer
contains a convolutional layer, a pooling layer, and a fully connected layer. In recent years,
there have been many applications of CNN combined with HSI in the medical field [16].
Figure 4 shows the input of hyperspectral image information of small intestinal tissue
into the CNN model. The trained model has objectively discriminated between normal
and ischaemic necrotic areas in small bowel tissue. The model contains a large number of
neurons and parameters internally.
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2.4. Experiment Description

CNN model was applied to extract features from HSI data of small intestinal tissue.
Three different cases were used. Each case extracted features from hyperspectral data of
different dimensions. The details are as follows.

Case study 1 (CS1): In this case, a one-dimensional convolutional neural network
(1D-CNN) model was developed based on the spectral information of each pixel. The
original three-dimensional data was converted into a one-dimensional spectral form. The
one-dimensional spectral information of each pixel was directly input into the network
model for training. The network model included a convolutional layer, a pooling layer,
an activation layer, and a fully connected layer. The convolution kernel only performed
convolution operations along a one-dimensional spectral vector.

Case study 2 (CS2): Two-dimensional convolutional neural networks (2D-CNN) were
trained on hyperspectral data of small intestinal tissue. Convolutional kernels performed
sliding convolution operations in the two-dimensional space of hyperspectral data to extract
spatial information from small bowel tissue. The number of channels in the convolutional
kernel was the same as the number of channels in the input training model data. During
the convolution process, the convolution kernel and data were convolved separately in
the channel direction. The convolution values of each channel were then added together.
Each convolution layer has multiple convolution kernels, and convolution operations were
performed separately. Finally, the output of each convolution was concatenated in the
channel dimension.

Case study 3 (CS3): In this case, one-dimensional spectral and two-dimensional
spatial information from hyperspectral data were combined to develop a three-dimensional
convolutional neural network (3D-CNN) model. The 3D-CNN model extracted deep
feature information of the small intestine tissue. This model performed convolution not
only in two-dimensional space but also in spectral dimensions. The convolutional kernel
moved in three directions (height, width, and channel) of the data cube. Due to the fact
that the convolutional kernel was slid through a 3D space, the output values were also
arranged according to the 3D space.

The model was trained in a way to closely simulates a real clinical application scenario.
Generally, doctors rely on prior experience when diagnosing disease of small bowel tissue
in a patient. Inspired by this approach, the CNN model was trained using cross-validation
between the samples. For example, for the prediction of sample 1, the model was trained
using samples numbered 2–7 with a total of 99,594 spectral points. For the prediction
of sample 7, the model was trained using samples numbered 1–6 with a total of 104,783
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spectral points. During the model training process, a ten-fold cross-validation approach
was used to validate the model. This allowed the model to be more generalizable. Two
important metrics, cross-entropy loss function and accuracy, were used to measure the
performance and accuracy of the model, respectively.

2.5. Metrics

In this study, the overall accuracy, sensitivity, specificity, and Kappa coefficient were
used to measure the classification performance of the proposed CNN models. The overall
accuracy was the percentage of correctly classified small intestinal tissue regions to the
overall number. Sensitivity was the percentage of true positives (TP) to all necrotic tissues.
Specificity measured the ability of the classifier to identify true negatives (TN). FP and
FN represent false positives and false negatives, respectively [33]. They are as shown in
Equations (2)–(4). In addition, this study also measured the performance of the classification
model using the kappa coefficient [16].

Accuracy =
TP + TN

TP + FP + TN + FN
(2)

Sensitivity =
TP

TP + FN
(3)

Speci f icity =
TN

TN + FP
(4)

3. Results

This section presents the results of the CNN model for small bowel tissue classification
mentioned in Section 2. In all three different cases, the performance of the model was eval-
uated using a clinically realistic application scenario. In real clinical situations, physicians
often rely on their experience with previous patients when diagnosing new patients. In the
present study, the classification of each rabbit’s small intestine tissue was performed by
relying on models built on data from other samples. The models were trained in Python
using a 3.5 GHz Intel Core i9-10920X computer for this study.

3.1. Case1: 1D-CNN

Each pixel point in a hyperspectral image contains a one-dimensional piece of spectral
information [34]. In this case, 1D-CNN was used to convolve the spectral vectors of the
pixel points of the hyperspectral image of small intestinal tissue. As shown in Figure 5, the
one-dimensional spectral information of the small intestine tissue alone was used as input
information to train the model in a convolutional neural network. In this case, a three-layer
convolutional neural network was used, each layer consisting of a convolutional layer, an
activation layer, a normalization layer, and a pooling layer. Each pixel point was composed
of 116 dimensions of spectral information. The size of the first convolutional kernel was
3 × 1, a number of 16, and the pooling layer size was 3 × 1. The output size after the first
convolutional layer was 38 × 16. The size of the second layer of convolution kernels was
3 × 1, with a channel count of 16 and a number of 64. The pooling layer size was 3 × 1, and
the step size was 3. The output size was 12 × 64. The size of the third layer of convolutional
kernels was 1 × 1, and the pooling layer size was 3 × 1, with a step size of 3. The output
size was 4 × 64. The fully connected layer was composed of 256 neurons and an output
size of 2. After the spectral information of different types of small intestinal tissue was
trained, the model recorded its features based on manual markers.
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Figure 5. The network structure of a 1D-CNN model based on spectral features for classification of
normal and necrotic sites in small intestinal tissue.

The model was trained with hyperspectral data from other rabbits to predict the small
intestine tissue data of a new sample. The results of the cross-validation between samples
are shown in Table 2. The results showed that the normal and necrotic parts of the small
intestinal tissue were well distinguished using the 1D-CNN model. The average accuracy
of the 1D CNN model proposed in this case for the classification of these seven rabbits’
small intestine hyperspectral data was 84.95%. The average sensitivity was 80.40%, the
average specificity was 89.55%, and the kappa coefficient was 69.77%. It showed good
classification performance.

Table 2. 1D-CNN model classification results.

Sample OA (%) Sensitivity (%) Specificity (%) Kappa (%)

S1 99.31 99.90 98.81 98.61
S2 96.65 94.00 99.74 93.29
S3 84.34 69.07 99.15 68.53
S4 99.96 99.98 99.94 99.92
S5 66.09 61.98 72.15 32.64
S6 57.83 38.02 76.24 14.44
S7 90.50 99.82 80.79 80.92

Ave 84.95 80.40 89.55 69.77

Four of the samples showed an overall accuracy of over 90% across all samples. The
sensitivity of S1, S4, and S7 and the specificity of S2, S3, and S4 all exceeded 99%. The
kappa coefficients for S1, S2, S4 and S7 all exceeded 80%.

3.2. Case2: 2D-CNN

This case was based on 2D-CNN to build a classification model to distinguish between
normal and ischemic necrotic parts of the small intestine. The 2D-CNN model could extract
spatial information from hyperspectral images [35]. As the dimension of the hyperspectral
data in this study dataset is 116, the network model requires a large number of parameters
during training. These parameters not only increase the training cost of the model but also
have a high risk of overfitting the model. To build a more effective 2D CNN model, we first
downscaled the hyperspectral data. Principal Component Analysis (PCA) is a commonly
used method for dimensionality reduction in hyperspectral data. It extracted the main
features of the spectral dimension of the small intestine hyperspectral data to approximate
the full band information. In this case, PCA was used to reduce the 116-dimensional
hyperspectral data to 30 dimensions. This greatly reduced the training cost without losing
the spectral features of the original data.
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The network structure of this case is shown in Figure 6. The input size of the training
data for the model was 5 × 5 × 116. The spatial dimension of each patch was 5 × 5, and
the number of spectral channels was 116. The PCA was first scaled down in the spectral
dimension to 5 × 5 × 30. The size of the first layer of convolution kernels was 3 × 3, the
number of kernels was 32, the padding was 1 × 1, and the step size was 1 × 1. After the
first layer of convolution, the size became 5 × 5 × 32. The pooling layer size was 2 × 2, and
the step size was 2 × 2. After the first pooling layer, the data size became 2 × 2 × 32. The
size of the second layer convolutional kernel was 3 × 3, with a number of 64, a padding of
1 × 1, and a step size of 1 × 1. The pooling size for this layer was 2 × 2, and the step size
was 2 × 2. After this layer, the data size was 1 × 1 × 64. The size of the third convolution
kernel was 1 × 1, and the number was 128. After the third convolution layer, the size
becomes 1 × 1 × 128. After the fully connected layer, the output dimension was 2.
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Figure 6. The network structure of the 2D-CNN model based on spatial image features for classifica-
tion of normal and necrotic sites of small intestinal tissue.

Table 3 shows the results of these seven samples when classified using the 2D-CNN
model. As in case 1, cross-validation between samples was used. The average accuracy
was 84.30%, the average sensitivity was 79.94%, the average specificity was 91.19%, and
the kappa coefficient was 71.07%. The classification results were good. For five of these
seven samples, the overall classification accuracy was above 95%, with S1, S4, S6, and S7
reached to 99%. For S5, the overall accuracy was 41.43%, but the specificity was 95.93%. The
sensitivity for S6 and the specificity for S4 both reached 100%, and the kappa coefficients
for S1, S2, S4, S6, and S7 were all above 90%.

Table 3. 2D-CNN model classification results.

Sample OA (%) Sensitivity (%) Specificity (%) Kappa (%)

S1 99.52 99.30 99.71 99.04
S2 97.33 95.18 99.84 94.66
S3 52.38 61.00 43.44 4.45
S4 99.99 99.97 100.00 99.97
S5 41.43 4.56 95.93 0.40
S6 99.90 100.00 99.80 99.79
S7 99.58 99.54 99.62 99.16

Ave 84.30 79.94 91.19 71.07

3.3. Case3: 3D-CNN

The 1D CNN model mentioned in case1 was aimed at extracting spectral information
from hyperspectral images of small intestinal tissue. While the 2D-CNN model in case2
mainly extracted the spatial feature information of hyperspectral data. This case uses
3D-CNN to process hyperspectral data of small intestine tissue. The spatial information
was extracted along with the spectral information of each pixel point. The fusion of spatial
and spectral information can provide richer information about hyperspectral data [36].

The structure of the network model proposed in this case is shown in Figure 7. During
the training of the model, the data input size was 5 × 5 × 116, where the spatial dimension
of each patch was 5 × 5, and the number of spectral channels was 116. The size of the first
convolution kernel was 3 × 3 × 32, the number of channels was 1, the number of pieces was
32, the padding was 1 × 1 × 0, and the step size was 1 × 1 × 1. After the first convolution
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layer, the size became 5 × 5 × 85 × 32. The size of the first pooling layer was 1 × 2 × 2, and
the step size was 1 × 2 × 2. After the first pooling layer, the size became 2 × 2 × 85 × 32.
The size of the convolution kernel in the second layer was 3 × 3 × 32, and the number of
pieces was 64. After the second convolution layer, the size was 2 × 2 × 54 × 64. The size of
the second pooling layer was 1 × 2 × 2 and the step size was 1 × 2 × 2. After the second
pooling layer, the data size was 1 × 1 × 54 × 64. The size of the third convolution kernel
was 1 × 1 × 1 × 54, and the number of kernels was 128. After the third convolution layer,
the size became 1 × 1 × 1 × 1 × 128.
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Figure 7. The network structure of a 3D-CNN model based on spectral and spatial image features for
classification of normal and necrotic sites in small intestinal tissue.

The results of the 3D CNN proposed in this case are shown in Table 4. There were
five samples with overall accuracies above 90%. The overall accuracy of S3 was 89.48%,
which was close to 90%. The average accuracy, sensitivity, specificity, and kappa for all the
samples were: 89.60%, 81.93%, 99.85%, and 81.34%, respectively. All these measures were
higher than the results of case1 and case2.

Table 4. 3D-CNN model classification results.

Sample OA (%) Sensitivity (%) Specificity (%) Kappa (%)

S1 99.76 99.63 99.88 99.52
S2 96.21 92.97 99.99 92.42
S3 89.48 79.40 99.95 79.04
S4 99.99 99.97 100.00 99.97
S5 47.37 11.95 99.73 9.66
S6 99.69 100.00 99.40 99.37
S7 94.69 89.59 99.99 89.39

Ave 89.60 81.93 99.85 81.34

As shown in Figure 8a, a model of ischemic necrosis of the small intestinal tissue was
developed by the surgeon. The mesenteric vessels were clamped with a vascular clamp
to block blood flow to the downstream portion of the intestine, as shown by the green
arrow in the image. In addition, to prevent blood flow from the normal intestine to the
ischemic intestine, sutures were used to block the site of collateral circulation between the
normal and ischemic parts of the intestine. In this way, the area of the intestine (between
the yellow arrows in the diagram) was completely devoid of blood flow, creating a site
of ischemic necrosis. The rest of the mesenteric vessels and the intestinal tube did not
interfere, and normal blood flow was maintained through the mesenteric arteries to the
intestinal tissue. Based on the actual operation of the procedure, the surgeon successfully
performed accurate labeling of the normal and ischemic necrotic areas of small bowel tissue
in the hyperspectral data.

Representative classification results of the CNN models in the three cases for normal
and necrotic sites of small intestinal tissue are shown in Figure 8. Figure 8b shows the
ground truth of the experienced physician labeling normal and necrotic areas of small
intestinal tissue. Above the yellow line is the area of ischemic necrosis of the small intestinal
tissue, while below is the area of normal tissue. This indicated different spectral characteris-
tics of normal and ischemic necrotic areas of small intestinal tissue. The classification effect
of 1D-CNN on the ROI regions is shown in Figure 8c. It can be seen that most of the normal
and necrotic areas were identified. However, some pixel points within both normal and
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necrotic areas were misidentified, and the boundary between the two types of tissue was
not clear. Figure 8d demonstrates the differentiation effect of the 2D-CNN model. Most
of the ischemic necrotic sites were correctly classified, with only a few areas identified as
normal tissue. However, for normal tissue sites, a considerable amount of the area was
identified as normal tissue. Additionally, the boundaries between the two types of tissue
were incorrect. The recognition performance of 3D-CNN is shown in Figure 8e. It can be
seen that it is classified very well. Its predictions were very close to the real annotations
made by experienced physicians. The boundaries between the two tissue types were clear
and correct. In addition, we have added the scale bar in Figure 8c, Figure 8d, and Figure 8e,
respectively. The width of the intestinal canal is roughly in the range of 1–2 cm.
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The spectral characteristics of normal and ischemic necrotic sites of small intestinal tissue curve
differently. (c) Classification effect of 1D-CNN network structure on ROI regions. (d) Classification
effect of 2D-CNN network structure on ROI regions. (e) Classification effect of 3D-CNN network
structure on ROI regions.
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4. Discussion

Obtaining the margins of ischemic necrotic tissue in the small intestine is essential
to prevent the recurrence of the condition after surgery. However, this is still difficult as
there are currently no boundary assessment techniques that can provide real-time feedback
during the procedure. With the ability to image small bowel tissue in a short period of
time, HSI has the potential to overcome the current limitations. In this study, we combined
HSI with advanced deep learning techniques to demonstrate the automatic classification of
normal and necrotic areas of small bowel tissue. Most of the recently published studies of
HSI combined with deep learning for medical applications have been performed under
the microscope or on ex vivo tissue, which are different from studying in vivo living tissue.
The pathological state of living tissue in the body is often related to factors such as blood
oxygen levels and blood flow. The objective classification of small intestinal biopsies in this
study was closer to the real clinical scenario. Therefore, it could be used as a reference for
clinical applications.

We used a hyperspectral camera in the 400–1000 nm wavelength range to collect small
intestine tissue in vivo from rabbits. The light source used was a halogen light source,
and data acquisition was carried out in a dark room. Experienced physicians blocked
the mesenteric artery to develop an ischemic necrosis model of small intestinal tissue.
The drug was administered to the rabbits prior to the development of the tissue necrosis
model. The rabbits breathed steadily, and the area of intestinal tissue remained stationary
during data collection. The doctor kept the rabbits fasting for more than 12 h before the
experiment to reduce the amount of digested food in the intestinal canal. This avoided the
effect of frequent intestinal peristalsis on the hyperspectral images. Although occasional
peristalsis occurred in small intestinal tissue, hyperspectral data was not collected during
such events. This ensured the hyperspectral data of small intestinal tissue without motion
artifacts. However, when human small bowel tissue is clinically imaged, motion artifacts
due to factors such as the patient’s breathing or the peristaltic movement of the small bowel
tissue cannot be eliminated. This requires the use of alignment techniques to eliminate the
interference caused by motion artifacts [37]. For future work, we will investigate this issue
in order to move closer to clinical applications.

Deep learning techniques are a hot topic in the field of artificial intelligence. In recent
years, hyperspectral technology combined with deep learning has made breakthroughs
in many areas. We used CNN to train different structural classification models on the
acquired data. In evaluating model performance, approaches that were close to real-life
clinical application scenarios were applied. All data was cross-validated between the
samples. The input to the 1D CNN model was the spectral information of each pixel
point of the hyperspectral data of the small bowel tissue. Although this model only
extracted information for the spectral features of hyperspectral data, it also showed good
classification performance. The 2D-CNN model used in case2 was widely used in the field
of image processing. It performed convolutional operations on the spatial information of
an image. Unlike traditional RGB imagery, which has only three channels of information,
hyperspectral data has hundreds of channels. The input to the model, in this case, was
two-dimensional spatial information with all spectral dimensions. To take advantage of the
fact that hyperspectral data has both spatial and spectral information, we used 3D-CNN
to convolve the small intestine tissue data in case3. The average classification of normal
and necrotic parts of the small intestine using 3D-CNN was better than that of 1D-CNN
and 2D-CNN.

While HSI techniques can provide a wealth of information, there can also be some
redundancy, such as the correlation of information in adjacent bands. In future work, we
can use the specific bands of normal and necrotic parts of the small intestinal tissue for
model training. This could remove redundant information and improve the speed and
accuracy of model training [38]. In addition, for CNN models, factors such as the number
of convolutional layers, the size of the convolutional kernel, the activation function, and
the size of the fully connected layers may all affect the final classification result.
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From the results of this study, it can be seen that the average accuracy, sensitivity,
specificity, and kappa coefficient of the developed 3D-CNN model to differentiate between
normal and ischemic necrotic sites of small intestinal tissue was better than 1D-CNN and
2D-CNN. However, the 3D-CNN model was not always the best for each sample. That is,
the models are not universally applicable. In the next study, we will continue to collect
hyperspectral data from small intestinal tissue and expand the data set. We will optimize
the model structure and parameters to obtain a more stable and generalized model to
discriminate between normal and necrotic parts of small intestinal tissue.

5. Conclusions

This paper explores the potential application of HSI and deep learning techniques
for small intestine tissue classification. We used a self-built HSI system to acquire data on
rabbit small intestine tissues in vivo. After preprocessing, CNN models with three different
structures were built separately. The results show that the 3D-CNN model developed in
this paper has the best average performance for all the samples. It could assist physicians
in objectively identifying ischemic necrosis sites in clinical practice and serve as a reference
for more accurate excision of necrotic small intestinal tissues during surgery.
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