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Abstract: Photoacoustic tomography (PAT) is a promising imaging technique that utilizes the de-
tection of light-induced acoustic waves for both morphological and functional biomedical imaging.
However, producing high-quality images using PAT is still challenging and requires further research.
Besides improving image reconstruction, which turns the raw photoacoustic signal into a PAT image,
an alternative way to address this issue is through image post-processing, which can enhance and
optimize the reconstructed PAT image. Image post-processing methods have rapidly emerged in PAT
and are proven to be essential in improving image quality in recent research. In this review, we inves-
tigate the need for image post-processing in PAT imaging. We conduct a thorough literature review on
the latest PAT image post-processing articles, including both general and PAT-specific post-processing
techniques. In contrast to previous reviews, our analysis focuses specifically on advanced image post-
processing rather than image reconstruction methods. By highlighting their potential applications,
we hope to encourage further research and development in PAT image post-processing technology.

Keywords: image post-processing; photoacoustic tomography; image enhancement

1. Introduction

Photoacoustic tomography (PAT) is a non-invasive, non-ionizing biomedical imag-
ing technique that enables the reconstruction of the spatial distribution of photoacoustic
pressure in the body. The photoacoustic effect [1], which underlies photoacoustic imaging,
was first reported by Alexander Graham Bell in 1880. This effect occurs when a pulse, such
as an optical or radio frequency wave, is absorbed by tissue. PAT offers high ultrasonic
resolution and strong optical contrast in a single imaging modality. It is capable of pro-
viding high-resolution structural and molecular imaging in vivo by optically scattering
biological media. By utilizing the photoacoustic effect, PAT overcomes the scattering of
high-intensity light photons within biological tissues. As shown in Figure 1a, short pulses
of laser-generated energy are directed to the tissue, generating thermal and acoustic pulse
responses. The absorbed light is converted into heat, causing a rise in pressure due to
the thermoelastic expansion of the irradiated tissues. The increased pressure is associated
with localized energy injection and absorption from the light, along with other thermal
and mechanical characteristics of the tissues, resulting in the generation of a photoacoustic
signal. This signal is recorded using the tissue-facing side of an ultrasonic transducer,
which is then amplified and digitized. A computational algorithm is used to process the
PA signal, thus forming a PAT image.

Photonics 2023, 10, 707. https://doi.org/10.3390/photonics10070707 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10070707
https://doi.org/10.3390/photonics10070707
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0001-8025-4737
https://doi.org/10.3390/photonics10070707
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10070707?type=check_update&version=1


Photonics 2023, 10, 707 2 of 23

Photonics 2023, 10, x FOR PEER REVIEW 2 of 23 
 

 

The quality of PAT images is limited by the imaging hardware, signal acquisition 
and processing operations, and image reconstruction algorithm. The size and bandwidth 
of transducer elements are typically limited, and the geometry of the constituent arrays 
has a significant impact on the imaging results. The inverse model in the reconstruction 
algorithm is often an approximate and simplified description of the transducer array and 
medium properties. Imperfect illumination conditions and discrete data acquisition also 
affect the quality of the collected PA signal, ultimately impacting the fidelity in the re-
sulting images. As a result of these factors, PAT images can be noisy and blurred or even 
distorted. Numerous methods were previously suggested to deal with the above chal-
lenges, including improved image reconstruction [2–5] and image post-processing 
methods. Specifically, as shown in Figure 1b, image reconstruction involves turning the 
raw signal into a desired image, while image post-processing entails enhancing and op-
timizing the reconstructed images. While a majority of previous research in PAT imaging 
was dedicated to image reconstruction [6], there has been a recent surge in studies fo-
cused on PAT image post-processing methods. As researchers delve deeper into the po-
tential of the image post-processing technique, it is becoming increasingly evident that it 
plays a crucial role in enhancing the accuracy and reliability of PAT. 

 
Figure 1. (a) PAT imaging principle. (b) PAT signal and image processing flow. (c) Categories of 
PAT image post-processing techniques. 

In this review, we aim to provide a comprehensive understanding of the usability 
and effectiveness of image post-processing methods in PAT. To achieve this goal, we first 
identified relevant articles through database screening and manual classification, and 
then analyzed the sources of demand for post-processing methods to determine future 
research directions. As shown in Figure 1c, we then classified the methods into two cat-
egories: general image processing techniques and PAT-specific processing techniques. 
General image processing techniques are common image-enhancement methods used to 
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image post-processing techniques.

The quality of PAT images is limited by the imaging hardware, signal acquisition
and processing operations, and image reconstruction algorithm. The size and bandwidth
of transducer elements are typically limited, and the geometry of the constituent arrays
has a significant impact on the imaging results. The inverse model in the reconstruction
algorithm is often an approximate and simplified description of the transducer array
and medium properties. Imperfect illumination conditions and discrete data acquisition
also affect the quality of the collected PA signal, ultimately impacting the fidelity in the
resulting images. As a result of these factors, PAT images can be noisy and blurred or
even distorted. Numerous methods were previously suggested to deal with the above
challenges, including improved image reconstruction [2–5] and image post-processing
methods. Specifically, as shown in Figure 1b, image reconstruction involves turning the raw
signal into a desired image, while image post-processing entails enhancing and optimizing
the reconstructed images. While a majority of previous research in PAT imaging was
dedicated to image reconstruction [6], there has been a recent surge in studies focused on
PAT image post-processing methods. As researchers delve deeper into the potential of the
image post-processing technique, it is becoming increasingly evident that it plays a crucial
role in enhancing the accuracy and reliability of PAT.

In this review, we aim to provide a comprehensive understanding of the usability
and effectiveness of image post-processing methods in PAT. To achieve this goal, we first
identified relevant articles through database screening and manual classification, and then
analyzed the sources of demand for post-processing methods to determine future research
directions. As shown in Figure 1c, we then classified the methods into two categories:
general image processing techniques and PAT-specific processing techniques. General
image processing techniques are common image-enhancement methods used to improve
the quality of an existing image, such as denoising, deconvolution, segmentation, etc. In
contrast, PAT-specific processing techniques are post-processing methods that are unique
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in terms of PAT imaging, i.e., light fluence correction, speed-of-sound correction, etc. We
showcase the effectiveness of these methods by analyzing their theoretical advancement
and experimental results. Finally, we discuss the potential of image post-processing meth-
ods in the field of PAT and suggest some future research directions. To the best of our
knowledge, this study is the first article to discuss image post-processing as a specific topic
for PAT imaging. Overall, this review aims to contribute to the development of image
post-processing research on PAT imaging and foster new insights and ideas in this exciting
and rapidly evolving field.

2. Material

We conducted a search in four databases—PubMed, Web of Science, IEEE Xplore, and
Google Scholar—for articles published from 1 January 2010 to 1 March 2023. Three sections
of keywords were used (photoacoustic* OR photo-acoustic OR Optoacoustic OR photo-
acoustics OR photoacoustic* OR photoacoustic OR opto-acoustics) AND (tomography*
OR imaging) AND (post-processing OR image domain OR image processing OR image
analysis) NOT (image reconstruction) NOT (endoscopy) NOT (microscopy). The keywords
in the three sections must appear at least once in the controlled indexing title, publication
titles, or abstracts before we consider them as documents that satisfy the search criteria.
Articles matching the topic were initially filtered according to the advanced search function.

To ensure that we focused on relevant studies, we used specific inclusion criteria to
narrow down the list of records. Firstly, we limited our search to articles that discussed
photoacoustic tomography as an imaging method, rather than topics related to PAT in-
strumentation, diagnostic procedures, contrast agents, or other peripheral areas. Secondly,
we only included studies where the primary focus was on image post-processing, rather
than signal processing or image reconstruction. Using these criteria, we aimed to identify
studies that were most relevant to our review topic and provided meaningful insights into
the post-processing of photoacoustic tomography images.

To identify relevant literature on image processing techniques for PAT, we first elimi-
nated overlapping articles across the four literature databases. Next, abstracts of remaining
articles were screened to further refine the list of relevant literature. Upon analyzing the
articles, we identified two main categories for PAT post-processing methods: (1) general im-
age post-processing and (2) PAT-specific image post-processing. By organizing the methods
in this manner, we better observed their progress and compared them to similar methods.

3. The Importance of PAT Image Post-Processing

In an ideal PAT imaging scenario, a stationary object is illuminated by a high-power
light source in an acoustically homogeneous medium. A transducer array with a wide
bandwidth and detection angle is used to detect the PA signal. The image reconstruction
algorithm must be robust, taking into account tissue properties while performing real-time
operation. However, real-world conditions do not always satisfy these criteria. The cost
and technical level of the imaging hardware reduces the accuracy of the acquisition process.
Also, the biological properties of the tissue are obscured in the reconstruction algorithm by
the crude estimation of the simplified imaging model. This issue leads to a deterioration
in the reconstructed images’ quality. Therefore, to compensate for these problems, image
enhancement using post-processing methods is required.

In this chapter, we discuss the various factors that can impact the quality of PAT
images, including hardware limitations, tissue heterogeneity, and image reconstruction
algorithms. We highlight the specific ways in which each of these factors can lead to a
degradation in image quality, as shown in Table 1, underscoring the importance of image
post-processing techniques for improving the final result.
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Table 1. Main limiting factors of PAT imaging quality. Bulleted symbol (
√

) indicates correspondence
between limiting factors (table rows) and manifestations (table columns).

Structural
Distortion

Spatial
Aliasing

Negative
Value

Reflection
Artifacts Clutter Noise

Limitations in
hardware

Poor illumination
√

Limited view
√ √

Limited
bandwidth

√ √ √

Sparse sampling
√ √

Motion
√

Limitations in
tissue

Optical
attenuation

√

Out-of-plane
absorption

√

Acoustic
attenuation

√ √ √

Acoustic
heterogeneity

√ √ √ √

Limitations in
algorithms

Inappropriate
algorithms

√ √ √

3.1. Hardware

We provide an overview of the hardware limitations in PAT systems, which generally
include three essential components: illumination source, ultrasound transducer, and signal
acquisition unit.

In PAT imaging, the intensity of illumination is restricted by safety guidelines, necessi-
tating that the imaged tissue be irradiated within a standard range to meet the non-invasive
imaging requirements. Excessive optical irradiation can cause tissue damage due to the
absorption of excessive heat, whereas inadequate illumination can result in weak signals
being obscured by electronic or thermal noise [7].

Although PAT imaging allows the illumination of tissues at a certain depth, the
absorbing molecules at that depth have different characteristics from those at the skin
surface. As a result of the light fluence, tissues at depth receive less light, resulting in
weaker pressure waveforms.

The photoacoustic wave produced by the excited tissue is broadband, and the band-
widths of the actual transducer probes used for detection are limited. The emitted signals
from large-volume targets tend to be at lower frequencies, while those from small-volume
targets tend to be at higher frequencies. Given that the area of interest in PAT imaging
often contains targets of varying sizes, the limited receiving bandwidth of the transducers
is clearly inadequate to capture the entire photoacoustic signal [8]. This issue results in
information being missing from the image [9], which may be seen as the hollowing out of
the middle part or the loss of finer structures at the image boundaries (Figure 2A).
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The appearance of the transducer element and the geometry of the array can signif-
icantly affect the received signal. The surface of the transducer element, as well as its
geometry, determines its sensitivity angle, which limits its ability to respond to signals
from all directions [11]. Even if arranged in a circular array to achieve a complete imaging
field of view, there may still be blind spots in the near-edge field section. Furthermore, a
closely spaced array can be costly, which is another important limitation to consider.

The accuracy of raw data in PAT imaging is also significantly affected by the acquisi-
tion process. Due to hardware cost constraints, the arrangement of transducer elements
is usually sparse, causing insufficient spatial sampling [12]. This issue can lead to infor-
mation being missing and affect the overall accuracy of the final image [13]. Furthermore,
unexpected movements during acquisition, such as breath or cardiac pulsatile response,
can cause relative displacements, resulting in misalignment and blurred image features
(Figure 2B) [10]. This problem is due to the fact that the resolution of the hardware is
not sufficient to observe continuous small movements. Therefore, it is difficult to align or
compare images at adjacent locations during sequential acquisition, which may negatively
impact the accuracy of the final image.

3.2. Tissue Heterogeneity

Except for the limitations in imaging hardware, the imaged object also affects the
quality of the PAT image. One of the key challenges in PAT imaging is imaging depth,
which is primarily limited by light attenuation [14] in tissue caused by absorption and
multiple scattering. The laser illuminated at the object surface must penetrate biological
tissue to reach the desired imaging depth. However, in this process, the light energy is
gradually absorbed by the tissue and is not uniformly absorbed, resulting in a non-uniform
and unknown distribution of light fluence [15].

In addition, the resolution of PAT imaging is affected by the return of the acoustic signal
after optical–acoustic conversion. The acoustic signal is subject to attenuation and scattering
during propagation, resulting in lower amplitude and a wider waveform of the high-
frequency component. Consequently, the imaging resolution is reduced (Figure 3A) [16],
as the high-frequency information of fine structures is lost and cannot be displayed in
the image. Moreover, biological tissues are acoustically heterogeneous due to variations
in the types and concentrations of constituent molecules, leading to differences in SOS
(speed of sound) as a medium. At locations where there are boundaries with high acoustic
contrast, incident sound waves generate acoustic reflections. These reflections overlap
with the original image features to form acoustic reflection artifacts and can be mistaken
for a real existing structure (Figure 3B) [17], which can greatly impact the accuracy of the
reconstructed image.
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Figure 3. (A) Low resolution image of six optical absorbers due to SOS heterogeneities and acoustic
attenuation. Reproduced with permission [16]. (B) Reflection artifact in PAI. (a) A deep reflector leads
to reflection of US waves. (b) An acquired PA image of a phantom. Reproduced with permission
from [17].

In addition, when there are molecules with strong optical absorption outside the
imaging plane of interest, the pressure wave signals they generate cannot be ignored. These
spurious signals can even obscure the weak signal from deep tissue, resulting in spatial
blending or clutter artifacts formed by the same transducer acceptance [18].
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3.3. Image Reconstruction Algorithms

The recorded PA signal needs to undergo a mathematical transformation to form the
final PAT image, which is referred to as image reconstruction. Ideally, the reconstruction
algorithm should account for the PA wave generation and propagation physics. However,
due to the uncertainty and complexity of the process, the reconstruction algorithm is often
simplified and approximated, leading to a reconstruction error and resulting in low-quality
reconstructed images.

Currently, common PAT image reconstruction algorithms include delay and sum
(DAS) [6,19], back projection (BP) [20], and model-based (MB) [21,22] methods. Under ideal
conditions, no additional processing steps are required for image reconstruction. However,
in real-world PAT-imaging scenarios, algorithms possess distinct characteristics and may
produce images with different levels of degradation [9,23,24], as shown Figure 4. Direct
reconstruction algorithms, such as BP and DAS, can suffer from artifacts [13] and noise,
resulting in low contrast and resolution of reconstructed images. Model-based algorithms
can address some of these limitations by incorporating prior knowledge of the tissue and
improving the physical acoustic wave propagation model; however, they are sensitive to
errors in the model matrix and require higher computational cost.

Figure 4. (A) Splitting artifact in PACT. (a) A monkey brain model. White dots encircling skull
show locations of a 512-element ring detector. (b) Reconstructed images using BP (back projection)
algorithm. (c,d) Corresponding close-ups of images in red dashed box. Reproduced with permission
from [23]. (B) Reconstructed cross-sectional PAT images of vessel mimicking targets processed via
DAS algorithm under different conditions. Reproduced with permission [9]. (C) Anatomical imaging
performance of MB algorithm for in vivo datasets. (a) The spine image. (b) The tumor image. Red
arrow indicates spine. White arrows in side insets indicate typical reflection artifacts. Reproduced
with permission [24].

4. General Image Post-Processing Methods for PAT

Image post-processing can effectively improve the usability of photoacoustic images
and is a necessary step in many PAT applications. In this chapter, we will explore the
common image post-processing methods that can enhance image quality and expand the
range of applications of PAT imaging. These methods are summarized in Table 2.
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Table 2. A brief summary of general image post-processing methods for PAT.

Methods Category Advantages Major Limitations

Artifacts suppression Identify absorbers and artifacts
[11,17,25–29]

Capable of handling artifacts
stemming from multiple

causes

Lack of real reference images
for validation

Deconvolution

Estimation of PSFs [30,31] Simple and intuitive PSF estimation error

Developing the model matrix [32,33] Can be combined with image
reconstruction algorithms Expensive computation

Data-driven [34–36] Wide range of applications Lack of labeled training
datasets

Segmentation
Threshold [17,37–39] Simple and efficient Lacks robustness

Boundary [38,40–43] Consider small variations in
tissue properties

Limited by low structural
contrast of PAT

Multimodal imaging

PAT-US [28,44–49] High adaptability Noisy US image

PAT-MRI [50–59] High structural contrast
provided by MRI

High cost/difficult to
integrate

Multimodal image fusion [60] Abundant information from
other imaging modalities Difficult image registration

4.1. Artifacts Suppression

PAT imaging artifacts [13,61,62] include negativity artifacts, streak artifacts, splitting
artifacts, reflection artifacts, etc. They not only obscure important information, but also
hinder the implementation of quantitative image analysis. Image post-processing methods
were proposed to suppress these artifacts.

As for artifacts from strong optical absorption, Nguyen et al. [17] proposed a method
to detect and eliminate in-plane reflection artifacts in multi-wavelength PAT imaging, as
shown in Figure 5A. The approach involves segmentating and estimating their spectral
responses using the remaining images to identify and group features in the clearest image
as the real absorbers. Fainter features appearing at greater depths are considered to be
reflection artifacts and are removed by setting the corresponding pixel values to zero. Jaeger
et al. [28] proposed a distortion compensation (DC) method to reduce artifacts by applying
a moving time average to the PA image sequence, as shown in Figure 5B. The signal from
the light absorber located in the image plane persists throughout the PA sequence and
is, therefore, unaffected by the averaging, while the de-correlated clutter is reduced to
improve the contrast-to-clutter ratio (CCR).

For motion artifact correction, Erlov et al. [29] conducted a study to explore the
applicability of a regional motion correction algorithm that enables the interpretation of
internal tissue motion in handheld 2D PAT. As shown in Figure 5C, the technique leverages
intensity phase tracking (IPT) of interlaced ultrasound images that are co-registered with
the PAT images to avoid the motion artifacts.

For negativity artifacts, Shen et al. [11] investigated the formation mechanisms and
evaluated two post-processing approaches to address them. As shown in Figure 5D, the first
approach, which was forced-zeroing, involved setting negative values to zero. The second
approach, which was envelope detection, involved reversing the negative components of
the image and using Hilbert transform to extract amplitude profiles.

Moreover, deep learning (DL) shows promising results for PAT image artifact suppres-
sion. Different types of deep convolutional neural (CNN) architectures were previously
applied and tested in various studies, such as U-net [25,26,63], Fully Dense (FD)-Unet [64],
simple CNN [65], and generative adversarial network (GAN) [66]. One example was
provided by Allman et al. [27], who used a CNN network to locate and classify source
and reflection artifacts in the traditional beamformed image. The network was trained
on simulated data and transferred to experimental images. Among them, most of these
methods use simulation datasets created using k-Wave [67] for network training, only [25]
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using real PAT images acquired via a dedicated PAT imaging system [25]. In addition,
ref. [26] also used an online dataset (the DRIVE database [68]) for simulation.
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Figure 5. (A) Correcting result in an in vivo imaging experiment. (a) An acquired PAT image of
a finger. (b) Corrected image. Reproduced with permission from [17]. (B) PAT image of neck,
(a) prior to DC (distortion compensation) processing and (b) post-DC. Reproduced with permission
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envelope detection and forced zeroing methods. (a) Photograph of a human finger with a red dashed
line indicating imaging cross section. (b) Corresponding raw bipolar image reconstructed via BP.
(c) Result of (b) processed via envelope detection. (d) Result of (b) processed via forced zeroing.
Reproduced with permission from [11].

Due to the complex conditions in real-world PAT imaging, it is not possible to fully
identify the multiple above-mentioned types of artifacts and remove them completely.
Therefore, a standardized evaluation tool for artefact suppression performance will facilitate
subjective verification, especially for real PAT images.

4.2. Deconvolution

Due to the signal detection geometric, the reconstructed PAT images usually suffer
from the loss of resolution and contrast. In addition, the signal generated by strong
absorbers outside the imaging plane degrades the resolution of PAT images, and the
resulting artifacts exhibit anisotropy [69,70]. In terms of improving image resolution, one
of the most effective solutions is image deconvolution, which aims to potentially recover
clear results from the degraded images.

PAT imaging can be modelled via the convolution of the point spread function (PSF) of
the imaging system with the underlying absorption image. The PSF of an imaging system
can be determined through experimental measurements using objects that are significantly
smaller than the imaging system’s resolution. Qi et al. [31] suggested utilizing measured
spatially variant PSFs for PAT image restoration. By acquiring PSF data from a specific
PAT system, a high-quality PAT image can be generated using a maximum a posteriori
(MAP) framework, which enhances both the resolution and overall image quality, as shown
in Figure 6A. In the case of unknown PSF, Jetzfellner et al. [30] conducted photoacoustic
measurements on six-day-old mice using a broadband hydrophone in a circular scanning
configuration and near-infrared imaging. The results indicate that the resolution and
contrast of the images can be improved through blind deconvolution, which provides
estimates of the unknown PSF. However, the blind deconvolution method depends heavily
on the accuracy of the estimated PSF; therefore, its performance is usually not as good as
that of image deconvolution with measured PSF.
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Figure 6. (A) Restoration of PAT image of a cancerous mouse. Original PAT image (left) and its
deconvolution result with spatially variant PSFs (right). Reproduced with permission from [31].
(B) Reconstruction (Step 1) and corresponding model resolution matrix-based deconvolution (Step 2)
using Quadratic and Geman–McClure penalty functions. Blue and Green arrows: artifacts reduction.
Red arrows: contrast improvement. Reproduced with permission from [33]. (C) Reconstructed PAT
image (left) and guided filter result (right) of a numerical blood vessel phantom using TV. Reproduced
with permission from [32].

In addition, a model matrix for deconvolution can be used as the step following
image reconstruction. As shown in Figure 6B, Nakshatri et al. [33] proposed a two-step
model–resolution matrix-based deconvolution approach to improve the reconstruction
image quality. The model–resolution matrix was developed in the context of different
penalty functions, such as Quadratic and Geman–McClure. In addition, Awasthi et al. [32]
proposed to use a basis pursuit deconvolution method, which also includes a model
resolution matrix to improve Total Variational (TV) regularization results, as shown in
Figure 6C. However, model-based deconvolution is usually computationally expensive,
and the hyperparameters used during iterative optimization require empirical fine-tuning.

Moreover, image super resolution techniques can be applied to PAT, for example,
multiple PAT images can be integrated into a single high-resolution image after alignment
using optical flow estimation [36]. Learning-based methods were also introduced to
PAT image deconvolution. For example, Deep-E, which is a fully dense neural network,
provides improved elevational resolution by only using the 2D slices in the axial and
elevational plane [35]. For network training, Deep-E uses the 2D images generated via
K-Wave [67] as input data, and ground truth vascular images are generated using the
Insight Segmentation and Registration Toolkit (ITK) [34]. This work reveals the potential of
DL-based deconvolution methods in PAT image post-processing.

4.3. Segmentation

Image segmentation is a commonly used image processing technique that separates
the area of interest from the background. In PAT imaging, it is particularly useful for images
where the target object and background exhibit weak contrast. It can be used for problems
such as light fluence correction, artifact removal, identification of regions of interest, SOS
correction, etc.

Threshold segmentation is a widely used algorithm [17,37–39]. For example, as shown
in Figure 7A, Liang et. al. [38] extracted a rough body region of the animal through
thresholding. However, local threshold segmentation based on pixel amplitude usually
has poor precision. To solve this problem, several automatic global threshold segmentation
methods are proposed to segment and describe the boundaries of biological tissues. Nguyen
et al. [17] used the automatic segmentation, as shown in Figure 7B, which is based on the
Sobel edge detection algorithm by applying a threshold value, to detect image features. As
shown in Figure 7C, Khodaverdi et al. [39] presented an automatic threshold selection (ATS)
algorithm that can accurately distinguish targets from the background in adaptive matched
filter (AMF) detection images. In another application, Raumonen et al. [37] proposed a
vessel segmentation technique in a probabilistic framework by utilizing image voxels and
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vessel clustering, as shown in Figure 7D. This method achieved more robust and accurate
segmentation by calculating the probability of each voxel belonging to blood vessels.
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In addition, Mandal et al. [43] employed the segmented mask to construct a 
two-compartment active contour model for boundary segmentation. Liang et al. [38] 
proposed an automatic 3D segmentation method for PAT images based on an optimal 
3-D graph search. These methods model the segmentation target based on its geometric 
properties and, therefore, achieve good results for specific tissue. Recently, since the ad-

Figure 7. (A) Representative segmentation results of head, lung, liver, abdomen, and sacrum images
of healthy mice using a 3-D graph-based segmentation method. Reproduced with permission
from [38]. (B) (a) Original PAT image with blood vessels (blue arrows) and reflection (yellow arrows).
(b) Thresholding and peak-processed segmented image. Reproduced with permission from [17].
(C) Comparison of results obtained for four inclusions in phantom with and without ATS (automatic
threshold selection). Reproduced with permission from [39]. (D) Original PAT image (top) and results
of vessel segmentation methodology (down). Reproduced with permission from [37].

In addition, Mandal et al. [43] employed the segmented mask to construct a two-
compartment active contour model for boundary segmentation. Liang et al. [38] proposed
an automatic 3D segmentation method for PAT images based on an optimal 3-D graph
search. These methods model the segmentation target based on its geometric properties
and, therefore, achieve good results for specific tissue. Recently, since the advance of DL
technology, PAT image segmentation methods based on deep neural network received
increased attention [40–42]. For example, Chlis et al. [40] proposed the Sparse-UNET (S-
UNET) method to obtain a segmentation mask for automatic vascular segmentation using
real-world PAT images labeled by a human annotator. Zhang [71] designed segmentation
software that identifies the six grades of breast cancer, which used transfer learning for deep
classifier training. Other authors trained their network model using images generated via
the MCXYZ program [72]. Compared to traditional methods, these DL-based approaches
are shown to be able to better handle low contrast, noise, and complicated artifacts in
PAT images.

4.4. Image Post-Processing for Multimodal Imaging

PAT can be integrated with conventional medical imaging modalities, such as magnetic
resonance imaging (MRI) and Ultrasound (US) imaging. This multimodal imaging strategy
can provide complementary information about the imaging tissue. However, different
imaging modalities have their own characteristics, and thus, post-processing of the images
is often necessary to improve the quality of the images. Various image post-processing
techniques can be employed for PAT-based multimodal imaging, such as feature extraction,
image registration, image fusion and so on.

For multimodal PAT-US imaging, much research on image post-processing have been
proposed [28,44–49]. PA-US imaging enables high quality multimodal images for a wide
range of applications, where the alignment and coupling of the two modalities depends
heavily on the application of post-processing techniques. As shown in Figure 8A, Jaeger
et al. [28] proposed a deformation compensation method to achieve registration of features
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between PAT and US images acquired from a commercial medical ultrasound imaging
equipment. Kim et al. [47] used a dual-modal US-PA contrast agent. The US images are
used to construct a masking image that contains the location information about the target
site and is applied to the PAT image acquired after contrast agent injection. Han et al. [44]
proposed a 3D modeling method to calculate the optical fluence distribution based on
a dual-modality PA/US system, and then used this information to compensate the PA
imaging results.
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Figure 8. (A) (a) Acquired PAT image. (b) Echo ultrasound image. (c) Registration image. Reproduced
with permission from [28]. (B) MRI-guided PAT image restoration results at neck position. The solid
red box regions before and after restoration are shown in the bottom. rMRI: registered MR image;
PAT: raw PAT image; rcPAT: image restored via proposed method. Reproduced with permission
from [56].

For multimodal PAT-MRI imaging of rigid parts, such as the animal head [50–59],
Ren et al. developed a toolbox “RegOA” [50] and proposed a fully automated registration
method for PAT-MRI multimodal brain imaging empowered by deep learning [53]. The
datasets for network training were acquired in the PAT system and MRI scanner experi-
mentally. However, they only applied image registration to rigid areas, such as the animal
head, but not to abdomen. To improve image registration of both body and tumor contours
between PAT and MRI, Gehrung et al. [54] combined a novel MRI animal holder and a
landmark-based software co-registration algorithm for deformable tissues, which achieved
the first co-alignment of soft tissue. However, the custom silicone MRI holder cannot be
reused and has relatively low registration accuracy. As shown in Figure 8B, Zhang et al. [56]
developed a novel dual-modality animal imaging bed to achieve dual-modality successive
data acquisition and co-registration of PAT and MRI data in in vivo imaging applications.
Based on their design, they then employed an automated rigid image registration algorithm
for PAT and MRI, as well as proposing a PAT image restoration technique that used MRI
information as guidance [59]. They achieved robust whole-body MRI-PAT image registra-
tion, and their registration tool is reusable. Finally, an attempt was made to integrate a
PAT imaging system into a MRI scanner, with Chen et al. [58] developing a parallel hybrid
magnetic resonance and optoacoustic tomography (MROT) system to acquire MRI and
photoacoustic signals simultaneously. Based on the MROT system, they proposed a tailored
data processing pipeline to register MRI image volumes acquired using different sequences
onto the corresponding vascular and oxygenation data recorded via PAT.

For other PAT-related dual-modality imaging methods [73,74], Ni et al. [73] introduced
a multiscale optical molecular imaging approach combining fluorescence microscopy and
multispectral PAT. It enabled unique transcranial imaging capacity, single-plaque resolution,
and non-invasive real-time visualization of the entire mouse brain. Moreover, based on real-
time volumetric PAT and electrophysiological recordings, Gottschalk et al. [75] visualized
real-time thalamocortical activity non-invasively.

For multimodal image fusion, Park et al. [60] proposed a fusion imaging technique in
which overlapping PA, US, and MR images could be displayed concurrently in real time
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via co-registration of pre-acquired MR and real-time PA/US images. In this work, an image
fusion algorithm was proposed to seek the spatial relationships between the MR volume
and the PA/US image by performing rigid transformation.

Multimodal imaging requires the coupling of different imaging modalities, as well as
quantitative analysis [76]. To achieve this goal, image post-processing techniques must con-
tinue to play an important role in the rapidly developing field of PAT multimodal imaging.

5. PAT-Specific Image Processing Methods

PAT-specific image processing methods are proposed to deal with image degradation
problems that are unique to PAT imaging techniques. Accounting for the optical and
acoustic properties of the imaging tissue, these methods include light fluence correction,
acoustic correction, and spectral unmixing. With these techniques, researchers can better
understand the structure and function of biological tissues and improve the accuracy and
effectiveness of PAT imaging. Table 3 gives a brief summary of these methods.

Table 3. A brief summary of PAT-specific image post-processing methods.

Methods Category Advantages Major Limitations

Light fluence correction

Model-based correction [77–83] Easy implementation Sensitive to optical
property uncertainty

Data-driven correction [84] Accounts for real-world
variation Requires ground truth data

Segmentation-based
correction [38,59,84]

Considers optical properties
of heterogeneous tissue

Limited by
segmentation accuracy

Acoustic correction
Single SOS selection [85–89] Easy implementation Assumes a uniform SOS

Heterogeneous SOS
correction [90–94] High accuracy High computation cost and

low algorithm stability

Spectral unmixing

Linear unmixing model [95–99] Easy implementation Requires known
absorber composition

Blind-source spectral
unmixing [100–104]

Accounts for unknown
biological tissue composition
and spectral characteristics

Unstable performance

5.1. Light Fluence Correction

Light fluence correction refers to the process of correcting for image variations of light
fluence deposited in tissue, which can occur due to the tissue absorption and scattering
along the light path. Light fluence correction is important for accurately quantifying the
distribution of optical absorption properties in tissue, which is a key aspect of PAT imaging.

A number of mathematical and numerical models are proposed for light fluence
correction. For example, optical propagation models [82,83], fixed-point iterative meth-
ods [80,81], logarithmic unmixing of multispectral datasets [79], and measurement-based
methods [77,78] were used. Zhou et al. [82] developed a real-time correction algorithm
based on application of the diffusion dipole model (DDM), which simulates the fluence
distribution as the responses to a pair of point sources produced using a collimated pencil
beam in a semi-infinite turbid medium. Deán-Ben et al. [77] used the switching kinetics of
reversibly switchable fluorescent proteins (RSFPs) to correct for the dynamic light fluence
distribution deep in scattering media.

In addition, data-driven approaches are proposed to compensate for the non-linear
light fluence distribution. Madasamy et al. [84] trained DL models, such as U-Net, FD
U-Net, Y-Net, FD Y-Net, Deep residual U-Net (Deep ResU-Net), and GAN, with blood
vessel and numerical breast phantom datasets to evaluate the performance of optical ab-
sorption coefficient recovery. They accumulated datasets from different online repositories,
such as Kaggle [105], the retinal fundus multi-disease image dataset (RFMID) [106], the
optical and acoustic breast phantom database [107], and the 3D acoustic numerical breast
phantoms [108]. However, all above supervised learning methods may suffer from the
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lack of ground truth for network training. To address this problem, as shown in Figure 9A,
Li et al. [109] proposed quantitative optoacoustic tomography (QOAT)-Net, which is a
dual-path convolutional network, to estimate the absorption coefficients after training with
data-label pairs generated via unsupervised “simulation-to-experiment” data translation.
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fluence distribution estimated at four positions (head, chest, abdomen, and sacrum) via 3D fluence 
simulation. Reproduced with permission from [38]. (C) PAT light fluence correction using MRI in-

Figure 9. (A) Initial pressure (left), recovery absorption coefficients (center) via QOAT-Net, and
zoomed images (right) of ex vivo mouse liver. Reproduced with permission from [109]. (B) Light
fluence distribution estimated at four positions (head, chest, abdomen, and sacrum) via 3D fluence
simulation. Reproduced with permission from [38]. (C) PAT light fluence correction using MRI
information. Prior: manual segmentation based on MRI image. Reproduced with permission
from [59].

Moreover, the automatic extraction and segmentation of PAT images can be crucial
in improving image analysis efficiency and enabling advanced PAT-specific image post-
processing, such as light fluence correction. As shown in Figure 9B, Liang et al. [38]
presented a volumetric method for estimating light fluence in PAT images. The method
employs the 3-D optimal graph search (3-D GS) algorithm, which takes into considera-
tion the continuity among image slices for volume image segmentation. Using the 3D
segmentation results of the entire animal body, the simulation volumetric light fluence
distribution can be obtained to correct PAT images. To improve the accuracy of light fluence
estimation, Brochu et al. [110] suggested organ-level segmentation for performing light
fluence correction on regions with distinct optical properties. However, the poor soft tissue
contrast of PAT images poses a challenge that hinders accurate organ segmentation. As
shown in Figure 9C, Zhang et al. [59] introduced a method for estimating and correcting
light fluence in PAT using guidance from MRI structural information. The method involves
segmenting the registered MRI image obtained from a dual-modality imaging approach
and using the segmentation result to guide the estimation of light fluence distribution. In
fact, organ-level segmentation on MRI images is easier than on PAT images and, therefore,
has higher segmentation accuracy. This approach also leads to the improved accuracy of
light fluence correction.

5.2. Acoustic Correction

Tissues are acoustically heterogeneous, meaning that there is variation in the distri-
bution of SOS among different tissue types. The acoustic properties of tissue surfaces
can also vary significantly, resulting in reflections of acoustic waves [111,112]. However,
during image reconstruction, the algorithm typically assumes a constant and uniform SOS
distribution, which contradicts the acoustic heterogeneity of tissues. This issue can lead to
artifacts and spatial aliasing, as well as structural distortion, due to incorrect algorithmic
assumptions [113,114].
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Image distortion caused by heterogeneous tissues can be suppressed by choosing an
optimal SOS. As shown in Figure 10A, Treeby et al. [85] employed the autofocus approach
to choose a SOS optimized for visual assessment of image reconstruction. In this approach,
the SOS used for image reconstruction is manually adjusted to maximize the sharpness
of prominent image features. This approach is intuitive, though it is prone to noise and
artifacts that produce similar high-intensity image features. Jeon et al. [89] introduces
a DL-based end-to-end SOS correction algorithm that uses eight different SOS images
as training inputs [4]. Dehner et al. [88] propose passing the adjusted input SOS value
to the trainable network layers to improve image fidelity of deep-learning-based PAT
reconstruction, using the k-wave toolbox [67] to obtain labelled datasets by employing a
diverse collection of publicly available real-world images as the initial pressure distribution.
However, data-driven approaches for acoustic correction primarily rely on high-fidelity
simulated data and have not yet been successfully applied to an in vivo imaging study.
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Figure 10. (A) (a) Autofocus SOS selection under three focus metrics. (b) Defocused image recon-
structed using a sound speed overestimated by 5%. (c) Focused image reconstructed using optimized
sound speed. Reproduced with permission from [85]. (B) In vivo images of a nude mouse trunk.
(a,b) are PAT images corresponding to initial SOS distributions, (c,d) are PAT images corresponding
to final SOS distributions. (a,c) correspond to one of liver sections, while (b,d) correspond to one of
kidney sections. (e) presents segmentation scheme in finding (d) (I: intermediate tissue, II: kidney, III:
bowel). (f) shows zoomed-in views of subdomains in (a–d), labeled by colors and types of borderlines.
Scale bars: 5 mm. AA, abdominal aorta; BM, backbone muscles; IN, intestines; IVC, inferior vena
cava; KD, kidneys; LV, lobes of liver; PV, portal vein; SC: spinal cord; SP, spleen; SV, superficial vessels.
Reproduced with permission from [90].

Automatic selection of SOS [85–87] is a straightforward but limited approach that
assumes uniform velocities throughout the tissue. In contrast, partitioning different tissue
regions is helpful for correcting their inhomogeneous SOS distributions [43,115–117]. Lafci
et al. [115] demonstrated the use of inhomogeneous SOS maps for image quality enhance-
ment. The image was segmented manually into two regions: foreground (representing the
mouse body) and background (representing the surrounding coupling medium). In gen-
eral, segmentation-based SOS correction methods require the knowledge of tissue/organ
distribution and have certain requirements for segmentation accuracy; however, in terms
of image quality, it can significantly improve correction performance.
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In addition, joint correction approaches were proposed to simultaneously extract
optical absorption information and SOS distribution [90–94]. As shown in Figure 10B, Cai
et al. [90] proposed a method to jointly reconstruct the SOS and PAT image. They updated
the SOS distribution by maximizing the similarity of images from the partial arrays and
then performing image reconstruction. The simulation data for network training were
generated using k-wave [67]. Shan et al. [91] proposed a simultaneous reconstruction
network (SR-Net) to update the initial pressure and sound speed iteratively. Even though
it may suffer from numerical instability, this method still significantly improves PAT image
quality. Also, the SOS distribution can be obtained via experimentally measuring [118–120]
using additional techniques. Xia et al. [120] incorporated ultrasonic computed tomography
(USCT) into the full-ring array PAT system to measure the SOS distribution within the
object. In addition, the SOS correction model used in this USCT-enhanced method was
obtained through experiments and, therefore, is more accurate than simplified assumptions.

5.3. Spectral Unmixing

In multispectral imaging, as tissues are excited at two or more wavelengths, it is
possible to resolve the distribution of various tissue molecules or biomarkers by unmixing
the images based on their spectral signature.

Studies on the quantification of the concentration of single absorbers were conducted.
The linear unmixing model is the most widely used model [99]. Xia et al. [98] proposed a
dynamic method, which showed that the PA amplitudes measured at different sO2 states
canceled the contribution from optical fluence and allowed calibration-free quantification
of absolute sO2. Tzoumas et al. [97] found that the statistical sub-pixel detection methods
can focus on the detection of a unique spectral target with up to five times enhanced
sensitivity compared to linear unmixing approximations. Tzoumas et al. [96] introduced
eigenspectra multispectral optoacoustic tomography (eMSOT) to account for wavelength-
dependent light attenuation, estimating blood sO2 within deep tissue with substantially
enhanced performance compared to previous methods, as shown in Figure 11A. Despite the
quantitative advantage offered by eMSOT, both the non-convex nature of the optimization
problem and the possible sub-optimality of the constraints may lead to reduced accuracy.
To address this issue, Olefir et al. [95] presented a neural network architecture composed of
a combination of recurrent and convolutional layers, which improved the accuracy of sO2
computation by directly regressing from a set of input spectra to the desired fluence values.
In their work, the input data for network training are generated via simulation experiment.
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The biological tissue composition and its accurate spectral characteristics are not
always known during spectral separation, leading to the emergence of blind or semi-blind
source spectral unmixing techniques. As shown in Figure 11B, Glatz et al. [104] investigated
principal component analysis (PCA) and independent component analysis (ICA), which
have no a priori information, in separating specific absorbers and backgrounds. Compared
them to spectral fitting schemes, this method is shown to be a promising alternative
technique for separating mixed components. Deán-Ben et al. [103] suggested using vertex
component analysis (VCA) for a semi-blind unmixing of multispectral optoacoustic data,
which include a priori information on the spectral signatures of absorbers. In the case of
semi-blind spectral unmixing, the standard version of the VCA algorithm can attain similar
sensitivity to the PCA-ICA approach and has a faster performance. Deán-Ben et al. [79]
also present a blind unmixing approach capable of correcting for wavelength-dependent
light fluence variations using a logarithmic representation of the images taken at different
wavelengths. An et al. [102] applied an approximate fluence adjustment, which was based
on spatially homogeneous optical properties equal to those of the background region, to
the PAT images before accurate separation of the chromophores via ICA, further reducing
the unmixing error. The effect of retaining different numbers of dimensions for ICA was
also demonstrated [101]. For DL-based methods, Durairaj et al. [100] introduces a dual
autoencoder neural network architecture designed to estimate the end-member spectra
(wavelength-dependent absorption coefficient) and the abundance maps (unmixed images)
of the constituent molecules. Their method accounted for the non-linearities present in the
mixing models and reduced the dependency on linear unmixing.

Several factors may affect the effectiveness of spectral unmixing [121–124]. Dolet et al. [122]
took into account both the spatial neighborhood and the spectral behavior of the pixels used
for multispectral PAT image clustering, which can significantly improve the accuracy of
estimations of the concentration. Tzoumas et al. [123] studied the impact of the number of
excitation wavelengths employed for the sensitivity and accuracy, finding that the unmixing
sensitivity exhibits a statistical increase trend with respect to the number of wavelengths
employed. Moreover, negative values may cause significant artifacts, which also can make
fine structures invisible to spectral unmixing techniques. To overcome this issue, Ding
et al. [121] imposed non-negative constraints solely onto the optical absorbers of interest,
thus avoiding negative pressure values. Taruttis et al. [124] proposed a technique that
employs stationary wavelet decomposition prior to non-negative spectral unmixing. This
method offers a systematic and automated approach for transforming images at multiple
excitation wavelengths into multiscale representations of specific chromophores, thus
facilitating the identification of hidden structures and reducing the effects of negative
values on imaging results.

6. Discussion

In the above literature review, it was proved that image post-processing techniques are
able to significantly enhance the quality of PAT images. Ranging from artefact suppression
and image deconvolution to PAT-specific SOS correction and light fluence correction,
image post-processing methods for PAT are starting to create a solid foundation for the
development of advanced PAT imaging technology, as well as for the extension of pre-
clinical and clinical applications.

Regarding the aim of improving PAT image quality, rapid developments in the field of
computer vision provided novel ideas that may be introduced to PAT. For example, deep
generative models, such as the generative adversarial network [125], can adapt to different
downstream tasks, such as super-resolution [126,127], denoising [128], etc.. They may be
used to perform PAT image enhancement in an unsupervised manner. Moreover, advance
segmentation models, such as segment anything [128], can be introduced to perform more
accurate PAT-based tissue segmentation. In the absence of sufficient-labeled datasets, self-
supervised networks [129,130] that are able to learn from the input test image itself can be
introduced to PAT image post-processing tasks, such as deconvolution.
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Moreover, hardware systems for PAT imaging are constantly evolving. This fact creates
new technical challenges for PAT image post-processing. For example, advanced imaging
strategies were previously proposed for ring-shaped PAT, such as the interlaced sparse
sampling PAT [131,132], which employs a rotational scanning scheme. Also, there are an
increasing number of studies conducted based on 3D PAT systems, such as spherical array
PAT [133–138]. In these systems, special care must be taken to efficiently and accurately
recover high-quality PAT images.

Finally, the development of image post-processing techniques for PAT is still in its
early stage. Current research is usually conducted using private datasets with custom
codes. Therefore, standardizing the image processing operations [139] is expected to
address the differences between studies and facilitates the unification of various PAT-
specific processing techniques. Moreover, DL-based methods emerged as promising PAT
image post-processing tools, and the datasets used for network training play a big role
as the basis of these methods. Several public datasets for PAT imaging were previously
released and made available for use [108,140–142]. Future research on DL-based methods
performed on these datasets will facilitate fair performance comparison.

7. Conclusions

Following the exploration of the importance of image post-processing for PAT imaging,
this review summarizes existing works that employ advanced image processing methods
to enhance the quality of PAT images. We divide these studies into two major categories—
general image processing and PAT-specific processing—to facilitate a comprehensive survey
of recent technical advancements. We anticipate that this review will inspire subsequent
research on PAT image processing and encourage innovation on this topic to advance PAT
imaging technology.
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