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Abstract: A wavelength-tunable single-longitudinal-mode (SLM) narrow-linewidth thulium/holmium
co-doped fiber laser (THDFL) was developed in this study. The lasing wavelength was determined by
combining a phase-shifted fiber Bragg grating (PS-FBG) and a uniform FBG (UFBG). SLM oscillation
was achieved by incorporating a dual-coupler ring filter with the PS-FBG. At a pump power of
2.0 W, the THDFL exhibited excellent SLM lasing performance with a stable optical spectrum. It
operated at an output wavelength of ~2050 nm with an optical signal-to-noise ratio of >81 dB,
an output power fluctuation of 0.15 dB, a linewidth of 8.468 kHz, a relative intensity noise of
≤−140.32 dB/Hz@≥5 MHz, a slope efficiency of 2.15%, and a threshold power of 436 mW. The
lasing wavelength tunability was validated experimentally by stretching the PS-FBG and UFBG
simultaneously. The proposed THDFL had significant potential for application in many fields,
including free-space optical communication, LiDAR, and high-precision spectral measurement.

Keywords: thulium/holmium co-doped fiber laser; single-longitudinal-mode; narrow-linewidth;
wavelength-tuning

1. Introduction

The 2 µm band laser exhibits both a high absorption window and a high transmission
window in atmospheric transmission. The spectral region near 2050 nm contains many
absorption lines of important atmospheric gases such as H2O and CO2 [1]. The atmo-
spheric transmissivity of lasers near 2040 nm reaches as high as 80% [2]. Eye-safe fiber
lasers operating near 2 µm, with strong absorption in animal/human tissues and minimal
damage to the retina, are extensively used in medical fields [3–5], generating significant
research interest. The single-longitudinal-mode (SLM) thulium/holmium co-doped fiber
laser (THDFL), which is characterized by low noise, narrow linewidth, high coherence,
electromagnetic immunity, and an all-optical fiber structure, shows tremendous potential
in various fields including high-resolution spectroscopy, coherent optical communication,
LiDAR, and materials processing [6–10].

Several configurations of THDFLs enable SLM operation, such as distributed feedback
(DFB) [11] and distributed Bragg reflector (DBR) [12,13] structures with ultrashort cavities,
as well as conventional linear or ring compound cavities with ultra-narrow-band filters.
The amplified spontaneous emission (ASE) of thulium-doped fiber (TDF) or THDF falls
within the range of 1.7–2.1 µm, with a center wavelength near 1900 nm [14–16]. DFB or
DBR lasers require heavily rare-earth-doped fiber to achieve SLM oscillation near 2050 nm
but suffer high relaxation oscillation noise, wide linewidth, and low Q-values. In contrast,
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ring-compound-cavity lasers, employing various functional devices to mitigate the spatial-
hole-burning effect, can achieve narrow-linewidth SLM operation with a high stability
and a high optical signal-to-noise ratio (OSNR). Commonly used optical filters include
the Mach–Zehnder interferometer [17–19], Fabry–Pérot (F-P) filter [20,21], superimposed
fiber Bragg grating (FBG) [22], chirped Moiré FBG [23,24], sampled FBG [25,26], multimode
FBG [27], phase-shifted FBG (PS-FBG) [11,28,29], a ring cavity filter (RCF) [30–33], and
a dynamic narrow-band filter based on an unpumped rare-earth-doped fiber saturable
absorber (SA) [34–36]. The combination of a uniform FBG (UFBG) and a PS-FBG enabled
narrow-band filtering with a stable performance, exhibiting a full-width at half-maximum
(FWHM) of the transmission channel much narrower than that of the UFBG [28,29]. The
RCF, functioning as a comb filter, offers advantages of high stability and low cost, with
flexible control over its free spectrum range (FSR) and FWHM. Judiciously designing the
RCF and integrating it with the PS-FBG may yield a high-performance SLM THDFL.

This paper presents a wavelength-tunable narrow-linewidth THDFL based on a PS-
FBG and a dual-coupler ring (DCR) filter. The combination of the PS-FBG and a UFBG
enables precise determination of the lasing wavelength and achieves narrow-band filtering.
The DCR is introduced into the THDFL to increase the longitudinal-mode spacing and
achieve SLM oscillation. The experimental results demonstrate the SLM lasing operation
at a center wavelength of 2049.795 nm, an OSNR of 81.34 dB, and an output power of
30.7 mW when the pump power is 2.0 W. Detailed investigations on the stability of the
optical spectrum and output power, SLM operation, linewidth, relative intensity noise
(RIN), slope efficiency, and wavelength tunability are presented as well.

2. Experimental Setup and Principle

The configuration of the SLM THDFL, as shown in Figure 1, consisted of a 1567 nm
pump laser with a maximum output power of 5 W, a 1550/2050 nm wavelength division
multiplexer (WDM), a 1.6 m long THDF, a UFBG, a PS-FBG, a DCR (formed by two optical
couplers, OC2 and OC3, both with a coupling ratio of 30:70) with a ring length of 0.6 m,
a circulator, and a 20:80 optical coupler OC1. The THDFL output was extracted from
the 20% port of the OC1. The PS-FBG and UFBG were used in combination to achieve
narrow-band filtering based on the transmission channel of the PS-FBG. The UFBG, with
a matched center wavelength, was introduced by the circulator to ensure unidirectional
light oscillation in the THDFL. The lasing wavelength could be tuned by simultaneously
stretching the PS-FBG and UFBG with a micro-displacement platform. The SLM lasing
operation was achieved by combining the DCR and PS-FBG. The total cavity length of
the THDFL was approximately 4.95 m, corresponding to a longitudinal-mode spacing of
approximately 41.65 MHz. The OCs and WDM used in the setup were all fabricated by our
research team.

According to the coupled-mode theory, as a narrow-band reflecting filter, the reflectiv-
ity of the UFBG can be expressed as [37]:

R =
sinh2(

√
κ2 − σ2L)

cosh2(
√

κ2 − σ2L)− σ2/κ2
(1)

where L is the UFBG’s length, and κ is the mutual-coupling coefficient, which is calculated by:

κ = πν∆n/λ (2)

where ν = 1 is the fringe visibility of the index change, λ is the wavelength, ∆n is the
modulation depth, and σ is the auto-coupling coefficient, given by:

σ = δ + σ+ − 0.5dφ/dt (3)

δ = β− π/Λ = 2πne f f (1/λ− 1/λB) (4)

σ+ = 2π∆n/λ (5)
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where φ denotes the phase chirp, β is the transmission constant, λB is the center wavelength,
Λ is the nominal period, and ne f f = 1.455 is the effective refractive index of the single-mode
fiber (SMF). The refractive index modulation of the UFBG is uniformly distributed along
the z- axis; thus, dφ/dt = 0.
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Figure 1. SLM THDFL diagram. WDM: Wavelength division multiplexer; THDF: Tm-Ho co-doped
fiber; DCR: Dual-coupler ring; CIR: Circulator; UFBG: Uniform fiber Bragg grating; PS-FBG: Phase-
shifted FBG; OC: Optical coupler.

The length of the phase mask was set to 20 mm in the experiment. The parameters
L = 20 mm, λB = 2049.662 nm, and ∆n = 9.87× 10−5 were used in the calculations. The
reflection spectrum of the UFBG is marked with a blue curve in Figure 2a. The center
wavelength is 2049.801 nm, the reflectivity is 99.05%, and the FWHM is 12.52 GHz.
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Figure 2. (a) Simulated spectra of UFBG, PS-FBG, and DCR; (b) Spectrum obtained by multiplying
three spectra in (a).

The PS-FBG, serving as a narrow-band filter, was fabricated using the occlusion
method based on the phase mask technique. During the inscription process of a UFBG
using ultraviolet light, a small occlusion segment was introduced in the exposure area of the
phase mask. The absence of ultraviolet light radiation in the occlusion area led to a sudden
change in the refractive index, forming the PS-FBG. Consequently, the PS-FBG could be
considered as an F-P cavity composed of two UFBGs with the same center wavelength. The
transmissivity could be calculated as follows [38]:
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T(λ) = 1− R(λ) =
1 + R1(λ)R2(λ)− R1(λ)− R2(λ)

1 + R1(λ)R2(λ)− 2
√

R1(λ)R2(λ) cos(ϕ)
(6)

where ϕ = 4πne f f /λ, R1(λ), and R2(λ) are the reflectivities of the UFBG1 and UFBG2; and
l is the effective length of the F-P cavity:

l = h +
1
2
[
tan−1(κ0L1)

κ0
+

tan−1(κ0L2)

κ0
] (7)

where h is the length of the occlusion area, κ0 = π∆n/λmax, and λmax = (1 + ∆n/ne f f )λB
is the center wavelength.

In the calculation process, h = 1 mm and other parameters were consistent with the
UFBG simulation. The transmission spectrum of the PS-FBG was marked with a red curve
in Figure 2a. The narrow-band transmission channel of the PS-FBG was located in the
reflection envelop of the UFBG. The PS-FBG’s center wavelength was 2049.800 nm, the
transmissivity was as high as 99.99%, and the FWHM was 406.26 MHz. The DCR filter’s
transmission could be expressed as [39]:

T = E× E∗, E =
−
√

1− γ1
√

1− γ2
√

1− δ
√

α1
√

α2 exp[(−β + ikne f f )L1/2]

1−
√

1− γ1
√

1− γ2(1− δ)
√

1− α1
√

1− α2 exp[(−β + ikne f f )(L1 + L2)]
(8)

where E denotes electric field amplitudes; α1 = α2 = 0.3 and γ1 = γ2 = 0.2 dB are the
coupling ratio and insertion loss of the OC2 and OC3, respectively; δ = 0.01 dB is the
fusion splicing loss; β = 20 dB/km is the fiber loss coefficient; and k = 2π/λ is the wave
number in a vacuum. Prior to substituting the parameters expressed in decibel units into
Equation (8), please note that they are initially converted into dimensionless values.

To achieve SLM lasing, it is necessary for the FSR of the DCR filter to be smaller
than the FWHM of the PS-FBG. Additionally, the transmission FWHM of the DCR filter
should ideally be less than twice the longitudinal-mode spacing of the oscillating cavity.
In theory, the transmission spectrum of the DCR filter can be tailored using Equation (8)
through careful adjustment of the DCR cavity length (L1 + L2) and the cross-coupling
ratios of OC2 and OC3. When the DCR’s length is 0.6 m (L1 = L2 = 0.3 m), the trans-
mission spectrum is as marked with a green curve in Figure 2a. The FSR and FWHM are
344.15 MHz and 44.27 MHz, respectively. Figure 2b shows the composite filtering charac-
teristics of the UFBG, PS-FBG, and DCR. The center wavelength is 2049.801 nm, the FWHM
is 44.27 MHz, and the suppression ratio (SR) is 0.264. Therefore, considering the mode
spacing of ~41.65 MHz of the main cavity, the proposed THDFL can (theoretically) achieve
SLM operation.

Both the UFBG and PS-FBG utilized in this study were custom-made commercially.
To characterize their filtering properties, a broadband light source (NKT, Photonics A/S,
SUPERK EVO, Copenhagen, Denmark) and an optical spectrum analyzer (OSA, Yokogawa
AQ6375B, Tokyo, Japan) with a resolution of 0.05 nm and a data sampling interval of
0.003 nm were employed, as shown in Figure 3. The measurements revealed that the
UFBG had a center wavelength and a FWHM of 2049.793 nm and 18.85 GHz, respectively.
The PS-FBG exhibited a narrow-band transmission channel centered at 2049.816 nm. The
experimental results were consistent with the simulation results for both devices. However,
due to the limited resolution of the OSA, accurate measurement of the narrow-band
transmission channel’s FWHM of the PS-FBG was not possible. As shown in Figure 3b, the
UFBG achieved a transmission depth of 15.56 dB, corresponding to a reflectivity of 97.79%.
The high reflectivity of the UFBG contributed to minimizing cavity losses and facilitated
the construction of an SLM fiber laser with a high Q value, as well as the generation of laser
output with a high OSNR.
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Figure 3. (a) Measured reflection spectrum of UFBG and transmission spectrum of PS-FBG; (b) Mea-
sured transmission spectrum of UFBG.

3. Experimental Results and Discussion

The proposed THDFL system was constructed on a metal optical table and operated
at room temperature. Stable lasing oscillation was achieved with a pump power of 2.0 W.
The optical spectrum of the THDFL was captured by the OSA, as shown in Figure 4a.
The lasing wavelength was 2049.795 nm with an OSNR exceeding 81.34 dB. No evident
amplified spontaneous emission (ASE) was observed in the range as wide as 1950–2150 nm
(Figure 4b), indicating the effective reflection filtering property of the UFBG. This char-
acteristic contributed to the construction of fiber lasers with high OSNR and low noise.
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Figure 4. (a) Output spectrum of THDFL in 2045–2055 nm range; (b) Spectrum measured in 1950–
2150 nm range; (c) 10 repeated lasing spectrum scans; (d) Output power stability measured with
power meter at data sampling rate of 1 Hz.

To investigate the lasing stability of the THDFL, the output spectrum was monitored
using the OSA, and the output power was measured with a power meter (Thorlabs, S405C,
Newtown, NJ, USA) for approximately 100 min. The resulting spectra are shown in
Figure 4c, where the lasing wavelength was centered at 2049.775 nm (λavg), the wavelength
fluctuation (fλ) was less than 0.003 nm, the power fluctuation (fp) was less than 0.102 dB,
and the OSNR was consistently higher than 81 dB. The output power stability was analyzed
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using a power meter with a data sampling rate of 1 Hz, as shown in Figure 4d. The average
power was measured to be 14.84 dBm, with power fluctuation as low as 0.15 dB. The
THDFL thus showed excellent output stability in terms of both the laser spectrum and
output power.

The longitudinal-mode characteristic of the THDFL was investigated using a scanning
F-P interferometer (Thorlabs, SA200-18C, Newtown, NJ, USA) with an FSR of 1.5 GHz
and a resolution of 7.5 MHz, as shown in Figure 5; the red sawtooth wave was the driving
voltage signal of the interferometer, and the blue curve was the lasing mode signal. Within
a voltage scanning period, in which the F-P interferometer could scan more than one FSR,
there were only two lasing modes captured, indicating stable SLM operation of the THDFL.
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Figure 5. Longitudinal-mode characteristic measured by scanning F-P interferometer.

The SLM operation of the THDFL was further verified using the self-homodyne
method. The radio frequency (RF) beating spectrum was measured using a 1 GHz photode-
tector (PD) and an RF electrical spectrum analyzer (ESA, Keysight N9010A, Santa Rosa, CA,
USA), as shown in Figure 6a. No distinct beating signal was captured in an approximately
10 min observation period using the maximum-hold (MH) mode of the ESA, indicating
that the THDFL maintained stable SLM operation.
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The SLM selection capability of the DCR filter was also confirmed by replacing it with
an identically sized SMF in the laser cavity. The beating spectrum is shown in Figure 6b.
Multiple beating signals were clearly observed, indicating that the THDFL was operating
in a multi-longitudinal-mode (MLM) state. The spacing between adjacent peaks was
approximately 40.88 MHz, corresponding to a longitudinal-mode spacing of 40.88 MHz.
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Notably, the maximum beating signal frequency was 367.80 MHz, suggesting that the
FWHM of the PS-FBG should have been ~367.80 MHz.

Finally, when both the PS-FBG and the DCR filter were removed from the laser cav-
ity, the beating spectra of the laser output were measured as shown in Figure 6c. The
longitudinal-mode spacing was ~41.18 MHz. Many clearly observable beating signals re-
mained when the frequency was higher than 367.8 MHz. These results altogether suggested
that the DCR and PS-FBG had excellent filtering characteristics, contributing to stable SLM
operation of the THDFL.

Due to the high transmission loss of SMF in the long-wavelength region (2050 nm) of
nearly 20 dB/km, the commonly used delayed self-heterodyne measurement system with
an ultra-long SMF delay line was not suitable for analyzing the linewidth characteristics
of the THDFL [35]. The double-beam heterodyne method for linewidth measurement
required an ultra-narrow linewidth reference laser [40]. The Brillouin fiber laser had a
linewidth narrowing effect to its pump laser [41,42]. There was a Brillouin frequency shift
between the Brillouin laser and its pump laser. Therefore, the double-beam heterodyne
method could be used to measure the linewidth of the THDFL by utilizing a reference
Brillouin laser pumped by the amplified THDFL.

The SLM THDFL output was amplified with a self-built Thulium doped fiber amplifier
(TDFA) system to achieve a high-power output, as shown in Figure 7. A 10% output was
extracted through a fiber coupler, OC4 (10:90), to monitor the performance of the SLM
THDFL, whereas the remaining 90% laser was amplified by the TDFA system after passing
through an isolator. The primary amplifying stage consisted of a 793 nm laser diode (LD1)
with a maximum output power of 12 W, a (2 + 1)× 1 fiber combiner (FC1), a 2.6 m Thulium-
doped fiber (TDF1, Nufern, SM-TDF-10P/130-M, East Windsor, CT, USA), and a self-made
cladding power stripper (CPS1). The secondary amplifying stage included a 793 nm LD2
with a maximum output power of 30 W, a (2 + 1) × 1 FC2, a 3.0 m TDF2, and a CPS2.
An additional isolator was introduced between the two stages to ensure unidirectional
laser transmission.
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Figure 7. Self-built TDFA system. LD: Laser diode; ISO: Isolator; TDF: Tm-doped fiber; CPS: Cladding
power stripper.

The evolution of the TDFA system’s output power as a function of the LD2’s pump
power was measured using a power meter with LD1 pump power of 5.0 W, as shown in
Figure 8. At a LD2 pump power of 20.0 W, the output power reached 4.7 W; the power
meter’s damage threshold was 5.0 W. The spectrum of the amplified laser was measured
using the OSA, as shown in Figure 8b, where the power was attenuated before the OSA. The
OSNR was 43.75 dB in this case, and there was no self-excited oscillation at the maximum
gain near 1970 nm, indicating satisfactory performance of the TDFA system.
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Figure 8. (a) Output power of TDFA system as a function of pump power from LD2; (b) Output
spectrum of TDFA system at pump power of 20 W from LD2.

The amplified laser from the TDFA system served as the pump source for the Brillouin
laser. The setup of the Brillouin-laser-based laser linewidth measurement system is shown
in Figure 9. The output of the TDFA system was directed into Brillouin laser cavity
through a circulator (CIR2). A 15 m long SMF was used as the Brillion gain fiber, and
the Brillouin laser was extracted from the 30% port of a coupler OC5 (30:70). A drop-in
polarization controller was used to control the polarization state for stable lasing. The
length of the Brillouin laser cavity was ~16.5 m, corresponding to a longitudinal-mode
spacing of approximately 12.5 MHz. In the 2 µm wavelength band, the Brillouin gain
envelop of the commonly used SMF was ~15.00 MHz [41], which theoretically allowed for
SLM operation of the Brillouin laser.
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Figure 9. Brillouin-laser-based laser linewidth measurement system. DI-PC: Drop-in polarization
controller.

By setting the pump power of the LD1 and LD2 to 5.0 W and 9.0 W, respectively,
resulting in an amplified laser power of 1.76 W, the Brillouin output was achieved with
a lasing wavelength of 2050.011 nm and an OSNR of 63.78 dB (Figure 10a). The RF
beating spectrum of the Brillouin laser was measured using the self-homodyne method
with a 1 GHz PD and an electrical spectrum analyzer (ESA), as shown in Figure 10b. No
beating signal was captured over a ~10 min measurement duration, indicating stable SLM
oscillation of the Brillouin laser.

The linewidth of the Brillouin laser was narrower than that of the pump laser [41,42],
and a linewidth compression factor of 1/18 could be achieved according to the theory
described in [43]. Thus, it was possible to determine the linewidth of the THDFL by
analyzing the RF signal obtained from beating the Brillouin laser and its pump laser.
As a lasing linewidth broadening effect could be caused by phase noise and self-phase
modulation in the TDFA system [44] the 10% output laser of the THDFL from OC4 was
combined with the Brillouin laser at OC6 to obtain the RF beating signal in our measurement
setup, which was then measured using a 12.5 GHz PD and an ESA. Figure 11 displays
the measurement data and corresponding Lorentz fitting curve. The 20 dB bandwidth of
the spectrum was 168.36 kHz. Accordingly, by applying a calculation factor of 1/20, the
linewidth of the THDFL was calculated to be 8.468 kHz.
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Figure 10. (a) Brillouin laser output spectrum; (b) Longitudinal-mode characteristic of Brillouin laser.
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Figure 11. Linewidth measurement result of THDFL with beating output and Brillouin laser.

The RIN spectrum could characterize instantaneous power fluctuations of the THDFL.
This spectrum was measured using a 400 MHz PD, an oscilloscope (Tektronix, TDS2024C,
Beaverton, OR, USA), and an ESA. The oscilloscope captured the direct voltage of the PD’s
output. The results are shown in Figure 12, where a frequency over 5 MHz yielded an RIN
of the THDFL of ≤−140.32 dB/Hz. The relaxation oscillation peak was close to 108.19 kHz,
as shown in the inset. The small noise signal near 320.89 kHz was mainly caused by the
measurement system.
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Figure 12. RIN spectrum measured in 0–10 MHz range; RIN spectrum measured in 0–500 kHz
range (inset).

The spectra and longitudinal-mode characteristics of the THDFL under various pump
power levels were examined to further investigate its performance. As shown in Figure 13a,
the OSNR gradually increased as the pump power increased, whereas the center lasing
wavelength of the THDFL showed a fluctuation (fλ)≤0.021 nm due to the different thermal
effects under different pump power levels. The SLM characteristics of the THDFL were
further confirmed using the self-homodyne method while increasing the pump power, as
shown in Figure 13b. There was no beating signal captured in an approximately 10 min
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measurement period, indicating that the THDFL maintained stable SLM operation under
different pump power levels and further confirming the favorable characteristics of the
PS-FBG and DCR filters.
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Figure 13. Measured (a) laser output spectra and (b) SLM characteristics under different THDFL
pump power levels.

The laser output power was analyzed at different pump power levels using a power
meter. Figure 14a shows the measured data and linear fitted curve. The laser showed a
slope efficiency of 2.15% and threshold power of 436 mW. The output power, reaching
55.1 mW at a pump power of 3.16 W, had not yet reached saturation. To prevent potential
damage to the devices in the laser cavity due to high pump power, the maximum output
power was not measured. When the pump power was 1.0 W and the direction of the signal
light was opposite to the direction of the pump light, the ASE of the 1.6 m gain THDF at
2049.792 nm was 34.11 dB lower than that at the maximum gain wavelength (1850 nm)
(Figure 14b). This indicated that the maximum gain wavelength differed significantly from
the output wavelength of our THDFL. Additionally, the insertion loss of all devices used in
the 2 µm band was considerable. These factors contributed to the low slope efficiency of
the THDFL.
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Figure 14. (a) Output power of THDFL as a function of pump power; (b) ASE of THDF at pump
power of 1.0 W.

The PS-FBG and UFBG were clamped onto the micro-displacement platform, as shown
in Figure 1, then the wavelength-tunability of the THDFL was investigated by tuning the
right knob of the micro-displacement platform to stretch the PS-FBG and UFBG horizontally.
The operating wavelength of the THDFL was tuned from 2049.962 nm to 2050.397 nm with
a tunable range of ~0.435 nm, as shown in Figure 15, which performed a groundbreaking
demonstration of the feasibility of laser wavelength tuning in a fiber laser through the
simultaneous stretching of both the PS-FBG and the UFBG, validating its potential for
practical applications. The OSNR of the THDFL within the wavelength-tunable range was
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no less than 79.5 dB. A larger wavelength-tuning process was not performed, however, to
avoid damaging the PS-FBG and UFBG. Achieving a large tunable range will be our focus
in future work.
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4. Conclusions

A wavelength-tunable SLM narrow-linewidth THDFL was developed and demon-
strated in this study. A combination of PS-FBG and UFBG was utilized to achieve narrow-
band filtering, with an additional DCR that enabled SLM oscillation. SLM operation was
achieved under a pump power of 2.0 W, then the output performance of the setup was
investigated thoroughly. The THDFL exhibited an OSNR of >81 dB with a highly stable
optical spectrum, an output power fluctuation of ≤0.15dB, a linewidth of <8.468 kHz, an
RIN of ≤−140.32 dB/Hz@≥5 MHz, a slope efficiency of 2.15%, and a threshold power of
436 mW.

The THDFL’s output power was amplified to achieve a high-power output of 4.7 W,
which was then used as a pump source for Brillouin SLM oscillation near 2050 nm. The
THDFL achieved stable SLM operation at different pump power levels as well. By tun-
ing the PS-FBG and FBG, the wavelength-tunable range was approximately 0.435 nm in
the THDFL.

The proposed SLM narrow-linewidth THDFL featured a simple structure and excel-
lent performance. With professional temperature compensation and vibration isolation
packaging, it would exhibit even better output characteristics. This technology shows con-
siderable potential for application in wavelength-division-multiplexing free-space optical
communication, laser radar, atmospheric trace gas detection, and other fields.
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