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Abstract: This article described the implementation of rotational Bloch boundary conditions in
photonic devices using the finite element method (FEM). For the electromagnetic analysis of periodic
structures, FEM and Bloch boundary conditions are now widely used. The vast majority of recent
research, however, focused on applying Bloch boundary conditions to periodic optical systems with
translational symmetry. Our research focused on a flexible numerical method that may be applied
to the mode analysis of any photonic device with discrete rotational symmetry. By including the
Bloch rotational boundary conditions into FEM, we were able to limit the computational domain
to the original one periodic unit, thus enhancing computational speed and decreasing memory
consumption. When combined with the finite-element method, rotational Bloch boundary conditions
will give a potent tool for the mode analysis of photonic devices with complicated structures and
rotational symmetry. In the meantime, the degenerated modes we calculated were consistent with
group theory. Overall, this study expands the numerical tools of studying rotational photonic devices,
and has useful applications in the study and design of optical fibers, sensors, and other photonic
devices.

Keywords: rotational Bloch boundary; finite element method; group theory

1. Introduction

Bloch theorem is a fundamental theorem in condensate matter physics and describes
how the wave function of electrons behaviors in the periodic potential. In optics or electro-
magnetism, electromagnetic waves propagate in a similar fashion in periodic structures, as
such the Bloch theorem can be used to simplify the electromagnetic analysis of periodic
structures and improve the numerical computation efficiency. Indeed, Bloch boundary
conditions were first used to solve the scattering problem of two-dimensional grating [1,2]
and were, subsequently, used to analyze the electromagnetic scattering characteristics of
three-dimensional cavity array [3]. Nowadays, FEM combined with the Bloch boundary
conditions is widely used for the electromagnetic analysis of periodic structures [4–9]. In
addition to the scattering problem, Bloch boundary conditions were also used for mode
analysis, such as R. L. Ferrari’s work on mode analysis of two-dimensional periodic struc-
tures [10], C. Mias and R. L. Ferrari’s work on mode analysis of three-dimensional periodic
structures [11], and A. A. Tavallaee’s work on evanescent mode analysis [12]. These works
mainly exploited the Bloch boundary conditions derived from discrete translational symme-
try. G. Garcia-Contreras et al. proposed Cn FEM by taking advantage of the rotational Bloch
boundary conditions (RBBC) obtained from discrete rotational symmetry, and applied
it to mode analysis and degeneracy analysis of two-dimensional rotationally symmetric
waveguides [13].
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Despite the large efforts in applying Bloch boundary conditions on periodic optical
structures with translation symmetry, the use of Bloch boundary conditions for rotational
symmetric structure did not receive sufficient attention yet. For instance, optical fiber
has rotational symmetry [14], while detailed analysis of the mode properties in optical
fibers using FEM concerning discrete rotational symmetry is absent. Adam Mock and
Paul Trader derived RBBC using Cnv symmetry of photonic crystal fibers, and combined it
with FDTD to analyze the modes of photonic crystal fibers [15]. In theory, this method can
be extended to FEM for mode analysis of photonic devices with complex structures and
rotational symmetry.

In this paper, we studied the RBBC and practical implementation in FEM for the
vectoral wave equation. Our numerical approach was flexible, and can be used in the mode
analysis of any photonic device with discrete rotational symmetry. Notably, our approach
reduced the computational domain to a periodic unit of the original, thus increasing
computation speed and reducing memory usage. We solved the eigenmodes for the
rotational photonic structure based on the proposed Bloch boundary conditions using FEM,
and the degenerated modes we calculated were consistent with group theory.

The paper is organized as follows: In Section 2, the RBBC is derived from group theory
and is implemented in finite element electromagnetic computation using the commercial
simulation software COMSOL. In Section 3, we illustrate the validity of our approach via
two examples: (1) eigen-mode analysis in two-dimensional photonic crystal fiber mode
and (2) eigen-frequency analysis in three-dimensional photonic crystal resonator. Finally,
the conclusion is reached in Section 4.

2. Theoretical and Numerical Models
2.1. Group-Character Labeled Wave Wunction and Domain Truncation in Rotationally
Symmetric Structure

In a Cartesian coordinate system, the eigenmode field in an inhomogeneous medium
photonic device fulfills the following vector wave equation:

∇× µ−1
r (∇× E)− k2

0εrE = 0, (1)

where E = E(x, y, z) is the vector electric field, µr is the relative magnetic permeability, εr is
the relative electric permittivity, and x, y, z are the coordinates in the Cartesian coordinate
system. If µr and εr have Cn symmetry, then µr(r, φ, z) = µr(r, φ + Λ, z), εr(r, φ, z) =
εr(r, φ + Λ, z), where Λ = 2π

n , and r, φ, z are the coordinates in the cylindrical coordinate
system. According to symmetry properties of wave function associated with the rotationally
symmetric structure [16],

Pcn E(r, φ + Λ, z) = E
(

c−1
n (r, φ + Λ, z)

)
= E(r, φ, z), (2)

where cn is a rotational symmetry operation contained in the Cn group, Pcn is the operator
corresponding to the rotational symmetry operation cn.

Based on group theory, Pcn E(r, φ + Λ, z) = χ(cn)E(r, φ + Λ, z), where χ(cn) is the
character corresponding to the rotational symmetry operation cn. Therefore, the Equation (2)
can be written as:

E(r, φ, z) = χ(cn)E(r, φ + Λ, z) (3)

Equation (3) establishes the relationship between the electric field within the φ ⊆ [0, Λ]
region and the entire region, thereby it is only necessary to computer the electric field
within the φ ⊆ [0, Λ] range to infer the electric field throughout the entire region under
the corresponding symmetry operation. As a result, the periodic unit can also be used to
analyze the eigenmode field. It should be noted that in Equation (1), the electric field E is in
the Cartesian coordinate system, while in Equations (2) and (3), the electric field E is in the
cylindrical coordinate system.
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2.2. Group-Character Revised Weak Form Formulation in Rotationally Symmetric Structure

In the eigenmode problem of photonic devices, the weak form of FEM can be written
as
∫

Ω

[
(∇×W) ·

(
µ−1

r ∇× E
)
− k2

0εrE ·W
]
dV +

∫
Γb

(
W · n× µ−1

r ∇× E
)
dS = 0, where W

is trial function, Ω is the entire computational domain, Γb is the boundary of Ω. When the
photonic devices possess the Cn symmetry as shown in Figure 1, the weak form can be
expressed in the following form by utilizing Equation (3):

∫
Ωcell

[
(∇×W) ·

(
µ−1

r ∇× E
)
− k2

0εrE ·W
]
dV +

∫
Γb,cell

(
W · n× µ−1

r ∇× E
)

dS = 0, (4)

[E(r, φ, z)]Γd
= χ(cn)[E(r, φ, z)]Γs

, (5)

where Ωcell is a periodic cell, Γb,cell is the outer boundary of Ωcell , Γs/Γd is the source/
destination boundary, [E(r, φ, z)]Γs/Γd

represents the electric field on the boundary Γs/Γd.
In the Cn group, χ(cn) is group character and takes the form ejmΛ, where 0 ≤ m ≤ n− 1
and m is an integer. In order to obtain the entire eigenmode while applying RBBC for mode
analysis, it is necessary to calculate m from 0 to n − 1 for all situations. By utilizing RBBC
in FEM analysis, the computational domain can be decreased to 1/n of its original size,
which reduces the number of meshes and the number of degrees of freedom, as well as the
memory required for the solution and the speed of the solution.
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Figure 1. Physical Model.

2.3. COMSOL Implementation

We implemented the method in commercial numerical simulation software COMSOL
in order to facilitate the use of the method. Equation (5) is in cylindrical coordinates, while
the electric field in the frequency-domain electromagnetic wave component in COMSOL is
in the Cartesian coordinate system. From Equation (5), the following Cartesian coordinate
system-based periodic boundary conditions can be obtained:[

Ex(x, y, z)cos φ + Ey(x, y, z)sin φ
]

Γd
= χ(cn)

[
Ex(x, y, z)cos φ + Ey(x, y, z)sin φ

]
Γs[

−Ex(x, y, z)sin φ + Ey(x, y, z)cos φ
]

Γd
= χ(cn)

[
−Ex(x, y, z)sin φ + Ey(x, y, z)cos φ

]
Γs

[Ez(x, y, z)]Γd
= χ(cn)[Ez(x, y, z)]Γs

(6)

In the practical implementation in COMSOL, Equation (6) is realized via the Mapping()
function, which is used to bridge the relation between the electric field between Γs edge and
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Γd edge as described in Equation (6). Specifically, the RBBC in COMSOL is summarized
in Table 1. The third to fifth rows correspond to the three equations in Equation (6), such
that all three electric field components meet the rotational Bloch boundary conditions. This
technique was implemented by substituting the constraints and constraint forces in the
periodic condition’s component with the contents of Table 1.

Table 1. The implementation of constraints in COMSOL with RBBC-FEM.

Rotational Bloch
Boundary Conditions Constraint Constraint Force

Er(φ + Λ) = χ(cn)Er(φ)
Mapping

(
Excos φ + Eysin φ

)
= χ(cn)

(
Excos φ + Eysin φ

) test
(

Mapping
(
Excos φ + Eysin φ

))
= test

(
χ(cn)

(
Excos φ + Eysin φ

))
Eφ(φ + Λ) = χ(cn)Eφ(φ)

Mapping
(
−Exsin φ + Eycos φ

)
= χ(cn)

(
−Exsin φ + Eycos φ

) test
(

Mapping
(
−Exsin φ + Eycos φ

))
= test

(
χ(cn)

(
−Exsin φ + Eycos φ

))
Ez(φ + Λ) = χ(cn)Ez(φ) Mapping(Ez) = χ(cn)Ez test(Mapping(Ez)) = test(χ(cn)Ez)

2.4. Finite Element Implementation

In this work, we also implemented an alternative approach to realize the RBBC with a
home-made code using MATLAB script. As for waveguide problems, our home-made code
implemented FEM with our proposed RBBC; the procedures are discussed in details in the
following. The transverse and vertical components of the electric field can be separated
and written as follows

E(x, y, z) = E(x, y)e−γz = [Et(x, y) + ẑEz(x, y)]e−γz (7)

Here, γ = α + jβ is the complex propagation constant where α and β are respectively
the real and imaginary parts of the complex propagation constant. Et represents the
transverse component of the electric field, while Ez represents the longitudinal component
of the electric field. In order to facilitate the finite element method to solve the eigenvalue
problem, the variable substitution is used to make et = γEt, ez = Ez. The transverse
component et and the longitudinal component ez of the electric field are expanded on
vector basis and scalar basis respectively as follows

−
e t =

m

∑
j=1

−
e t,jαj(x, y),

−
e z =

n

∑
j=1

−
e z,jαj(x, y), (8)

where
−
e t and

−
e z denote the numerical electric field, αj(x, y) denotes the vector basis

functions implemented by the first type of Nédélec elements,
−
e t,j are the corresponding

coefficients. While αj(x, y) denotes the scalar basis functions using Lagrange elements and
−
e z,j are the corresponding coefficients.

Then, substitute Equations (7) and (8) into the weak form Equation (4). The final linear
system of equations is of the form

[
0 0
0 µ−1

r [St]− k2
0εr[Tt]

]{−e z,j

}
{−

e t,j

}
 = γ2

[
µ−1

r [Sz]− k2
0εr[Tz] µ−1

r [G]T

µ−1
r [G] µ−1

r [Tt]

]{−e z,j

}
{−

e t,j

}
, (9)

where S(e)
t,ij =

s
4e

(
∇t × α

(e)
i

)
·
(
∇t × α

(e)
j

)
dS, T(e)

t,ij =
s
4e

α
(e)
i · α

(e)
j dS, S(e)

z,ij =
s
4e
∇tα

(e)
i ·

∇tα
(e)
j dS, T(e)

z,ij =
s
4e

α
(e)
i · α

(e)
j dS and G(e)

ij =
s
4e

α
(e)
i · ∇tα

(e)
j dS. The corner mark (e)

denotes the grid element.
The eigenvalue problem of photonic devices in FEM can be expressed in a simplified

form as follows
[A]{x} = λ[B]{x}, (10)
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where λ = γ2 is the eigenvalue, [A] =

[
0 0
0 µ−1

r [St]− k2
0εr[Tt]

]
and [B] =[

µ−1
r [Sz]− k2

0εr[Tz] µ−1
r [G]T

µ−1
r [G] µ−1

r [Tt]

]
are the system matrix and {x} =

{−e z,j

}
{−

e t,j

}
 is the coef-

ficient column vector of basis function.
{−

e z,j

}
and

{−
e t,j

}
contains the unknowns both on

the boundary and inside.
As shown in Figure 2, the coefficients on the edge of the source boundary are denoted

as xs, those on the destination boundary edge are represented by xd, and the rest of the
unknown coefficients are denoted as xo. Through Equation (5), we can obtain:xs

xd
xo

 =

 IS 0
χ(cn)ID 0

0 IO

[xs
xo

]
(11)
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The specific proof was given in Appendix A, where IS/ID/IO are identity matrices,
and the subscript S/D/O represent the dimension of the coefficients on the source bound-
ary/destination boundary/others. Equation (11) can be abbreviated as {x} = [P]{x′},

where {x} =

xs
xd
xo

, {x′} =
[

xs
xo

]
, [P] =

 IS 0
χ(cn)ID 0

0 IO

. As derived from [P]†[A][P]{x′} =

[A][x] [17], Equation (10) can be reformulated as:

[P]†[A][P]
{

x′
}
= λ[P]†[B][P]

{
x′
}

, (12)

where † represents the conjugate transpose operator. Similarly, when solving Equation (12),
we need to compute all cases where m is from 0 to n − 1.

3. Results and Discussions
3.1. Two-Dimensional Photonic Crystal Fiber

In order to validate the accuracy of the proposed method, we verified it through
two examples: one was the mode analysis in a two-dimensional photonic crystal fiber,
the second example was the eigenfrequency analysis for a three-dimensional photonic
crystal resonator. To make a fair compare in terms of accuracy and speed between con-
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ventional boundary conditions (NBC) and RBBC in FEM, the mesh number for NBC was
approximately n times larger as that for RBBC.

In the first example, as shown in Figure 3, we considered the modal analysis for the
photonic crystal fiber, the 2D cross section of which had C6 symmetry. In the 2D plane,
the spacing between the air holes was a, the fiber radius was 5.5a, the air hole radius
was 0.3a. The operation wavelength λ was set to 1550 nm, and the width of the air ring
around the fiber was 2λ. Silicon dioxide’s refractive index was set at 1.45, relative magnetic
permeability was 1. The boundary conditions were perfect electric conductors. The total
number of meshes in the NBC-FEM was 62,604, whereas the total number of meshes in the
RBBC-FEM was 10,415, with 48 eigenmodes calculated. The distribution of the electric field
intensity in partial modes is shown in Figure 4, and it can be seen that the mode electric
field intensity distribution and effective refractive index calculated by using NBC-FEM and
RBBC-FEM implemented using COMSOL, as well as RBBC-FEM calculated in accordance
with Section 2.4, had a close agreement. Due to the numerical singularity of the electric field
at the tip, the mode with the effective refractive index of 1.3954 had a considerably larger
error, necessitating an increase in mesh density at the tip when employing RBBC-FEM in
practice. Other modes’ effective refractive indices were consistent.
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calculations from COMSOL, (b,e) represent the RBBC-FEM calculations from COMSOL, and (c,f) represent
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the RBBC-FEM calculations from Section 2.4. (a–c) depict the electric field intensity distribution of
the same base mode, with the NBC-FEM yielding an effective refractive index of 1.3918 and the
RBBC-FEM yielding an effective refractive index of 1.3954, where m equals 1. (d–f) depict the electric
field intensity distribution of the same higher-order mode, with the NBC-FEM and the RBBC-FEM
both yielding an effective refractive index of 1.3439, where m equals 0.

Table 2 demonstrates the character table for the C6 group, where χ(c6) = ωm = e
jmπ

3 and
m ∈ [0, 1, 2, 3, 4, 5]. The dual degenerate modes can be inferred from the two-dimensional
irreducible representations E′ and E′′ in the character table. These two two-dimensional
irreducible representations were composed of two non-equivalent one-dimensional repre-
sentations that were conjugate to each other. In the presence of time-inversion symmetry,
the two non-equivalent one-dimensional representations that were conjugate to each other
must be degenerated. Therefore, under the conditions that m1 + m2 = 6 and χ(cn) is taken
as ωm1 and ωm2 respectively, the computed modes will be degenerated.

Table 2. Character table for C6 group.

C6(6)
(

ω=ejπ/3
)

E c6 c3 c2 c2
3 c5

6

x2 + y2, z2 Rz, z
A 1 1 1 1 1 1
B 1 −1 1 −1 1 −1

(xz, yz)
(x, y)(
Rx, Ry

) E′
1 ω ω2 −1 ω4 ω5

1 ω5 ω4 −1 ω2 ω(
x2 − y2, xy

)
E′′

1 ω2 ω4 1 ω2 ω4

1 ω4 ω2 1 ω4 ω2

Table 3 shows the numerical results calculated using NBC-FEM and RBBC-FEM. The
column “RBBC-FEM” represents the results obtained using RBBC-FEM, while the column
“NBC-FEM” represents the results obtained using NBC-FEM. The second row shows the
degree of freedom, and the number of degrees of freedom required by RBBC-FEM was
only one-sixth of that required by NBC-FEM. The third row shows the memory usage, with
RBBC-FEM consuming less memory. The fourth row shows the computation time, where
RBBC-FEM’s computation time for calculating all the six modes from m = 0 to m = 5 was
only one-third of that of NBC-FEM. The reason that memory usage and computational time
did not scale by a factor of six is that solving the generalized eigenvalue problem usually
employs the Krylov subspace iteration method, which does not have a linear relationship
with memory usage, computational time, and degrees of freedom, hence the absence of
such scaling. As the modes calculated with m = 1 and m = 5 were degenerated, and those
calculated with m = 2 and m = 4 were also degenerated, in practice, m only needed to
be set to 0, 1, 2, and 3, which can further reduce the computation time to two-ninths of
that required by NBC-FEM. The fifth row displays the effective refractive indices of the
modes, which lists 33 modes in total. It can be observed that the error between the effective
refractive indices calculated by RBBC-FEM and the NBC-FEM was within 0.3%.

Moreover, by comparing the effective refractive indices, it can be seen that the degen-
erate modes calculated by m = 1 and m = 5, as well as m = 2 and m = 4, was consistent with
the analysis in the character table. By time reversal symmetry, the two one-dimensional rep-
resentations that were each other’s complex conjugate must necessarily be degenerated. In
addition to degenerated modes, other high-order degenerate modes in RBBC-FEM can also
be accurately calculated. These higher order degenerate modes are leaky modes and, conse-
quently, have no physical meaning. They are provided in the table to illustrate the fact that
RBBC preserved the generic rotational symmetry that guaranteed the possible degeneracy.
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Table 3. A comparison table between RBBC-FEM and NBC-FEM calculations in COMSOL.

FEM
Class

RBBC−FEM
(
E(r,φ+Λ,z)=eimΛE(r,φ,z)

)
NBC−FEMm=0 m=1 m=2 m=3 m=4 m=5

DOF 21,062 125,589
Memory 1.67 GB 2.07 GB

CPU time 13 s 36 s

ne f f

1.3430 1.3430
1.3451 1.3452

1.3459 1.3459 1.3459(2)
1.3466 1.3466 1.3466 1.3466(3)
1.3584 1.3584 1.3585 1.3584 1.3584(4)

1.3585 1.3585 1.3585(2)
1.3678 1.3678

1.3679 1.3679 1.3679(2)
1.3680 1.3680 1.3680(2)

1.3681 1.3681
1.3784 1.3784 1.3784 1.3784 1.3784 1.3784 1.3784(6)
1.3880 1.3880 1.3880 1.3880 1.3880 1.3880 1.3880(6)

1.3954 1.3954 1.3918(2)

If the time reversal symmetry is broken by changing Silicon dioxide to magneto-optical

material with relative magnetic permeability

 1 0.51i 0
−0.51i 1 0

0 0 1

, the modes with m = 1

and m = 5, as well as m = 2 and m = 4, will no longer be degenerated. Indeed, as shown
in Table 4, as time-reversal symmetry was broken, the degenerated modes were split,
though the RBBC still held. This was consistent with both simulation results and group
theory analysis.

Table 4. A comparison table between RBBC-FEM and NBC-FEM calculations in COMSOL when the
time-reversal symmetry is broken.

FEM
Class

RBBC−FEM
(
E(r,φ+Λ,z)=eimΛE(r,φ,z)

)
NBC−FEMm=0 m=1 m=2 m=3 m=4 m=5

DOF 21,062 125,537
Memory 1.52 GB 2.08 GB

CPU time 16 s 47 s

ne f f

1.4364 1.4364
1.4374 1.4374

1.4395 1.4396
1.4405 1.4405

1.4431 1.4432
1.4437 1.4437
1.4456 1.4457

1.4459 1.4459
1.4469 1.4470

1.4476 1.4477

Figure 5 illustrates the relationship between the effective refractive index and the
wavelength of the fundamental mode calculated by RBBC-FEM and NBC-FEM. The solid
blue line and the solid red dots represent NBC-FEM and RBBC-FEM with Silicon dioxide,
respectively. The results they calculated were basically identical. Meanwhile, with the
magneto-optical material, the results of RBBC-FEM, denoted by blue dashed line, and NBC-
FEM, denoted by red hollow dot, were also exactly the same. It can be observed that the
effective refractive index of the fundamental mode decreased as the wavelength increased,
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which was in accordance with the optical fiber optics theory. Furthermore, RBBC-FEM’s
computation time shown in Tables 3 and 4 is the total computation time for calculating
modes from 0 to 5. Only m = 1 needs to be calculated to get Figure 5. Therefore, RBBC-
FEM far outperformed NBC-FEM at this time. Without breaking time-reversal symmetry,
the calculation time of RBBC-FEM was 61 s, while NBC-FEM took 351 s. With breaking
time-reversal symmetry, RBBC-FEM took 75 s and NBC-FEM took 391 s. RBBC-FEM’s
computation time was approximately one-sixth of that of NBC-FEM.
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Figure 5. The relationship between the effective refractive index of the fundamental mode and the
wavelength. Sweep wavelength from 1.15 um to 1.94 um, step length is 0.04 um.

3.2. Three-Dimensional Photonic Crystal Resonator

For the 3D photonic crystal resonator eigenfrequency analysis, the geometric structure
was modeled using 1550 nm as the reference length, and the geometry is depicted in
Figure 6, with the resonator radius of 5.5a, the air hole radius of 0.3a, and the spacing
of a, a = 1550 nm, the ring width of the peripheral air ring being 2λ, a PML layer with a
thickness of 2λ was added outside the air ring to simulate free space, and the resonator
thickness h being 1 um. The index of refraction of silica was fixed to 1.45. The perfect
electrical conductor was employed on both the upper and lower surfaces to make it a
resonator. The NBC-FEM had a total of 1,404,107 meshes, while the RBBC-FEM had a total
of 230,608 meshes, and 24 eigenmodes were determined.
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The electric field intensity distributions and eigenfrequency calculated from COMSOL
using traditional NBC-FEM and RBBC-FEM are illustrated in Figure 7, which showed
excellent agreement of the numerical calculations using two distinct boundary conditions
in FEM, i.e., NBC-FEM and RBBC-FEM. Eigenfrequency analysis was conducted using
COMSOL, and the outcomes of NBC-FEM and RBBC-FEM calculations are displayed in
Table 5, which further confirmed the overall validity of our proposed RBBC-FEM against
the NBC-FEM. The first column represents the RBBC-FEM results, whereas the second
column represents the NBC-FEM data. The second row displays the degrees of freedom,
and the needed degrees of freedom for RBBC-FEM are just one-sixth of those required for
NBC-FEM. The RBBC-FEM consumed less memory than the NBC-FEM, as shown in the
third column. The fourth column represents the computation time, while RBBC-FEM’s
computation time was only 4.4% of that of NBC-FEM. The RBBC-FEM and NBC-FEM con-
sumed comparable memory resources in 3D problems due to two primary factors. Firstly,
the memory occupation of RBBC-FEM was determined by the Krylov subspace iteration
method, which did not have a linear relationship with degrees of freedom. Furthermore,
because the computer memory we used was 64 GB, the memory occupation of NBC-FEM
reached its maximum threshold apart from the impact of its solving method. The solution
time depended on the Krylov subspace iteration method, and the degree of freedom of
NBC-FEM was significantly larger than that of RBBC-FEM. When using the same level of
subspace, NBC-FEM required more computational time for solving unless more memory
was utilized. The complexity of the finite element solution for the three-dimensional prob-
lems increased dramatically as compared to the two-dimensional case, due to increased
meshes and number of degrees of freedom. Notably, the solution time and the number of
degrees of freedom did not have a simply linear relationship. In situations with significant
large numbers of degrees of freedom, such as the three-dimensional numerical example
with millions of degrees of freedom, the workload of the numerical solver will expand
exponentially. Only the eigenfrequencies of the 19 modes are shown in the fifth row, which
displayed the effective refractive indices of the eigenmode modes. By comparing the eigen-
frequencies with the electric field intensity distribution, we can observe the degenerate
modes calculated for m = 1 and m = 5, and for m = 2 and m = 4, which were consistent with
the analysis in the character table and the two-dimensional scenarios.
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Figure 7. Computating eigenfrequency of a resonator in a three-dimensional photonic crystal structure.
(a,c) Modal profile (field intensity) of Eigen-frequency at 2.8075× 1014/2.8097× 1014 Hz calculated using
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COMSOL NBC-FEM, (b,d) Modal profile (field intensity) of Eigen-frequency at 2.8075 × 1014/
2.8097 × 1014 Hz calculated using COMSOL RBBC-FEM calculations. In (a–d), m is assumed to be 3.

Table 5. Comparison of RBBC-FEM and NBC-FEM 3D calculations in COMSOL.

FEM
Class

RBBC−FEM
(
E(r,φ+Λ,z)=eimΛE(r,φ,z)

)
NBC−FEMm=0 m=1 m=2 m=3 m=4 m=5

DOF 1,505,144 9,022,532
Memory 44.83 GB 59.86 GB

CPU time 18 min, 24 s 7 h

Eigen-
f requency(
×1014 Hz

)

2.7984 2.7984 2.7984(2)
2.8011 2.8011 2.8011(2)

2.8020 2.8020
2.8028 2.8028

2.8031 2.8031
2.8035 2.8035 2.8035(2)

2.8042 2.8042
2.8066 2.8066 2.8066(2)

2.8075 2.8075
2.8078 2.8078 2.8078(2)

2.8094 2.8094
2.8097 2.8097

2.8098 2.8098 2.8098(2)

4. Conclusions

In summary, we presented a group theory-based FEM that may be efficiently used to
perform mode analysis of photonic devices with Cn symmetry. Group theory provides a
solid framework that can be used to develop the RBBC for Cn symmetric optical systems,
which truncates the whole finite elements computational domain to a single periodic unit.
We studied the practical implementation of these boundary conditions in the finite-element
method and numerical simulation software COMSOL, explored its impact on degenerate
modes, and illustrated it with examples of two-dimensional photonic crystal fiber and
three-dimensional photonic crystal resonator. Moreover, we benchmarked our RBBC-FEM
against the convectional FEM with whole computational domain, and found out that the
calculated eigenmodes from the two independent FEM implementation showed perfect
agreement and was consistent with group theory analysis. As for the FDTD approach, it
was difficult to make a fair comparison in terms of calculation time and memory usage
between FDE (Lumerical FDTD) and our method (RBBC-FEM) due to the poor performance
of capturing the mode degeneracy in FDTD calculation (not show here); thus, fine grid
was needed to clearly distinguish the true degenerate modes from numerical errors. The
rationale of highly dense grid needed in FDTD was beyond the scope of our paper; thus,
we confined the comparison our comparison within the existing FEM methods.

As an outlook, we envisaged that our work of applying RBBC in finite element
computational photonics is useful for analysis and design of different photonic devices
with rotational Cn symmetry. By reducing the computational domain to periodic cells, the
required degrees of freedom for the finite element solution were decreased significantly,
thereby boosting solution efficiency. Importantly, the method relied solely on the Cn
symmetry of the device and can be applied to numerical computation and design of any
photonic device with Cn symmetry. Notably, the proposed approach can also be extended
to scattering FEM problems, and in combination of various types spatial symmetries that
are beyond Cn symmetry. Thus, we believe that our work is useful and inspiring towards
developing highly efficient FEM algorithms in computational photonics.

Author Contributions: Conceptualization, Y.C.; methodology, Z.W.; validation, Z.W., J.W. and L.L.;
writing—original draft, Z.W., J.W., L.L. and Y.C. All authors have read and agreed to the published
version of the manuscript.



Photonics 2023, 10, 691 12 of 13

Funding: National Key Research and Development Program of China (Grant No. 2021YFB2800303),
National Natural Science Foundation of China (Grant No. 61405067) and the Innovation Project of
Optics Valley Laboratory.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to data sharing is not applicable to
this article.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

In two dimensions, Equation (5) can be written as:

[Er(r, φ, z)]Γd
= χ(cn)[Er(r, φ, z)]Γs

[Ez(r, φ, z)]Γd
= χ(cn)[Ez(r, φ, z)]Γs

(A1)

The electric field in the Cartesian coordinate system and cylindrical coordinate system
corresponds as follows: Ez = Ez, Er = Excos φ + Eysin φ. The unit tangential vector of the
boundary Γs/Γd is

⇀
e = {cos φ, sin φ}; thus, Er =

⇀
e · Et. Equation (A1) can be written as:[

⇀
e d · Et(x, y)

]
Γd

= χ(cn)
[
⇀
e s · Et(x, y)

]
Γs

[Ez(x, y)]Γd
= χ(cn)[Ez(x, y)]Γs

, (A2)

where
⇀
e s/

⇀
e d represents the unit tangential vectors of boundary Γs/Γd.

In FEM, the transverse and longitudinal components of the electric field are expanded

using basis functions,
−
e t = ∑m

j=1
−
e t,jαj(x, y) and

−
e z = ∑n

j=1
−
e z,jαj(x, y). αj(x, y) represents

vector basis functions,
−
e t,j is the coefficient corresponding to the vector basis function,

αj(x, y) represents scalar basis functions, and
−
e z,j represents the corresponding coefficient

of the scalar basis function. When αj(x, y) is chosen as the first type Nédélec elements,
⇀
e j · αj(x, y) = 1, and

⇀
e j represents the unit tangential vector of the corresponding boundary,

the physical meaning of
−
e t,j is the tangential component of the electric field on the boundary.

It should be noted that, as shown in Figure A1, it is assumed that
⇀
e j is in the same direction

as
⇀
e s/

⇀
e d in this article. When αj(x, y) is chosen as Lagrange element,

−
e z,j represents the

value of Ez at the node. Combining the finite element variables with the substitution of
et = γEt, ez = Ez, Equation (A2) becomes:

−
e t,d = χ(cn)

−
e t,s

−
e z,d = χ(cn)

−
e z,s

(A3)

Similarly, the electric field is expanded in three dimensions,
−
E = ∑m

j=1
−
e jαj(x, y, z),

where αj(x, y, z) represents vector basis functions,
−
e j is the coefficient corresponding to the

vector basis function. When αj(x, y, z) is chosen as the first type Nédélec elements, we have
−
e d = χ(cn)

−
e s.
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