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Abstract: Along the shoreline of the White Sea, due to the post-glacial uplift of the coast, some
water bodies with stable stratification have been formed. They have been classified as meromictic as
they are at different stages of isolation from the Sea. As separation progresses, significant changes
occur in the water column, including the composition of chromophoric dissolved organic matter
(CDOM) and the structure of the aquatic microbial community. In this work, we searched for optical
proxies of euxinia (anoxic conditions with accumulated hydrogen sulfide) in the water column of the
meromictic lagoon on Zeleny Cape. The lagoon is separated from the White Sea basin by a shallow
threshold that completely isolates the lagoon during low tide, but marine water enters the lagoon
during high tide. The ecosystem in the lagoon is characterized by the marine salinity of water and a
high organic matter content in the bottom water and sediments. In this study, spectral methods were
used to obtain the depth distribution of CDOM, chlorophyll, and bacteriochlorophyll in the lagoon
with strong water stratification and euxinic conditions in the bottom water. The measured optical
CDOM characteristics were compared with hydrochemical data (water salinity, Eh, pH, dissolved
oxygen), phytoplankton (oxygenic phototrophs), and green sulfur bacteria (anoxygenic phototrophs)
distribution along the water column. The spectroscopic methods showed to have the advantages of
not requiring water sample pre-treatment and allowing rapid sensing of CDOM and photosynthetic
pigments at each horizon.

Keywords: absorption spectra; fluorescence emission; fluorescence quantum yield; chromophoric
dissolved organic matter (CDOM); meromictic lake; euxinia; phototrophic bacteria; (bacterio)chlorophylls

1. Introduction

Euxinic conditions, or euxinia, occur when there is a sulfide accumulation and the
resulting bottom water anoxia. Euxinic water bodies are usually strongly stratified, with
the aerobic surface layer and the sulfide-rich bottom water. The combination of stratified
waters and slow vertical mixing is essential to maintaining euxinic conditions [1]. Euxinia
is quite rare in modern times; however, it existed in ancient seas and was an important
characteristic during many key periods of the Earth’s history [2]. Euxinia is currently found
in meromictic water bodies, such as some lakes and lagoons on the coast of the White,
Barents, Japanese, Okhotsk Seas, and others, and the Black Sea is a large euxinic water
body [1]. Nowadays, euxinic conditions are found on less than 0.5% of the seafloor [3].

On the coast of the White Sea, due to post-glacial uplift, some water bodies with stable
stratification were formed, which are at different stages of isolation from the sea [4–7]. The
hydrological feature of the meromictic water bodies found on the coast of the White Sea
is a specific vertical stratification of the water column with a transition from surface fresh
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(or brackish) water to salt water at a depth caused by the overlay of marine water by fresh
runoff. These meromictic water bodies were classified as coastal marine types according to
their definition [8,9]. The upper layer with lower salinity involved in seasonal circulation is
defined as mixolimnion, and the bottom stagnant water is defined as monimolimnion. Usu-
ally, the latter is anoxic. In meromictic reservoirs, at the oxic–anoxic interface (chemocline),
a colored layer of water often appears due to the massive development of phototrophic
microorganisms. These can be unicellular algae that concentrate near the source of bio-
genic elements diffusing from the anaerobic zone, or anoxygenic phototrophic bacteria
that photooxidize hydrogen sulfide. The color of the water layer depends on the dominant
microorganism and the pigments that make up their photosynthetic apparatus. In the
case of purple sulfur bacteria, the water color is pink. For green-colored sulfur bacteria
or unicellular green algae, the color is green, and for brown-colored green sulfur bacteria,
it is brown-red. Another variation in the colored layers is formed by cryptophyte algae,
which have red phycobilin (for example, phycoerythrin) or blue phycobilins (phycocyanin
and allophycocyanin) as additional pigments. The layer with their massive development
has the corresponding color [10]. On the coast of the White Sea, in most meromictic water
bodies, colored interlayers marking the chemocline were found [4,11]. It has been noted
that in water bodies that have recently separated from the sea and have not yet lost contact
with it, this layer has red shades due to purple sulfur bacteria, the brown form of green
sulfur bacteria Chlorobium phaeovibrioides, or the cryptophyte flagellates Rhodomonas sp. In
long-separated water bodies, where the surface layer of water (mixolimnion) has already
become fresh, an outbreak of green-colored Chlorobium phaeovibrioides occurs in the anaer-
obic part of the chemocline, and above the redox transition, green-colored algae, such as
euglenoids or flagellates Micromonas sp., and sometimes blue-green colored cryptophyte
algae Cryptomonas, can be found [11].

Along with the process of separation from the White Sea, significant changes occur in
the water chemical properties and the structure of the aquatic community. These changes
are a result of the microbial decomposition of plant residues and other biomaterials. This
is also related to the peculiarities of the composition of dissolved organic matter (DOM)
in water bodies. DOM is an essential component of natural water and represents one of
the largest pools of carbon in the global biosphere [12,13]. It plays a critical role in many
ecological processes [14–18]. The colored portion of the DOM (chromophoric dissolved
organic matter, CDOM) of natural water is made up of humic substances, which are com-
plex mixtures of heterogeneous organic compounds of biotic origin that have undergone
extensive transformations. Humic substances are high-molecular-weight aromatic hydrox-
ycarboxylic acids containing various functional groups, such as carboxylic and phenolic
groups (which affect its solubility) and aromatic structures (which absorb light) [19]. They
are capable of forming hydrogen bonds, actively participating in sorption processes, and
entering into hydrophobic, ionic, and donor–acceptor interactions with various classes of
organic compounds [19,20]. Humic substances are also capable of chelating organometallic
substances, thereby sequestering toxic heavy metals. The ecological consequence of such
binding includes changes in the form of the existence of toxic substances and their ability
to migrate, a decrease in their bioavailability, and a reduction in their toxicity [21]. This is
because the free form of the toxicant has the highest activity, while the bound substance
loses its toxicity. Some phytoplankton, such as dinoflagellates, may be capable of using
nitrogen derived from humic substances [22]. Chelation by humic compounds might also
enhance the availability of iron to phytoplankton [19].

Humic substances play a crucial role in determining the water color and its optical
properties [23–29]. The concentration of the CDOM in aquatic systems is influenced by
numerous factors such as soil type, climatic conditions, hydrological regime, presence of
vegetation, and the development of microorganisms [30]. The absorbance or absorption
coefficient (calculated as absorbance divided by path length, multiplied by 2.303 to convert
to natural log units) of humic substances in the UV range, usually measured at 350 nm, is an
important parameter used to estimate the CDOM content in natural waters. Spectroscopic
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methods offer several advantages over traditional techniques, including the ability to
measure water characteristics remotely via methods such remote LiDAR sensing [31–35] or
satellite remote sensing [36–38]. These optical properties of CDOM are essential in many
operational applications of ocean-color satellite sensing, such as natural fisheries, protected
marine area selection and monitoring, ecosystem model data assimilation, aquaculture site
selection and monitoring, water quality and eutrophication, hazard monitoring such as
nuisance or harmful algal blooms, and more [39].

In this study, we aimed to identify the optical proxies that could indicate the presence
of euxinia (conditions characterized by both anoxia and sulfide) at the lagoon on Zeleny
Cape, a marine meromictic reservoir located on the White Sea coast. The ecosystem of
the lagoon is part of a group of isolated lagoons with high levels of organic matter in
their sediments. The lagoon is separated from the White Sea basin by a shallow threshold
that completely isolates it during low tide. The main objectives of this study include
using spectral methods to determine the depth distribution of CDOM, phytoplankton
chlorophyll (Chl), and bacteriochlorophyll (Bchl) from anoxygenic bacteria in the lagoon,
which experiences strong stratification and euxinic conditions in its bottom water.

2. Material and Methods
2.1. Lagoon on Zeleny Cape (Karelian Coast of the White Sea)

The lagoon on Zeleny Cape is situated in the Kandalaksha Bay, approximately 3 km
away from the White Sea Biological Station (WSBS) of Lomonosov Moscow State University,
at coordinates 66◦ 31′ 49” N and 33◦ 05′ 55” E (as shown in Figure 1). The lagoon has a
total area of 17662 m2, an average diameter of 150 m, and a maximum depth of 6.5 m. The
lagoon on Zeleny Cape is partially separated from the marine area by a shallow rocky sill.
This sill opens completely during low tide and is submerged during high tide. The lagoon
accumulates sediment from both the sea and the surrounding watershed, as well as organic
substances of both autochthonous and allochthonous origin. These organic substances
largely take the form of silt, which is reach in organic matter. The lagoon’s catchment area
is quite small, only about 7 times the area of the water surface, and this fact determines
the lagoon’s hydrological features. The volume of the surface runoff entering the lagoon
is small and does not lead to a significant desalination of the upper layer. The difference
in the water density necessary for stable water stratification (meromixis) is formed due
to the accumulation of concentrated brine at the bottom during the freezing of sea water.
In the near-bottom zone of the lagoon, there is a permanent sulfide zone (euxinia) with
a boundary located at a depth of 4.0–5.5 m in different years. At this boundary, in the
anaerobic part of the chemocline, a community of pigmented microorganisms develops
during the ice-free period, including algae and anoxygenic phototrophic bacteria. Algal
blooms are most often formed by red cryptophyte flagellates Rhodomonas sp. These algae are
resistant to hydrogen sulfide and in some cases can descend into the hydrogen sulfide zone.
Anoxygenic phototrophs can be mainly represented by green-colored and brown-colored
green sulfur bacteria, as well as purple bacteria.

2.2. Water Sampling and Spectral Measurements

Natural water was sampled in September 2022 in the lagoon at Zeleny Cape at a
location with a maximal depth of 6 m. It should be noted that beginning of September is
the end of summer season at the White Sea, which is a period of the mature stratification
with the most contrasting chemocline, with still warm weather and before the period of
the autumn storms mixing water layers. Water samples were taken using a submersible
pump from various horizons, 0, 1, 2, 3, 4, and 4.5 m, and starting from 5 m down to 5.9 m
with a 0.1 m step. At that moment, the chemocline occupied a layer between 4.5 and 5.5 m.
The water salinity S and redox potential Eh was measured using a YSI Pro conductometer.
Before CDOM spectral measurements were taken, water was filtered with nylon filters with
a pore size of 0.22 µm to separate suspended particles.
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Absorption spectra were measured using a Solar PB2201 spectrophotometer. This was
conducted for unfiltered water in cuvettes with an optical path length of 3 cm in order to
register the absorption bands of bacteriochlorophyll and determine its concentration for
filtered water in cuvettes with an optical path length of 1 or 3 cm for the analysis of CDOM.
Long cuvettes provide more accurate measurements for the CDOM content at longer
wavelengths. The absorbance values measured in different cuvettes were subsequently
reduced to the absorbances at 1 cm.

The CDOM fluorescence emission spectra were recorded using a Solar CM2203 lumi-
nescence spectrometer under excitation with a wavelength λex varying from 250 to 500 nm
with a step 10 nm. The emission spectra were recorded in the range from 270 to 515 nm
(depending on the excitation wavelength) to 700 nm with a step of 1 nm. The spectral slits
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of both excitation and emission monochromator were set as 5 nm. Fluorescence spectra
were measured using quartz cuvettes with an optical path length of 1 cm. The measured
fluorescence spectra were corrected for the effect of the internal filter as:

I = I0•10(Dex+Dem)/2 (1)

where Dex and Dem are the absorbances at the excitation and emission wavelengths [40].
The calculation of the fluorescence quantum yield Φ was carried out using the method of a
reference compound using the quinine sulfate solution, which was previously used for the
samples of natural water and commercial humic preparations [40].

The fluorescence of chlorophyll (Chl) a was measured using a Water-PAM (Walz,
Effelrich, Germany) device. Fluorescence F0 allows an evaluation of the abundance of
phytoplankton to take place as it is proportional to the content of Chl a in water [41]. The
photosynthetic activity of phytoplankton was determined based on a parameter of the
maximum quantum yield of the primary photochemical reaction in the Photosystem II
as Fv/Fm = (Fm − F0)/Fm. Before measuring, water samples with phytoplankton were
adapted in the dark for 15 min. Measurements of Chl a fluorescence were corrected
for the presence of CDOM. Correction for the fluorescence of CDOM was conducted by
subtracting the CDOM fluorescence values of the water filtered through a 0.2 µm pore size
filter. The fluorometer was calibrated into Chl a concentration units using marine cultures
of various densities.

The concentration of Bchl (d+e), the main photosynthetic pigments of green sulfur
bacteria, both green-colored and brown-colored, was determined from the absorption
spectra of unfiltered water according to [42,43]. The area of the long-wavelength absorption
band of BChl in the spectral range of 650–800 nm was calculated from the spectra, and then
the Bchl concentration was calculated using the formula with an empirically determined
coefficient. Calibration of the fluorometer in units of the chlorophyll a (Chl a) concentration
was carried out using marine cultures with different densities: the diatom Thalassiosira
weissflogii (Grunow) for surface horizons and the cryptophyte alga Rhinomonas reticulata
(I.A.N. Lucas) G. Novarino for phytoplankton from the 3 m layer and deeper.

3. Results
3.1. CDOM Absorption Spectra

The CDOM absorption spectra are shown in Figure 2 for several horizons. Some
water samples in the figure have been omitted to better distinguish spectral curves. In
all the samples studied, the CDOM absorbances decreased monotonically with increasing
wavelength without any apparent absorption peaks, which is typical of naturally occurring
CDOM in water [26,40]. A shoulder was observed at a wavelength of about 270 nm due to
the absorption of phenolic or indole groups [44,45]. That shoulder was more pronounced at
a depth of 4 m and between 5.4 and 5.8 m due to CDOM formed by microorganisms found
at those water layers. In the water from the 5.9 m horizon, the absorption spectrum differed
significantly from the others, suggesting higher absorbances due to the accumulation of
CDOM in the bottom water.
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Absorbance in the UV range reflects the concentration of CDOM: the higher the
concentration of humic substances in water, the greater is absorbance. Most often, an
absorbance (A350) or absorption coefficient at a wavelength of 350 nm is used to quantify
CDOM [46].

3.2. Correlation between CDOM Absorbances and Water Salinity

In meromictic water bodies isolated from the White Sea, autochthonous organic matter
partly settles and is buried in the anaerobic zone, while the other part accumulates in
surface waters [47]. The main source of humic substances is the soil of the catchment
area [30,47,48]. Humic substances are washed out from the soil by fresh runoff, and when
fresh water enters the reservoir and lingers in it, the color of its water becomes darker. It is
known that in the Arctic region, low-salinity waters in mixing zones affected by river runoff
usually have the maximum DOM content [46,49]. Freshwater streams, mainly of swamp
origin, have a higher concentration of humic substances compared to marine water and
large optical indices. Therefore, one could expect intermediate CDOM concentrations and
averaged absorbances in semi-isolated reservoirs. In oceanology, a strong anticorrelation
between water salinity and CDOM absorbance in the UV range was recorded for sea water
mixed with fresh river runoff (in river estuaries) [50], which is also known in the White
Sea [46,51]. One could expect a similar inverse relationship between the content of humic
substances in the mixolimnion and the salinity of the water in it.

If we take filtered samples from the mixolimnion zone of different meromictic wa-
ter bodies along the Karelian coast of the White Sea, we observe an inverse relation-
ship between CDOM absorbances (A350 and A380) and water salinity (see Figure S1 in
Supplementary Materials). The results obtained for various meromictic lakes confirm the
hypothesis that the content of humic substances in the mixolimnion is related to water
salinity due to the conservative mixing of fresh water with a high concentration of humic
substances from terrestrial sources and salty sea water with a low CDOM concentration.

However, in the case of the water column in the lagoon on Zeleny Cape, we received
different results. The absorbance values (A350 at 350 nm or A380 at 380 nm) increased with
depth and salinity (Figure 3a,b). Water salinity was expressed per mille (‰).
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Figure 3. Dependence of the UV absorbances A350 and A380 on depth (a) and on water salinity (b) for
water from different horizons of the lagoon on Zeleny Cape.

This observation does not correspond to the mixing of water with different concen-
trations of DOM. Instead, the increasing dependence of A350 or A380 on salinity is a sign
of meromixis (impaired water circulation). The surface water in the lagoon on Zeleny
Cape is less saline, and the salinity increases by about 2‰ at depth. Simultaneously, the
concentration of CDOM in water increases. This suggests that the CDOM in the lagoon on
Zeleny Cape is not solely derived from terrestrial sources but also from within the water
body itself. The lack of mixing and circulation in the meromictic water column results
in the accumulation of CDOM and other dissolved substances, leading to an increase in
absorbance values with depth and salinity. These findings highlight the importance of
considering the unique characteristics of each water body when studying CDOM dynamics
and its relationship with salinity.

3.3. CDOM Absorbance Ratios

The CDOM absorption spectra depend not only on its concentration but also on
the type of CDOM present in natural water [45,46,52] or the degradation of humic sub-
stances [16,17]. The absorption spectra of CDOM may differ in the shape of the spectral
curve. Therefore, to characterize CDOM, absorbance ratios at different wavelengths or the
slope of the absorption spectral curve in a certain spectral range may be used [26,44].

In addition to absorbances at individual wavelengths, the ratios of absorbances taken at
selected wavelengths were calculated. The depth dependencies obtained for the A280/A472
and A465/A665 ratios are shown in Figure 4.
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For the ratios shown in the figure, there is a local maximum at the 4 m horizon. These
ratios characterize the relative concentrations of CDOM molecules with different molecular
weights, namely, A280/A472 reflects the proportion between the lignins and other materials
at the beginning of humification [53,54], and the A465/A665 ratio is used as a humification
index since it is related to the age and the degree of aromatic carbon condensation in humic
material [55,56]. Because we see a singularity of this curve at a depth of 4 m, we can
conclude that there is an anomaly in the spectral properties of the aromatic component of
CDOM, freshly released CDOM. One can see that this corroborates the appearance of a
shoulder at 270 nm caused by the aromatic compounds of a phenolic nature (Figure 2). Later,
we will compare this observation with the results of the analysis of the depth dependence
of the CDOM fluorescence quantum yield. It should be noted that the depth in the location
of sampling was 6 m, so the layer of sampling 5.9 m was just 10 cm above the bottom,
and the water contained a concentrated amount of CDOM released from the residues of
microorganisms sinking to the bottom. The high absorbance ratio at a depth of 5.9 m is
probably due to this.

3.4. FDOM, Fluorophoric Fraction of CDOM

Excited in the UV or visible spectral range, CDOM demonstrates fluorescence emission
due to the fluorophoric part of CDOM (FDOM). Figure 5 shows CDOM fluorescence spectra
measured with various excitation wavelengths for CDOM from different horizons of the
lagoon on Zeleny Cape.
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on Zeleny Cape.

The fluorescence emission spectrum of CDOM under UV excitation consists of two
overlapping bands: a minor band, so called protein-like fluorescence [52,57], with an emis-
sion maximum in the range of 300–350 nm, due to the fluorescence of aromatic amino
acids and phenolic compounds, and a more intense fluorescence of humic substances in the
blue region [40,58,59]. In the fluorescence spectra of unfiltered water, UV fluorescence of
microorganism cells can appear. The maximum fluorescence of humic substances depends
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on the excitation wavelength; as it increases from 270 to 310 nm, the maximum of the
emission band shifts towards shorter wavelengths (“blue shift” of fluorescence) [40,52,60],
and with a subsequent increase in the excitation wavelength, the wavelength of the max-
imum of the band monotonously grows. The value of the “blue shift” depends on the
type of natural water and can characterize humic compounds in the composition of DOM.
The fluorescence spectra of different types of natural water also differ in the values of
the fluorescence quantum yield and its dependence on the wavelength of the exciting
radiation [40,46].

The dependence of the wavelength of the spectrum maximum λmax on the excitation
wavelength λex is shown in Figure 6. It can be seen from the figure that the dependence has
a non-monotonous character; at an excitation wavelength of 250–270 nm, λmax increases
and then decreases to 310 nm.
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Figure 6. Dependence of the emission wavelength of the CDOM fluorescence maximum on the
excitation wavelength for different horizons in the lagoon on Zeleny Cape.

The shift of the maximum fluorescence emission band towards shorter wavelengths
with a change in the excitation wavelength from 280 to 310 nm corresponds to the “blue
shift” characteristic of natural humic compounds [40,45,60–62]. With a further increase in
the excitation wavelength, the emission maximum shifts to the long-wavelength region.
The fact that the dependence of λmax on the excitation wavelength turned out to be similar
for different horizons indicates that the aromatic part responsible for CDOM fluorescence
has a similar chemical nature at different depths, but closer to the bottom, the gradual
accumulation of CDOM is observed.

3.5. CDOM Fluorescence Quantum Yield (FDOM/CDOM) and Its Dependence on Depth

The CDOM fluorescence quantum yield Φ was calculated from the fluorescence
emission spectra and absorbances at excitation wavelengths using the standard solution
method. An aqueous solution of quinine sulfate was taken as a reference solution. Figure 7
shows the calculated dependences of the fluorescence quantum yield on the excitation
wavelength Φ(λex) in water samples from different horizons of the lagoon. The dependence
has a minimum at an excitation wavelength of ≈290 nm, as well as a small minimum at
λex ≈ 360 nm; maxima are observed at λex ≈ 340 nm and 380 nm. It can be seen that the
absolute value of the fluorescence quantum yield differs significantly in different water
layers. Figure 8 demonstrates the fluorescence quantum yield for an excitation wavelength
of 340 nm (QY340). The fluorescence quantum yield was calculated as the wavelength-
integrated CDOM fluorescence divided by CDOM absorbance, so that the value can be
interpreted as a ratio FDOM/CDOM. This depth dependence reaches a maximum at
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4 m and a local minimum at 3 m, which characterize water layers with different CDOM
properties. This finding corroborates the maximum in Figure 4 showing the ratio of the
low-molecular and high-molecular parts of the aromatic CDOM components.
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3.6. Depth Distribution of Chlorophyll and Photosynthetic Activity

At the time of sampling, there were two layers within a water column in the lagoon
with active phytoplankton oxygenic photosynthesis (Table 1), as evidenced by the measure-
ment data of chlorophyll (Chl) a fluorescence. The F0 parameter characterizes the Chl a
amount and the total abundance of phytoplankton.
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Table 1. Chl a fluorescence parameters (F0, Fv/Fm), redox potential Eh, and Bchl (d+e) concentration
in the lagoon on Zeleny Cape in September 2022.

Depth, m 3.0 4.0 4.5 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.9

Chl F0 49 163 174 415 2175 3202 -- --

Chl Fv/Fm 0.52 0.63 0.33 0.22 0.76 0.77 0 0

Eh, mV 99 101 67 54 35 −9 −216 −297 −317 −339 −351 −365

O2, % 94 82 0.9 0 0 0

Bchl (d+e)
mg/m3 0 0 0 477 690 600 * 1067 1905 2278 2495 2598 2775

* Approximate data: at horizon 5.2 m, we observed overlapped bands of Chl and Bchl absorption.

The dominance of autotrophic dinoflagellates from the genus Gymnodinium; a high
number of unidentified small flagellates and cocci were found within the upper Chl a peak.
High values of the Fv/Fm parameter (0.63) indicate the good physiological state of these
algae at a horizon of 4 m. The second peak of Chl a fluorescence is located at a depth
of 5–5.2 m; it is formed by the mass reproduction of cryptophyte flagellates Rhodomonas
sp. These algae are capable of efficient photosynthesis (Fv/Fm = 0.76) in shady conditions
and set especially high Fv/Fm values, which has been repeatedly observed before in this
and other coastal stratified water bodies [10,11,63]. The decrease in the Chl a fluorescence
parameter Fv/Fm in the intermediate zone between the two depth peaks may be due to the
weakening of light intensity, negatively affecting the living conditions of phytoplankton, as
well as eating by predators, which was recorded previously in a similar meromictic water
body Lake Kislo-Sladkoe [64].

3.7. Depth Distribution of Bacteriochlorophylls of Green Sulfur Bacteria

Green sulfur bacteria (Chlorobiaceae) are a family of obligate anaerobic photolithoau-
totrophic bacteria that use hydrogen sulfide, hydrogen, and elemental sulfur as electron
donors. The main photosynthetic pigments of green sulfur bacteria are two types of chloro-
somal bacteriochlorophylls (Bchl d and Bchl e). Figure 9 shows the absorption spectra of
unfiltered water from the lagoon with microorganisms in horizons below the chemocline,
starting from 5 m.

Photonics 2023, 10, x FOR PEER REVIEW 13 of 18 
 

 

3.7. Depth Distribution of Bacteriochlorophylls of Green Sulfur Bacteria 

Green sulfur bacteria (Chlorobiaceae) are a family of obligate anaerobic photolithoau-
totrophic bacteria that use hydrogen sulfide, hydrogen, and elemental sulfur as electron 
donors. The main photosynthetic pigments of green sulfur bacteria are two types of chlo-
rosomal bacteriochlorophylls (Bchl d and Bchl e). Figure 9 shows the absorption spectra of 
unfiltered water from the lagoon with microorganisms in horizons below the chemocline, 
starting from 5 m. 

The absorption band reaching its maximum at about 725 nm is the long-wavelength 
absorption band of the chlorosomal bacteriochlorophylls of green sulfur bacteria. At a 
horizon of 5.2 m, one can see the absorption Chl peak at 680 nm overlapping the major 
peak of Bchl, demonstrating the presence of Chl-containing phytoplankton (Rhodomonas 
sp.) at that depth. The concentration of Bchl (d+e), the main photosynthetic pigment of 
green sulfur bacteria, was determined from the area of the long-wavelength absorption 
band of BChl in the spectral range of 650–800 nm (Table 1) according to [42]. Starting from 
a 5.3 m concentration of Bchl, green sulfur bacteria grow, which indicates the presence of 
hydrogen sulfide in the deeper water layers. The concentration of Bchl (d+e) increases to-
wards the bottom of the lagoon; it does not have a clearly defined maximum, which, in all 
likelihood, is associated with the settling and accumulation of dead bacterial cells in which 
pigments are retained. The Bchl (d+e) maximum concentration in the bottom water (2775 
mg/m3) was about seven times higher than the Bchl (d+e) concentration at the same depth 
in the lagoon in September 2017 [65]. 

 
Figure 9. Absorption spectra of unfiltered water from different horizons below the chemocline in 
the lagoon on Zeleny Cape (September 2022). 

3.8. Discussion of Results: Optical Properties of CDOM, Chl, and Bchl as Proxies of Euxinia in 
Meromictic Water Bodies 

If we put altogether the optical properties of CDOM (A280/A472 and FDOM/CDOM), 
Bchl of green sulfur bacteria, O2 concentration, redox potential, and the Eh and pH meas-
urements, we could see apparent water stratification in the lagoon on Zeleny Cape (Figure 
10). 

In the lagoon on Zeleny Cape, the upper water layer, the mixolimnion, extends from 
the surface to a depth of 2 m, showing constant hydrochemical and optical characteristics. 
Since this lagoon is separated from the White Sea by a shallow threshold, marine water 
enters the lagoon during high tide, but the water catchment area is low; therefore, the 

Figure 9. Absorption spectra of unfiltered water from different horizons below the chemocline in the
lagoon on Zeleny Cape (September 2022).



Photonics 2023, 10, 672 13 of 18

The absorption band reaching its maximum at about 725 nm is the long-wavelength
absorption band of the chlorosomal bacteriochlorophylls of green sulfur bacteria. At a
horizon of 5.2 m, one can see the absorption Chl peak at 680 nm overlapping the major peak
of Bchl, demonstrating the presence of Chl-containing phytoplankton (Rhodomonas sp.) at
that depth. The concentration of Bchl (d+e), the main photosynthetic pigment of green
sulfur bacteria, was determined from the area of the long-wavelength absorption band of
BChl in the spectral range of 650–800 nm (Table 1) according to [42]. Starting from a 5.3 m
concentration of Bchl, green sulfur bacteria grow, which indicates the presence of hydrogen
sulfide in the deeper water layers. The concentration of Bchl (d+e) increases towards the
bottom of the lagoon; it does not have a clearly defined maximum, which, in all likelihood,
is associated with the settling and accumulation of dead bacterial cells in which pigments
are retained. The Bchl (d+e) maximum concentration in the bottom water (2775 mg/m3)
was about seven times higher than the Bchl (d+e) concentration at the same depth in the
lagoon in September 2017 [65].

3.8. Discussion of Results: Optical Properties of CDOM, Chl, and Bchl as Proxies of Euxinia in
Meromictic Water Bodies

If we put altogether the optical properties of CDOM (A280/A472 and FDOM/CDOM),
Bchl of green sulfur bacteria, O2 concentration, redox potential, and the Eh and pH measure-
ments, we could see apparent water stratification in the lagoon on Zeleny Cape (Figure 10).
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In the lagoon on Zeleny Cape, the upper water layer, the mixolimnion, extends from
the surface to a depth of 2 m, showing constant hydrochemical and optical characteristics.
Since this lagoon is separated from the White Sea by a shallow threshold, marine water
enters the lagoon during high tide, but the water catchment area is low; therefore, the
salinity of the surface water is high, and the CDOM spectral characteristics are close to that
of the marine type.

Typically, in meromictic water bodies, the CDOM spectral characteristics change along
with an increasing depth due to the mixing of freshwater with the CDOM of a continental
origin with saline water with marine CDOM. Therefore, for most meromictic water bodies,
an anticorrelation of CDOM absorbances in the UV range (A350 or A350) with salinity is
observed. A similar dependence of D350 on salinity was observed in the area where the
Northern Dvina flows into the White Sea [46], as well as in the area where the water of
White Sea mixes with the waster of the Barents Sea [51]. However, for the water column in
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the lagoon on Zeleny Cape, the absorbance values were increasing along with the depth
(starting from 3 m down to the bottom), as well as with salinity. This is explained by the
accumulation of CDOM in deepened waters.

In the chemocline zone at 4 m, signs of the appearance of the freshly released CDOM
of autochthonous origin are observed: increased values of the fluorescence quantum yield
(almost 3%), protein-like fluorescence in filtered samples, an apparent shoulder in the
absorption spectrum in the 270 nm region, and the sharp increase in the absorbance ratios
A280/A472 and A465/A665. Further, the concentration of CDOM increases along with the
depth and reaches a maximum in the bottom water. This is likely due to the large microbial
biomass in bottom water and bottom sediments, which is the source of CDOM formation.

Between 5 m and 5.2 m horizons, one can find simultaneously phytoplankton
(Rhodomonas sp.) reaching maximum photosynthetic activity at 5.2 m water layer neg-
ative redox values, as well as anoxygenic phototrophic bacteria (Chlorobiaceae), of which the
concentration is growing from 5 m down to the bottom of the lagoon. This layer, between
5 m and 5.2 m, we could characterize as an oxic–anoxic interface with the simultaneous
existence of oxygenic photosynthesis (performed by cryptophytic algae) and anoxygenic
photosynthesis (performed by green sulfur bacteria). Such an association between oxy-
genic and anoxygenic photosynthesis has been described recently for the chemocline of
Lake Cadagno (the Swiss Alps) [66]. The genomic studies suggested the cooperation of
photosynthetic algae with phototrophic sulfur bacteria via C, N, and S metabolism. In the
lagoon on Zeleny Cape, we can apparently observe the microbial association of oxygenic
and anoxygenic photosynthetic organisms using spectral approaches.

Further, the concentration of CDOM increases along with the depth towards the
bottom of the lagoon. This is likely due to the large microbial biomass in the bottom water
and sediments, the source of CDOM formation. The bottom layer is characterized by the
apparent proxies of euxinia: the presence of hydrogen sulfide, negative redox values, and
the development of green sulfur bacteria and anoxygenic photosynthetic bacteria.

The study of CDOM is of great importance for understanding ecological processes
in water systems and developing methods for protecting the environment. Since CDOM
of natural origin due to the presence of humic compounds absorbs UV light and emits
fluorescence under UV excitation [57,58,67,68], its spectra are successfully used in its study
in natural water [30,69,70]. Measuring the absorption spectra of the CDOM in natural water,
one can obtain information about its concentration, roughly the chemical composition, and,
for example, one can determine the presence of various functional groups, such as aromatic
compounds or carbonyl groups (see, for example, [30,71]).

4. Conclusions

The results of the studies of CDOM absorbances in the near-UV range and their
correlation with salinity indicate the absence of the mixing of submerged water layers
in the lagoon on Zeleny Cape. The direct dependence of the CDOM absorbance in the
UV range on salinity at different horizons (as opposed to the inverse dependence for the
mixolimnion when mixing takes place), the depth dependence of the fluorescence quantum
yield (FDOM/CDOM ratio), the ratios A280/A472 and A465/A665 demonstrating maximum
values at the same water horizons as the maximum of fluorescence quantum yield, and the
presence of a Bchl of green sulfur bacteria could all serve as the optical proxies of euxinia
in the water column in the lagoon on Zeleny Cape. The monotonous increase in the CDOM
concentration along with the depth reflects the distribution of living organisms that serve as
a source of CDOM and the accumulation of their decomposition products in the anaerobic
zone close to the bottom. This is confirmed by the monotonic increase in the CDOM content
as well as the increasing concentration of Bchl (d+e) with the depth.

The advantages of spectroscopic methods are that they do not require the pre-treatment
of water samples and are able to rapidly obtain information on the CDOM, Chl, and Bchl
vertical distribution along the water column.
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