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Abstract: An ytterbium-doped, mode-locking fiber front-end laser, delivering both a femtosecond
seed laser and picosecond seed laser, was demonstrated. The fundamental repetition rate of the
1031 nm mode-locked laser was 32.77 MHz, realized with the all-polarization-maintaining (all-PM)
nonlinear amplifying loop mirror (NALM). The femtosecond seed laser and the picosecond seed laser
were delivered after carefully optimizing the nonlinear amplification process. The corresponding
pulse durations were 85 fs and 2.88 ps, with average power of 171 mW and 562.5 mW, respectively.

Keywords: fiber laser; nonlinear amplifying loop mirror; nonlinear amplification

1. Introduction

In the past few decades, ultrafast fiber lasers with picosecond- or femtosecond-
level pulse durations have been developed as the advanced laser sources for multiple
applications, such as multiphoton microscopy [1,2], optical communication [3,4], micro-
machining [5,6], harmonic generation [7–9], terahertz generation with Bessel profile [10],
and optical dynamics of the soliton laser [11–13]. Many contributions were implemented
in investigating the optical characteristics of ultrafast fiber lasers. In 2015, C. Li et al.
demonstrated a 600 mW, 64 fs, 1 µm Yb-doped mode-locking fiber laser with the highest
recorded fundamental repetition rate of 1 GHz [14]. In 2017, Z. Liu et al. built a ring-cavity
Mamyshev oscillator, delivering 40 fs, ~17 MHz, 1 µm mode-locking pulses with ~1 MW
peak power [15]. Further, in 2010, a 1.2 W, 120 fs, 65.3 MHz, 1 µm mode-locking laser
realized with a large-pitch photonic crystal fiber was reported by Y. Song et al. [16].

The efforts in developing ultrafast laser sources delivering both a femtosecond seed
laser and a picosecond seed laser are proved to be attractive for multiple state-of-the-art
applications, such as the optical synchronization for high-intensity laser facility [17,18], X-
ray optics [19], beam synchronous timing system for nuclear research [20], and mid-infrared
optical parametric chirped pulse amplification (OPCPA) [21,22]. The delivered femtosecond
seed laser and picosecond seed laser can be operated under the passively timing-linked
status. Therefore, expensive actively timing-linked modules are no longer necessary. The
robustness of the subsequent hybrid optical system built with the passively timing-linked
seed laser can be significantly improved with higher compactness and lower costs.

The ultrafast polarization-maintaining (PM) fiber oscillator delivering both the fem-
tosecond seed laser and the picosecond seed laser can be realized by utilizing the mode-
locking mechanism of the nonlinear amplifying loop mirror (NALM) [23,24]. A 60 mW,
93 fs, 6 MHz, 1 µm, all-PM NALM laser was realized by Y. Yu et al. in 2018 [25]. In 2017,
G. Liu et al. demonstrated the NALM-based Yb-doped fiber laser delivering the 51 mW,
84 fs, 500 MHz, 1 µm mode-locking pulses [26]. A 104 mW, 44.6 fs, 257 MHz, 1550 nm
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mode-locked NALM laser was reported by W. Gao et al. in 2018 [27]. However, to date,
all-PM fiber front-end lasers delivering both the picosecond seed laser and the femtosecond
seed laser are rarely reported.

Utilizing the NALM with the all-normal dispersion fiber cavity, the significant optical
spectrum evolution of the mode-locking pulses can be realized. The generation of the
picosecond seed laser can be ensured after introducing the narrow-band optical band-pass
filter into the linear arm of the NALM laser [28]. Based on the efforts of the all-normal net-
cavity dispersion and the optical characteristics of the NALM [29], the femtosecond seed
laser can be delivered via the transmission port of the NALM. The subsequent nonlinear
fiber amplifiers are also necessary in optimizing the optical performances of the delivered
picosecond seed laser and the femtosecond seed laser.

In this letter, we built an all-PM fiber front-end laser delivering both the picosec-
ond seed laser and the femtosecond seed laser. The 562.5 mW, 2.88-ps, 32.77 MHz, and
1032.5 nm mode-locking pulses were achieved, after amplifying the signal pulses delivered
by the reflection port of the NALM. The 171 mW, 85 fs, 32.77 MHz, 1029 nm mode-locking
pulses were achieved by applying the double-pass nonlinear amplification. Further de-
tailed experiments were also conducted in optimizing the optical nonlinear evolution of
the delivered laser pulses. The measured root mean square (RMS) of the attenuated out-
put powers of the femtosecond seed laser and the picosecond seed laser was 0.06% and
0.11%, respectively. The experimental results indicate that this home-built all-PM fiber
front-end laser can be utilized in satisfying the urgent requirements of the aforementioned
state-of-the-art applications.

2. Experimental Setup

Figure 1 illustrates a schematic construction of the all-PM fiber front-end laser, con-
sisting of the nonlinear amplifying loop mirror (NALM) oscillator, the picosecond laser
delivering stage, and the femtosecond laser delivering stage. The NALM oscillator consists
of an 80:20 PM fiber coupler, 0.5 m PM Yb-doped gain fiber (INO, Yb-401 PM), a PM fiber
WDM, a 976 nm laser diode, and π/2 phase bias with PM fiber pigtails. The transmission
port was utilized to emit the femtosecond mode-locking laser. The 2.64 mW, 1031 nm signal
laser was delivered via the transmission port of the NALM laser under pump power of
68 mW. The linear arm of the NALM oscillator was composed of the reflection port of
the NALM, the 2.6 nm PM fiber band-pass filter, and the 95:5 output coupler (OC). The
0.155 mW, 32.77 MHz, 1031.5 nm signal laser was delivered by the OC.
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The femtosecond laser delivering stage was realized based on the double-pass nonlin-
ear amplification construction, consisting of the PM fiber circulator, the PM fiber WDM,
the 976 nm laser diode, the 0.5 m PM Yb-doped gain fiber (INO, Yb-401 PM), the PM
fiber collimator, the grating pair pre-chirper (LightSmyth, 1000 lines/mm), and the grating
pair compressor (LightSmyth, 1000 lines/mm). The pre-chirper was employed to man-
age the dispersion and the nonlinear dynamics during the double-pass nonlinear fiber
amplification process. The double-pass amplified signal pulses were delivered from the
PM fiber collimator, which was spliced with the output port of the PM circulator. The
amplified pulses were further compressed by the compressor. The compressed high-power
femtosecond signal pulses were delivered by a D-shaped mirror.

The picosecond laser delivering stage consists of the PM fiber WDM, the 976 nm
laser diode, the 0.5 m PM Yb-doped gain fiber (INO, Yb-401 PM), the PM fiber collimator,
and the pre-chirp managed amplifier. The pre-chirp managed amplifier was applied to
further optimize the amplified picosecond pulses, consisting of the grating pair pre-chirper
(LightSmyth, 1000 lines/mm), the D-shaped mirror, the PM fiber collimator, the PM fiber
WDM, the 976 nm laser diode, and the 0.5 m PM Yb-doped gain fiber (INO, Yb-401 PM).
The amplified picosecond signal pulses were directly delivered by the PM fiber collimator
of the pre-chirp managed amplifier.

3. Results and Discussion

Figure 2a illustrates the optical spectra of the mode-locking signal pulses delivered
by the reflection port (red curve) and the transmission port (black curve) of the NALM
oscillator under a pump power of 68 mW. The corresponding full width at half maximum
(FWHM) of the measured optical spectra was 1.56 nm and 4.87 nm, respectively. Figure 2b
plots the measured auto-correlation traces of the delivered signal lasers. The corresponding
pulse durations were 1.31 ps and 2.94 ps, respectively. Figure 2c illustrates the output
powers of the delivered signal lasers as a function of injected pump power. The stable
mode-locking status can be achieved under a pump power of 68 mW. Further, the NALM
oscillator can lose the mode-locking state after the coupled pump power was decreased to
53 mW. Figure 2d shows the measured radio frequency (RF) spectrum of the signal laser
output from the transmission port. The fundamental repetition rate of the mode-locked
signal pulses was 32.77 MHz. The corresponding RF signal-to-noise ratio was 70.1 dB. The
insert in Figure 2d illustrates the broadband RF spectrum with a measurement span of
1.5 GHz. The measured RF spectrum indicates the high operation stability of the mode-
locking NALM laser. Compared to the material-based mode-locked laser, we realized the
NALM laser with better environmental stability in the long-term operation [30].

The optical characteristics of the femtosecond laser delivering stage were carefully
investigated. Figure 3a illustrates the measured optical spectrum of the amplified 1031 nm
signal pulses delivered by the first-pass of the nonlinear fiber amplifier under a pump
power of 750 mW. The FWHM of the output spectrum was 1.4 nm. There was no obvious
Raman spectral content generated during the amplification process. The compressed auto-
correlation trace of the first-pass amplified signal pulses is shown in the insert of Figure 3a.
The corresponding measured pulse duration was 260.6 × 1.414 fs based on the Gaussian
assumption. The significant pedestals indicate the uncompressed remaining high-order
phase. The corresponding output power and the polarization extinction ratio (PER) as a
function of the coupled pump power are illustrated in Figure 3b. In the experiment, the
output power was measured using a power meter (S314C, Thorlabs, Newton, NJ, United
States) with a resolution of 5 µW. The output power can be scaled up to 367 mW with a
PER of 21.35 dB under a pump power of 750 mW. The corresponding slope efficiency was
49%. No significant amplified spontaneous emission (ASE) content was observed during
the amplification process. Figure 3c illustrates the optical spectral evolution with different
coupled pump powers. In order to conjugate the uncompressed high-order phase, further
double-pass nonlinear pre-chirp managed amplification was implemented.
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laser output from the transmission port. The measured 1.5 GHz RF spectrum is plotted in the insert. 
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Figure 2. (a) The optical spectra of mode-locking pulses output from the reflection port (red curve)
and the transmission port (black curve) of the NALM oscillator under a pump power of 68 mW.
(b) The corresponding auto-correlation traces. (c) The output powers of the delivered signal lasers as
a function of the injected pump power. (d) The radio frequency (RF) spectrum of the delivered signal
laser output from the transmission port. The measured 1.5 GHz RF spectrum is plotted in the insert.
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Figure 3. (a) The optical spectrum of the amplified signal pulses delivered by the first-pass of the
femtosecond laser delivering stage under pump power of 750 mW. Insert: the corresponding auto-
correlation trace of the first-pass amplified signal pulses after compression. (b) The amplified output
power and the polarization extinction ratio (PER) of first-pass amplified signal pulses as a function
of the launched pump power. (c) The measured spectral evolution of the first-pass amplified signal
pulses delivered by the femtosecond laser delivering stage under different pump powers.
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Figure 4c illustrates the optical spectrum evolution trace of the double-pass pre-chirp
managed amplified pulses without optical spectral clipping under different pump powers.
No significant stimulated Raman scattering (SRS) contents were observed by increasing the
pump power. The optimized group delay dispersion (GDD) provided by the pre-chirper
was −189,000 fs2 at 1029 nm. The output spectrum and the measured auto-correlation trace
of the double-pass amplified pulses with or without optical spectral clipping are shown in
Figure 4a. The self-phase modulation (SPM) effect dominated the nonlinear process inside
the double-pass nonlinear fiber amplifier. The nonlinear pedestals of the measured auto-
correlation trace can be significantly inhibited by clipping the longer wavelength contents.
Since the optical spectral clipper was placed between the first-pass and the second-pass
of the double-pass nonlinear fiber amplifier, the spectral phase of the first-pass amplified
signal pulses was optimized, after the spectral profile of the longer wavelength contents
were modified with the parabolic shape [31,32]. The output power and the PER of the
amplified signal pulses are illustrated in Figure 4b. The average powers of the compressed
signal pulses with or without the optical spectral clipping were 171 mW and 233 mW under
a pump power of 750 mW, respectively. The corresponding compressed pulse durations
were 85 × 1.414 fs and 78 × 1.414 fs, based on the Gaussian assumption. The PER of
the amplified signal pulses was reduced from 24.8 dB to 20.5 dB when the pump power
increased from 50 mW to 750 mW.
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Figure 4. The measured optical characteristics of the amplified signal pulses with spectral clipping
(black curve) and without spectral clipping (red curve) output from the femtosecond laser delivering
stage. (a) The optical spectra of the amplified signal pulses delivered by the double-pass pre-chirp
managed amplifier, under the pump power of 750 mW. Insert: the measured auto-correlation traces.
(b) The output powers and the PER of the first-pass and double-pass amplified signal pulses as the
functions of the launched pump power. (c) The spectral evolution trace of the delivered double-pass
amplified signal pulses under different pump powers.

The mode-locking signal pulses delivered by the reflection port of the NALM oscillator
was coupled into the single-mode fiber amplifier of the picosecond laser delivering stage.
The optical spectrum of the corresponding amplified signal pulses with a coupled pump
power of 120 mW is shown in Figure 5a. The measured spectral bandwidth of the 1031 nm
amplified signal pulses was 4.79 nm. The insert illustrates the measured auto-correlation
trace with a pulse duration of 1.95 × 1.414 ps, based on the Gaussian assumption. The
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output power of the amplified signal pulses was 27 mW under a pump power of 120 mW,
as shown in Figure 5b. The PER of the amplified signal pulses was 21.5 dB under a pump
power of 120 mW. The corresponding optical spectrum evolution trace of the amplified
signal pulses under different pump powers is shown in Figure 5c. Further optimization
of the picosecond laser delivering stage can be implemented by integrating the effects of
the SPM and the negative pre-chirp to achieve the amplified signal pulses with shorter
spectral bandwidth.
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Figure 5. The measured optical characteristics of the amplified signal pulses output from the first-
amplifier of the picosecond laser delivering stage. (a) The optical spectrum of the amplified pulses
under the pump power of 120 mW. Insert: the measured auto-correlation trace. (b) The output power
and the PER of the amplified signal pulses as a function of the launched pump power. (c) The spectral
evolution trace of the amplified signal pulses under different pump powers.

The subsequent pre-chirp managed fiber amplifier was utilized to further optimize
the amplified picosecond pulses. Figure 6a illustrates the optimized optical spectrum and
the corresponding auto-correlation trace of the further nonlinear amplified signal pulses
under a pump power of 800 mW. The spectral bandwidth was significantly narrowed to
1.22 nm based on the conjugation between the SPM and the −734,000 fs2@1032.5 nm GDD
provided by the grating pair pre-chirper of the picosecond laser delivering stage. The pulse
duration of the measured auto-correlation trace was 2.88 × 1.414 ps based on the Gaussian
assumption. The output power and the PER of the amplified picosecond pulses are shown
in Figure 6b. The output power of the 1032.5 nm amplified signal pulses can be scaled up
to 562.5 mW. The PER of the amplified signal pulses was above 20 dB.

The measured optical power stabilities of the delivered laser pulses output from the
femtosecond laser delivering stage and the picosecond laser delivering stage are shown in
Figure 7. The root mean square (RMS) of the output powers of the femtosecond laser and
the picosecond laser was 0.06% @ 2 h and 0.11% @ 2 h, respectively. The results indicate
that the all-PM fiber front-end laser was operated with high stability.
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second seed laser and femtosecond seed laser was above 20 dB. The corresponding root 
mean square (RMS) of the attenuated output powers of the picosecond seed laser and the 
femtosecond seed laser was 0.11% and 0.06%. The experimental results indicate that this 
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tioned state-of-the-art applications [17–22]. 
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Figure 7. The measured optical power stability of the delivered laser pulses output from (a) the
femtosecond laser delivering stage and (b) the picosecond laser delivering stage.

4. Conclusions

In conclusion, we have demonstrated an all-PM fiber front-end laser delivering both
the picosecond seed laser and the femtosecond seed laser based on the NALM. The
562.5 mW, 2.88 ps, 32.77 MHz, 1032.5 nm picosecond seed laser was delivered after sim-
ply amplifying the mode-locking seed laser delivered by the reflection port of the all-PM
NALM laser. The 171 mW, 85 fs, 32.77 MHz, 1029 nm femtosecond seed laser was realized,
utilizing double-pass nonlinear amplification. The corresponding PER of the amplified
picosecond seed laser and femtosecond seed laser was above 20 dB. The corresponding root
mean square (RMS) of the attenuated output powers of the picosecond seed laser and the
femtosecond seed laser was 0.11% and 0.06%. The experimental results indicate that this
stable all-PM fiber front-end laser can satisfy the urgent requirements of the aforementioned
state-of-the-art applications [17–22].
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