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Abstract: Vortex beams carry orbital angular momentum (OAM), and their inherent infinite dimen-
sional eigenstates can enhance the ability for optical communication and information processing
in the classical and quantum fields. The measurement of the OAM of vortex beams is of great
significance for optical communication applications based on vortex beams. Most of the existing
measurement methods require the beam to have a regular spiral wavefront. Nevertheless, the wave-
front of the light will be distorted when a vortex beam propagates through a random medium,
hindering the accurate recognition of OAM by traditional methods. Deep learning offers a solution
to identify the OAM of the vortex beam from a speckle field. However, the method based on deep
learning usually requires a lot of data, while it is difficult to attain a large amount of data in some
practical applications. To solve this problem, we design a framework based on convolutional neural
network (CNN) and multi-objective classifier (MOC), by which the OAM of vortex beams can be
identified with high accuracy using a small amount of data. We find that by combining CNN with
different structures and MOC, the highest accuracy reaches 96.4%, validating the feasibility of the
proposed scheme.

Keywords: vortex beams; orbital angular momentum; speckle; convolutional neural network; multi-
objective classifier

1. Introduction

As a special beam-carrying OAM and possessing spiral wavefront, the optical vortex
has important applications in many fields such as optical manipulation [1], optical informa-
tion processing [2], photon computer [3], quantum communication [4–6], and free space
optical communication [7]. OAM-based optical communication has become one of the
research hotspots in recent years. In addition to using amplitude, phase, frequency, and
polarization to modulate information, OAM can be used as a new modulation parameter
in the optical communication system. Because OAM and other physical quantities are inde-
pendent of each other, OAM can effectively integrate with other communication methods,
which greatly upgrades the transmission capability.

The demand for the transmission of large amounts of data in the communication field
is becoming more and more urgent. OAM-based free-space optical communication has
unique advantages and has great prospects in future communication applications. OAM
measurement is critical for these applications. Methods, such as spiral interference fringes
and optical conversion, have been proposed to measure the OAM of vortex beams [8–11].
However, the above methods are limited to identify the OAM of vortex beams in free
space due to the requirement of a well-defined intensity pattern. With the continuous
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development of artificial intelligence, machine learning techniques are widely applied in
many engineering fields such as spectral analysis, computer vision, intelligent machine
control, etc. [12–15] because of their advantages of automatically learning data trends and
patterns that may be ignored by humans. Many OAM recognition methods based on
machine learning have been proposed. In 2014, Krenn et al. proposed for the first time
using the BP-ANN model to identify the intensity map of superimposed Laguerre-Gaussian
(LG) beams, using 16 combinations with an error rate of 1.7% [16]. In 2016, Knuston et al.
used the VGG16 network model to classify 110 different OAM states with a classification
accuracy of 74% [17]. In 2017, Doster and Watnik validated that the demultiplexing effect
to identify Bessel Gaussian multiplexed beams by the Alexnet network model is better
than the traditional method [18]. Compared with the recognition rates of BP-ANN, Li
et al. demonstrated that machine learning methods based on the convolutional neural
network are better choices for demultiplexing LG beams [19]. These results show that
pattern recognition based on machine learning solves the limitation that the traditional
methods are limited to recognizing the OAM of vortex beams in free space, and offers a
new solution for OAM recognition.

Optical fiber is widely used to transmit information over long distances. A specially
designed optical fiber can ensure the distortionless transmission of vortex beams [20–22].
However, this specially designed optical fiber requires a complex manufacturing process
and high cost, hindering popularization and application. In contrast, the manufacturing
process for ordinary optical fiber is mature and low-cost. A multimode fiber (MMF) can
simultaneously transmit a large number of modes, providing a solution for large-capacity
data transmission. When a vortex beam is transmitted in the MMF, the irregular speckle
image is generated at the distal end due to mode coupling and superposition, which hinders
the recognition of the OAM [23]. A deep learning–based method realized the recognition
of OAM from the speckle image at the distal end of the MMF [24], but a large amount of
data is required in this method. The results of deep learning–based methods are directly
proportional to the amount of data. Excellent results depend on a large amount of data,
which is difficult to obtain in some practical problems. The machine learning algorithm
can effectively deal with small data problems and can make correct, but not necessarily
optimal, decisions. In order to fully combine their advantages, in this study we propose a
framework based on a CNN and an MOC which achieves a high accuracy recognition of
the OAM of a vortex beam from speckle with a small amount of data. We extract features
from the pretrained CNN model, send the extracted features and corresponding tags to the
MOC for training, and finally classify them. This method can greatly reduce the amount of
data used while maintaining high recognition accuracy.

2. Designs and Methods
2.1. Dataset

The experimental setup is shown in Figure 1. A vertically polarized laser beam
(Onefive Origami-10XP, 400 fs, 1 MHz) with a wavelength of 1028 nm propagates through
a half-wave plate (HWP), which changes the polarization direction of the beam to 45◦

respective to the horizontal axis. The transmitted light through the beam splitter (BS) is
divided into two beams with orthogonal polarization by the polarization beam splitter (PBS).
Two phase-only spatial light modulators (SLM1, HAMAMATSUX13138-03 and SLM2,
HAMAMATSUX13138-09) impose helical phase to horizontally and vertically polarized
beams, respectively. Two vortex beams with orthogonal polarization and the same or
different OAM are recombined by a PBS and coupled to an MMF (Thorlabs, M31L20,
62.5 µm, NA = 0.275, 20 m) through microscope objective lens 1 (O1). The speckle image
at the distal end of the MMF is collected by microscope objective lens 2 (O2). Finally,
the image is captured by a charge coupler device (CCD, Pike F421B, AVT). The OAM-
related topological charge of the vortex beam generated by SLM1 and SLM2 changes
from 1 to 10.9 with an interval of 0.1. As the two topological charges change alternately,
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10,000 different speckle images are generated at the distal end of the MMF. The distribution
of light intensity is shown in Figure 2.
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Figure 2. The speckle images. (a) l1 = 1.0 & l2 = 1.0; (b) l1 = 5.2 & l2 = 3.7; (c) l1 = 10.9 & l2 = 10.9.

2.2. Network Structure

To ensure high recognition accuracy and reduce the training-required data, we de-
signed an architecture based on CNN and MOC. The network architecture is shown
in Figure 3.
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Figure 3. Overall network architecture.

The CNN is used to fully extract the image features. The manual feature extraction
method of traditional machine learning technology has limitations in the correlation of fea-
tures and may include human bias, affecting the quality of elements and the corresponding
results. Therefore, we use CNN to extract features and learn the importance of features
automatically through backpropagation, thus eliminating some of the problems and lim-
itations of manual feature extraction. The feature extraction depends on the structures
of CNN. In this study, different structures of CNN, including ResNet [25], ResNeXt [26],
DenseNet [27], and GoogLeNet [28], are selected to extract features. The module structure
diagrams of these networks are shown in Figure 4.

ResNet and ResNeXt are composed of residual structures with jump connections.
Based on this jump connection structure, the problem of gradient disappearance is solved,
and a deeper network can be built. Figures a and b in Figure 4 show the ResNet module and
the ResNeXt module, respectively. ResNeXt decomposes the residual module of ResNet
into several uniform branch structures. Through this design, the network structure becomes
clearer and more modular. The number of parameters that need to be adjusted manually is
reduced, and the performance is better in the case of the same number of parameters.

The GoogLeNet is made up of several identical modules connected in series. The
module structure is shown in the Figure 4c. With this structure, more convolution can be
stacked in the receptive field of the same size, which is beneficial in learning more abundant
features, thus improving the performance of the network.
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DenseNet is a densely connected network. Different from the addition operation be-
tween layers of ResNet and ResNeXt, the connection between different layers of DenseNet
becomes a splicing operation (superposition on dimensions). This connection mode reduces
the number of parameters in the network. The feature reuse of the dense connection and
rich feature information acquisition of the stitching operation benefits the extraction of
more features with less convolution. In addition, this structure builds a deeper network
and reduces the risk of overfitting by improving the flow of information and gradients in
the whole network. The structure diagram is shown in Figure 4d.

To extract features with CNN, we used the pretrained model to finetune the network
parameters with our data. The image propagates between each layer and stops at the last
layer, where the current vector is taken as the feature vector. This training method is called
transfer learning, and the pretraining model is obtained by training on ImageNet data [29].
The dataset includes 1000 categories composed of 14 billion images. A model trained on
such a large number of data sets has learned more important features. Only finetuning is
needed to train our added final classification layer.

The second part of the architecture is the MOC, which can achieve high recognition
accuracy with a small amount of data. A speckle pattern is generated by the transmission
of two vortex beams through an MMF, indicating that each sample has two target values.
Therefore, it is necessary to use a MOC to fit and predict each target by selecting the type
of evaluator. The evaluator used in this study is the random forest ensemble learning
classifier [30], whose basic estimator is the decision tree [31].

As a basic classification and regression algorithm, the decision tree shows a tree
structure composed of nodes and directed edges (Figure 5). A decision tree contains a root
node, several internal nodes, and leaf nodes. The root node includes all the sample sets,
the leaf node corresponds to the decision result, and the other nodes correspond to the
attribute test. The path from the root node to each leaf node corresponds to a judgment
test sequence. The core of the algorithm is to recursively select the optimal feature and
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segment the data according to the feature so as to find the best classification result for each
sub-data set.
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Random forest is a combinatorial classification algorithm of ensemble learning
(Figure 6). Ensemble learning is mainly focused on producing a strong classifier with
an excellent classification performance by combining several base classifiers. Based on
this idea, multiple decision trees generate random forests. The core idea of the random
forest algorithm is to resample the training set to form multiple training subsets. Each
subset generates a decision tree, and the final result is decided by all the decision trees
through voting.
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3. Results and Discussion
3.1. Results

As the two topological charges of vortex beams change from 1 to 10.9 alternately,
10,000 different speckle patterns are recorded by CCD. These speckle images are randomly
selected as the training data or test data to train and test the network. To finetune the
pretrained CNN, the input images need to be preprocessed. The method of preprocessing is
central cropping and normalization, and the data are converted into tensors in the network.
The training set, verification set, and test set are processed in the same way. After the
training of the multi-objective classifier, the performance of the network is tested with the
test data. The test results are compared with real tags to calculate the recognition accuracy
of two OAMs and a single OAM. All the charts and diagrams in our study were derived
from Origin, a data analysis and mapping software, and the results are as follows.

The recognition accuracy depends on the amount of data used to train the network
(Figure 7). The image is cut to the size of 224 × 224 by the central clipping method. The
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blue curve and red curve correspond to the test result of ResNet34 and ResNet34+MOC,
respectively. High accuracy can be achieved by using the CNN method with a large amount
of data. The accuracy is improved by adding an MOC. The accuracy equals to 100% by
training the combined network with enough data.
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Figure 7. Test results of trained networks with different amounts of data.

Conventionally, since a larger amount of training set benefits the training of the
network, the amount of the training set is much larger than that of the testing set. On
the contrary, in this test, the training data contains 2000 speckle images, while the test
data contains 8000 speckle images. The image is cut to the size of 224 × 224 by central
clipping. The CNN used are GoogLeNet, DenseNet121, ResNet50, ResNet101, ResNeXt50,
and ResNeXt101. Figure 8a shows the test results of the CNN, and Figure 8b shows the
test results of the CNN+MOC. The values in red correspond to the recognition accuracy of
both OAM1 and OAM2, and the values in beige and blue correspond to the recognition
accuracy of OAM1 and OAM2, respectively.

Based on the ResNeXt101 network with the best accuracy, the network is also trained
with 2000 pieces of data, and the image of the original size 256 × 256 is used as input. The
test results are shown in Table 1.

Table 1. 2000 pieces of original-size data are used for training, ResNeXt101 and ResNeXt101+MOC
test results.

Model OAM1 & OAM2 OAM1 OAM2

ResNeXt101 87.6% 90.2% 97.4%
ResNeXt101+MOC 96.4% 96.8% 99.6%
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3.2. Discussion

With a large amount of data for training, ResNet34 can effectively learn and extract
useful features. The OAM recognition accuracy is 99.8% (Figure 7). After further training
by the MOC, the accuracy reaches 100%. With the continuous reduction in training data, the
recognition accuracy also decreases. When the training data are reduced to 2000, ResNet34
can learn and extract useful features to a certain extent. However, due to the small amount
of data, the learned features are limited, and the recognition accuracy of OAM is greatly
reduced to 76.6%. After further training by the MOC, the recognition accuracy is improved,
reaching 84.5%.
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To further increase the recognition accuracy, we change the structure of the CNN. To
effectively learn and extract the features, semantic information and resolution information
are indispensable. More abstract features can be learned and extracted by increasing the
depth of the network, and features in a larger resolution can be learned and extracted by
enhancing the function of the convolution module. However, the performance cannot
be improved by blindly deepening the number of layers and enhancing the function; the
performance needs to be analyzed and balanced according to the actual problems. The
recognition accuracy of GoogLeNet and DenseNet121 is only 36.3% and 56.1%, respectively.
The reason is that GoogLeNet pays more attention to the module function than to the depth
of the network, which leads to underfitting due to the failure to fully learn and extract the
features. Although DenseNet121 pays attention to the network depth and module function
simultaneously, due to the small amount of data the network fits well in the training data,
while the poor fitting in the test data leads to overfitting. Since ResNet34 has better learning
and feature extraction performance, ResNet50 and ResNet101 improve the performance by
increasing the number of network layers to deepen the network depth. In order to further
improve the performance, ResNeXt50 and ResNeXt101 are designed to optimize the module
structure to enhance the module function on the basis of the deep network. ResNeXt101
has achieved the highest recognition accuracy of 86.3% with its optimal module structure
and deeper network level. Then the extracted features and corresponding tags are trained
by the MOC, and the recognition accuracy is further improved by up to 94.7%.

By adding information, the size of the original image is input into the network, so
that the network with good feature learning and extraction functions can learn more rich
information. This information can further improve the performance of the network, and
the accuracy of OAM recognition reaches 96.4%.

By increasing the depth of the network and optimizing the network structure to
enhance the learning and extraction of semantic and resolution information, the recognition
accuracy of OAM is improved. By selecting CNN that can effectively extract semantic
information and resolution information, and then through MOC training, the highest
recognition accuracy of OAM is 94.7%. Further input containing more information can
again improve the performance, and the recognition accuracy is more than 96%. Therefore,
the architecture based on CNN and MOC proposed in this study can recognize the OAM
of vortex beams from the speckle patterns with high accuracy.

4. Conclusions

In conclusion, we propose a combined CNN and MOC method, which successfully
identifies the OAM of vortex beams from speckle patterns. Although traditional CNN can
recognize the OAM of vortex beams from speckle patterns, excellent performance requires
a large amount of training data support. To reduce this dependence, we further introduce a
MOC to CNN. Through the combination of CNN with different structures and MOC, the
highest recognition accuracy can reach 96.4% even with only a small amount data to train
the network. The proposed network structure offers a solution to deal with the problem of
small data.
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