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Abstract: Plasmonic metamaterials can exhibit a variety of physical optical properties that offer
extraordinary nonlinear conversion efficiency for ultra-compact nanodevice applications. Further-
more, the optical-rectification effect from the plasmonic nonlinear metasurfaces (NLMSs) can be
used as a compact source of deep-subwavelength thickness to radiate broadband terahertz (THz)
signals. Meanwhile, a novel dual-mode metasurface consisting of a split-ring resonator (SRR) ar-
ray and an epsilon-near-zero (ENZ) layer was presented to boost the THz conversion efficiency
further. In this paper, to explore the mechanism of THz generation from plasmonic NLMSs, the
Maxwell-hydrodynamic multiphysics model is adopted to investigate complex linear and intrinsic
nonlinear dynamics in plasmonics. We solve the multiphysics model using the finite-difference
time-domain (FDTD) method, and the numerical results demonstrate the physical mechanism of
the THz generation processes which cannot be observed in our previous experiments directly. The
proposed method reveals a new approach for developing new types of high-conversion-efficiency
nonlinear nanodevices.

Keywords: ENZ mode; FDTD; Maxwell-hydrodynamic model; THz generation

1. Introduction

Electromagnetic metamaterials with unique geometrical shapes and sizes provide
some physical properties that cannot be produced by natural materials. The applications
of metamaterials are numerous, such as in phone antennas and nonlinear optical devices.
Nowadays, there are some typical metamaterials including left-handed materials and
photonic crystals. The limitations of these two materials are their complex structures and
restricted bandwidth. However, plasmonic materials can handle these limitations, and thus
have attracted tremendous attention in regard to nonlinear optics and microwaves. Surface
plasmon resonance (SPR) occurs when electrons on the metal surface are excited by light at
a specific incident angle [1]. SPR is the key feature dominating the linear and nonlinear op-
tical responses of the plasmonic metasurfaces based on the metallic nanostructures. Various
photonic functions based on the nonlinear effects of plasmonic metasurfaces have flourished
in recent years, such as optical sensing, ultrashort pulse generation, nanoantennas, and
optical signal processing [2–5]. Because of the poor conversion efficiency of higher-order
nonlinearities, nonlinear interactions in plasmonics are weaker than linear interactions and
depend on the field amplitude of excitation. In experiments, high-intensity excitation is
ideally suited for plasmonic metasurfaces to achieve strong field enhancement. Simultane-
ously, they can be improved by focusing light using resonant modes, and it is possible to
modify and modulate the nonlinear nature of metamaterials by designing the geometry of
the plasmonic structure. This leads to exciting and useful effects including second-harmonic
generation, third-harmonic generation, and other high-harmonic generations [6].

Although plasmonic metasurfaces based on metallic nanostructures can be viewed
as a general concept, the sources of nonlinearity of each plasmonic metasurface based on
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metallic nanostructures are quite diverse. Recently, ENZ films, including indium-tin oxide
(ITO) and aluminum-doped zinc oxide (AZO) films, have emerged as promising options
for enhancing nonlinear effects due to their ability to greatly enhance the electric field at the
ENZ interface [7,8]. However, the overall photoelectric performance of AZO films is worse
than that of ITO thin films. ITO films have nearly flat dispersion in ENZ mode, so they
exhibit strong optical nonlinearities. No matter what kind of plasmonic metasurface based
on a metallic nanostructure is considered, it is of great significance to study the optical
response between the electromagnetic field and metasurface to reveal its working principle
and design a working device.

Meanwhile, THz plays an increasingly critical role in a wide range of applications,
including imaging, sensing, and communications. With the development of nanoscale
fabrication techniques, devices for THz generation and operation now have more sophis-
ticated structures. In the past decades, various generation methods have been tried, e.g.,
nonlinear organic crystals, topological materials, etc. [9]. However, these devices are
spatially separated and the organic crystals are limited by quasi-phase-matching condi-
tions. The advent of nonlinear metasurfaces will allow for the efficient generation and
control of THz waves that are integrated into a single device. Researchers have demon-
strated the possibility of using plasmonic metasurfaces as broadband THz sources. The
combination of an ENZ material and metasurface can be guided to generate nonlinear
waves through reasonable symmetry and geometry, creating a broadband THz signal
powered by the difference-frequency generation (DFG) effect and freeing them from the
quasi-phase-matching conditions [10]. This provides a promising solution for simultaneous
THz emergence and manipulation, which will lead to lower costs and more efficient THz
systems and drive the development of current THz fabrication.

In this paper, we investigate the use of an SRR array on an ultra-thin ITO film device to
emit THz signals with high efficiency. In order to reveal the mechanism of THz generation
from the metasurface, we utilize the Maxwell-hydrodynamic model to study the complex
linear and nonlinear optical effects of electronic gases in metals and an ITO film [11–13].
Hybridization of the metasurface with an ITO film can help lower the threshold for nonlin-
ear interactions by enhancing the strong near-field distribution of resonant meta-atoms at
the desired frequency. The plasmonic resonant modes of the SRRs and the ENZ modes of
the ITO film are spatially overlapped to achieve strong mode coupling, thus improving the
nonlinear effect of THz generation in ITO. With the help of a parallel FDTD method, this
paper obtains the numerical solution for a Maxwell-hydrodynamic multiphysics model
for nanodevices with any geometry or parameters. Based on our simulation method, we
numerically reveal the mechanism of significant THz enhancement resulting from the ENZ
mode of the ITO film, which is essential for designing nonlinear effect devices.

2. Method and Dual-Mode Metasurface
2.1. Multiphysics Hydrodynamic Model

The interaction between the electromagnetic fields E and H and the nonmagnetic
materials can by described by Maxwell’s equations:

1
µ
∇× B = ε

∂E
∂t

+ J (1)

∂B
∂t

= −∇× E (2)

where ε and µ are the material permittivity and magnetic permeability and J is the current
density, i.e., the linear and nonlinear polarization currents generated by electromagnetic
waves acting on free electron gases in metallic materials. The hydrodynamic equations



Photonics 2023, 10, 592 3 of 12

describe the nonlinear response characteristics of the electromagnetic wave acting on the
free electron gas within the metallic metamaterial [14–17].

∂ve

∂t
+ (ve·∇)ve = −

e
m
(E + ve × B)− γve (3)

∂ne

∂t
+∇·(neve) = 0 (4)

where m and e represent the electron mass and charge, respectively. γ is the phenomeno-
logical damping frequency constant (used to measure optical losses). ne and ve describe the
electron density and velocity. (E + ve × B) is the Lorentz force. The basis for the physical
origin of nonlinear and nonlocal effects is ve·∇ve, ve × B, and neve. Equation (4) is the
current continuity equation. In order to obtain the Lorentz force acting on the electron gas,
it is necessary to couple the hydrodynamic equations with the macroscopic electromagnetic
field determined via Maxwell’s equations, which can be linked by the macroscopic current
density and charge density terms.

J = −eneve (5)

ρ = e(ne − n0) (6)

To ensure charge neutrality, the initial electron density ne is set to be equal to the
positive ion density n0 without excitation. When substituting Equations (5) and (6) into
Equations (3) and (4), we can obtain:

∂J
∂t

= ε∞ω2
pE− γJ +

e
m
(ρE− J× B) +∇·( 1

ρ + ε∞mω2
p/e

JJ) (7)

∂ρ

∂t
−∇·J = 0 (8)

where ωp =
√

e2ne/ε∞m is the plasma frequency. The Equations (7) and (8) above equation
can be used to simplify by substituting ρ = ε∞∇·E which is transformed into Equation (9).

∂J
∂t

= ε∞ω2
pE− γJ +

e
m
(ε∞(∇·E)E− J× B) +∇·( 1

ε∞(∇·E) + ε∞mω2
p/e

JJ) (9)

Equations (1), (2) and (9) constitute a self-calculating set of equations for solving the
response of free electrons to an applied electromagnetic field. The numerical solution of
this set of multiphysics field equations using the FDTD method provides a description of
the complex electron motion in metals and enables the study of the nonlinear behavior of
the electron gases.

2.2. Numerical Approach

The nonlinear optical response of free conduction electrons can be described by the
Maxwell-hydrodynamic model for analyzing the electromagnetic fields of the SRR array
on an ITO film device. If the metamaterial is described by the effective medium theory,
its constitutive parameters are continuous, and the material parameters will be very com-
plicated. However, a metamaterial can be directly calculated using the FDTD method as
a medium with electromagnetic properties. The FDTD scheme uses Yee cells to store the
electric and magnetic fields in space and can directly simulate the scattering and time-
domain propagation response of electromagnetic field signals [18]. In addition, the FDTD
method solves various relatively complex electromagnetic problems with simple and high
accuracy and can be combined with various parallel computing techniques to improve
computational efficiency [19–21].
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2.3. Computational Grid

To solve Equations (1), (2), and (9), we used the Yee scheme to arrange all components
of E and H with a special interleaving, as shown in Figure 1. The electric field E is located
at the center of the surface and defined at l + 1/2 time steps, and the magnetic field H
and current density J are located at the edges of the grid and at the center of the surface,
respectively, and defined at l time steps. A spatial and temporal sampling of electric
and magnetic fields is performed alternately. This grid arrangement conforms to the
Maxwell-hydrodynamics equations, which can capture the coupling effect between the
electromagnetic field and the free electrons in the metal metasurface.
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2.4. Final Discretized Formula

The auxiliary differential equation (ADE) technique combined with the FDTD method
can extend the electric and magnetic fields, as well as charge and current densities, into
first-order linear and second-order nonlinear responses [22]. This can be applied to complex
dispersive dielectric material models. The ADE method solves linear effects explicitly and
also obtains intermediate values that are used to update the nonlinear response expressly.
That is, a two-step splitting method for solving Maxwell’s equations is used. Firstly, for the
decomposition of Equation (9):

∂J
∂t

= ε∞ω2
pE− γJ (10)

∂J
∂t

=
e
m
[ε∞(∇·E)E− J× B] +∇·( 1

ε∞(∇·E) + ε∞mω2
p/e

JJ) (11)

where the ε∞∇·E term represents the charge density. A linear intermediate current density
term is obtained by central differencing Equation (10), while the nonlinear response is
obtained by Equation (11). The intermediate current density term J(1) at time step l + 1 is:

J(1),l+1 =
1− 0.5∆tγ
1 + 0.5∆tγ

Jl +
ε0ω2

p∆t
1 + 0.5∆tγ

El+1/2 (12)

In view of the differences between J, E, and B in terms of their spatial and temporal
locations, the interpolation method is used to approximate the values at the same points in
space and time as J. Take the example of the updated x-component of J, which is located in
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the same center of the grid as E in space and is updated at the same time as B in time. Thus,
the terms ∇·E and B are calculated by the following equation:

∇·Et+1/2
i,j+1/2,k+1/2 = 1

2 (∇·E
t+1/2
i+1/2,j+1/2,k+1/2 +∇·E

t+1/2
i−1/2,j+1/2,k+1/2)

Bt+1/2
yi,j+1/2,k+1/2 = 1

4 (Bt+1
yi,j+1/2,k + Bt+1

yi,j+1/2,k+1 + Bt
yi,j+1/2,k + Bt

yi,j+1/2,k+1)

Bt+1/2
zi,j+1/2,k+1/2 = 1

4 (Bt+1
zi,j,k+1/2 + Bt+1

zi,j+1,k+1/2 + Bt
zi,j,k+1/2 + Bt

zi,j+1,k+1/2)

(13)

The results of the above steps allow for the explicit solution of Equation (11) to obtain
the nonlinear intermediate current density term. We update the electric field in the next
step based on the final current density calculated from the two intermediate terms obtained
in the previous steps.

Jl+1/2
xi,j+1/2,k+1/2 =

1
2
(Jl

xi,j+1/2,k+1/2 + J(1),l+1
xi,j+1/2,k+1/2) (14)

By using two-step splitting, the linear and nonlinear responses of the metallic meta-
surface are split, preserving their dominant nonlinear effects and time-domain expressions
while greatly simplifying the calculation of the Maxwell’s hydrodynamic model and im-
proving the computational efficiency by a significant amount compared to the implicit
difference method.

2.5. GPU Programming Structure

With the development of nanoscale manufacturing technology, metal metamaterials
have smaller and finer structures. The nonlinear optical behaviors and high-order harmonic
signals can be generated by the high-energy incidence wave to stimulate the free electron
gases in metamaterials. However, this requires large iteration steps and long iteration times
to ensure the effective attenuation of pulses. Considering that this takes many computing
resources, the FDTD method can be combined with parallel techniques, where parallel
processing helps to speed up the computation [23–25].

Based on the implementation of the graphic processing unit (GPU) platform multi-
physics model and the FDTD method, firstly, all data are initialized on the CPU (host)
and then loaded into the GPU’s (device’s) global memory. Next, the EM field’s updated
equations for each point are implemented on a set of parallel Compute Unified Device Archi-
tecture (CUDA) threads, and finally, the completed calculation is passed back to the CPU for
post-processing. The whole computational process is shown in Figure 2. By implementing
the FDTD code on the GPU, the computational efficiency can be significantly improved.

2.6. Dual-Mode Plasmonic Metasurface with ENZ Material

We explore the mechanism of the THz emission of the hybrid nonlinear metasurfaces
by simulating a plasmonic with the proposed two-step split FDTD algorithm. The hybrid
nonlinear metasurfaces consist of three parts: a glass substrate as the overall support at
the bottom, an ITO film as the middle layer, and a periodically arranged SRR array as
the top layer. Our simulations involve analytical analysis of individual cells to obtain
the features and properties of the entire structure. The 23 nm thick ITO metasurface is
fabricated between a glass substrate and a 40 nm thick gold SRR structure. The relative
permittivity of glass is 2.25. The detailed geometries of the elements are also illustrated in
Figure 3.

ENZ materials with small permittivity exhibit highly efficient nonlinear optical phe-
nomena. ITO, characterized by excellent optoelectronic properties, is one of them. ITO
can rapidly produce an enhanced nonlinear optical response in the permittivity near-zero
spectral region. Simultaneously, modulating carrier concentrations in ITO films allows for
tuning of the ENZ mode wavelength, opening up an even wider range of applications. The
significant nonlinearity of ITO films is attributed to the strong field constraints associated
with the ENZ mode, which can only be supported if the film is thin enough to prop up
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the ENZ mode, and the electric field distribution of the ENZ mode is perpendicular to the
film surface; thus, the ENZ mode cannot be excited without any near-field coupling under
normal illumination. THz is produced by making use of plasmonic resonant meta-atoms
in this paper, enhancing the second-harmonic signal and thus increasing the nonlinear
response of the ITO. The ENZ wavelength, as measured by spectroscopic ellipsometry, is
approximately 1432 nm.
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SRR metamaterials can generate broadband THz waves by optical rectification, while
the magnetic dipole resonance of SRR excites THz emission [26–28]. The combination
of plasmon resonances and ENZ modes in hybrid metasurfaces can amplify the field-
enhanced effects and enhance the nonlinear response of the ITO material, resulting in
efficient THz generation.
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3. Results
3.1. Simulation Setup

The dual-mode metasurface, which consisted of a gold nano-SRR structure supported
on a glass substrate coated with an ITO film, was utilized as an experimental test, while
the SRR metasurface, which had the same configuration but without the ITO film, was
used as a control array. The simulated metasurface unit is shown in Figure 4. The metallic
material of SRR was made of gold, the periodic boundary conditions were in the x- and
y-directions, and the total-field and scattered-field (TF/SF) technique was deployed to take
the normal incident plane wave as the time-domain excitation signal in the z-direction of
the cell structure, thus allowing the overall properties to be easily obtained with as few
computational resources as possible by calculating the structure of the cell. Moreover,
perfectly matched layers (PMLs) were applied in the z-direction to absorb broadband
outgoing waves, truncating the computational domain from infinity to a finite size. In order
to ensure convergence of the algorithm, the spatial step was ∆x = ∆y = ∆z = 1× 10−9 m,
and the time step was ∆t = 1.5× 10−18 s.
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It has been explained that the Drude model ε(ω) = ε∞ − ω2
p/(ω2 + iωγ) can be

used to describe the dispersive property of metals, semiconductors, and plasmonics. ε∞
is the infinite frequency permittivity, ωp =

√
ne2/(ε∞m) is the plasma frequency that

determines the carrier density, and γ is the phenomenological damping frequency con-
stant. The ITO parameters were defined to be: ε∞ = 4.1, ωp = 2.7297× 1015 rad/s, and
γ = 10.68× 1013 rad/s. Thus, the ENZ wavelength of ITO referring to the zeros of the real

permittivity ε′(ω) = 0 was approximately given by λENZ = 2πc/
√

ω2
p/ε∞ − γ2 = 1340 nm.

Thus, the parameters of the gold and ITO used in the hydrodynamic model are listed in
Table 1.

The measured dual-mode and SRR metasurfaces with polarization-dependent trans-
mission spectra are depicted in Figure 5. The resonances caused by the linear response of
the dual-mode metasurface are exhibited at 1375 and 1750 nm. Resonance is surveyed in
the transmission spectrum at 1350 nm, which is close to the ENZ wavelength of the ITO,
that is, when the ITO film is added to the same excitation, this produces a transmission dip
as the ENZ layer absorbs the scattered Ez field.
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Table 1. Parameter list of gold and ITO used in the model.

Background Permittivity
ε∞

Electron Density
n

Collision Frequency
γ

Au 1 5.8613 × 1028 1.2 × 1014

ITO 4.1 2.3406 × 1027 2.9326 × 1014
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Figure 5. Simulation of linear transmission rates for dual-mode and SRR metasurfaces. The grey
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3.2. Revealing the Enhanced Nonlinearity from the Dual-Mode Metasurface

Practically, a sufficiently strong second harmonic is radiated to generate a THz signal
when the polarization direction of the incident light satisfies the plasmonic excitation
condition of the bare ITO film. Simultaneously, the resonant meta-atoms significantly
reinforce the fundamental electric field component perpendicular to the ENZ film, which
contributes to the THz signal generated from the ITO interlayer at a normal incidence.
This behavior can be observed in Figure 6, where the evolution of the THz peak-to-peak
amplitude is shown as the central wavelength of the pump laser changes on the SRR and
dual-mode metasurfaces. Pumped at a wavelength of 1350 nm, which approaches the ENZ
state of ITO, the SRR metasurface exhibits a THz generation amplitude that is ~90 times
smaller, while at the same time, strongly enhanced THz generation occurs on the dual-mode
metasurface. The THz enhancement has fundamental wavelength dependence, and when
the experimental results are compared with the simulation results, they show a reasonable,
good agreement with the experimental data.

We conducted simulations of THz emission spectra from the dual-mode metasurfaces
without accounting for the ITO nonlinearity in order to illustrate the physical mechanism
by which the ITO layer increases the THz radiation intensity of dual-mode metasurfaces.
Considering only the nonlinearity of the Au SRR, the THz signal dropped by approximately
two orders of magnitude, indicating the significant contribution of the ITO layer to the
enhancement of THz emission.



Photonics 2023, 10, 592 9 of 12

Photonics 2023, 10, x FOR PEER REVIEW 9 of 12 
 

 

force the fundamental electric field component perpendicular to the ENZ film, which con-

tributes to the THz signal generated from the ITO interlayer at a normal incidence. This 

behavior can be observed in Figure 6, where the evolution of the THz peak-to-peak am-

plitude is shown as the central wavelength of the pump laser changes on the SRR and 

dual-mode metasurfaces. Pumped at a wavelength of 1350 nm, which approaches the 

ENZ state of ITO, the SRR metasurface exhibits a THz generation amplitude that is ~90 

times smaller, while at the same time, strongly enhanced THz generation occurs on the 

dual-mode metasurface. The THz enhancement has fundamental wavelength dependence, 

and when the experimental results are compared with the simulation results, they show 

a reasonable, good agreement with the experimental data. 

 

Figure 6. Comparison of peak-to-peak amplitudes for the simulation and experiment of the pump-

wavelength-dependent peak-to-peak amplitude of THz signal on the dual metasurface and SRR 

metasurface. The dotted lines are used for experimental data and solid lines are used for simulation. 

Blue is used for SRR model and red is used for dual model. At normal incidence the pump laser 

illuminates the super-surface with its polarization parallel to the gap in the SRR. The pump laser is 

described by a Gaussian pulse 2

0 0 0( ) exp( 2ln2( ) / )cos( )E t E t t t = − −  . The time width 

60 fs =   and the peak amplitude 7

0 7 10  V/mE =    are chosen according to the experimental 

setup, which corresponds to the driving frequency 0 , and the fundamental wavelength is scanned 

between 1200 nm and 2000 nm. 

We conducted simulations of THz emission spectra from the dual-mode metasur-

faces without accounting for the ITO nonlinearity in order to illustrate the physical mech-

anism by which the ITO layer increases the THz radiation intensity of dual-mode metasur-

faces. Considering only the nonlinearity of the Au SRR, the THz signal dropped by ap-

proximately two orders of magnitude, indicating the significant contribution of the ITO 

layer to the enhancement of THz emission. 

The strong coupling between the magnetic dipole mode of the SRR, the fundamental 

mode of the gold antenna, and the bulk plasmon mode of the ITO layer plays a significant 

role in the THz generation by the dual-mode metasurface. In order to investigate the role 

of mode coupling, a silica spacer was sandwiched between the SRR and ITO films to tune 

the coupling. Figure 7 shows the linear transmission spectra of silica spacers of different 

thicknesses set in the dual-mode metasurface at a normal incidence. As the thickness of 

Figure 6. Comparison of peak-to-peak amplitudes for the simulation and experiment of the pump-
wavelength-dependent peak-to-peak amplitude of THz signal on the dual metasurface and SRR
metasurface. The dotted lines are used for experimental data and solid lines are used for simulation.
Blue is used for SRR model and red is used for dual model. At normal incidence the pump laser
illuminates the super-surface with its polarization parallel to the gap in the SRR. The pump laser is
described by a Gaussian pulse E(t) = E0 exp(−2 ln 2(t− t0)/τ2) cos(ω0t). The time width τ = 60 fs
and the peak amplitude E0 = 7× 107 V/m are chosen according to the experimental setup, which
corresponds to the driving frequency ω0, and the fundamental wavelength is scanned between
1200 nm and 2000 nm.

The strong coupling between the magnetic dipole mode of the SRR, the fundamental
mode of the gold antenna, and the bulk plasmon mode of the ITO layer plays a significant
role in the THz generation by the dual-mode metasurface. In order to investigate the role
of mode coupling, a silica spacer was sandwiched between the SRR and ITO films to tune
the coupling. Figure 7 shows the linear transmission spectra of silica spacers of different
thicknesses set in the dual-mode metasurface at a normal incidence. As the thickness of
the silica spacer increases, the coupling between the SRR resonance and the ENZ mode
weakens, resulting in a decrease in the fundamental electric field polarized along the
z-direction and a sharp decrease in the THz signal, as depicted in Figure 7b.
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Figure 7. (a) Dual−mode metasurfaces with different thicknesses of silica interlayer simulation
THz spectra results. (b) Corresponding THz spectral amplitudes produced by the four different
dual-mode metasurfaces, scaled by the THz amplitude relative to the maximum amplitude of the SRR
metasurface. (c–f) Distribution of the fundamental Z-component electric field at the different dual-
mode metasurfaces at wavelengths λ1 = 1276 nm, λ2 = 1363 nm, λ3 = 1469 nm, and λ4 = 1485 nm.
Near-field results normalized to the maximum electric field level in (b).

4. Conclusions

We investigated the physical mechanism of electromagnetic radiation enhancement in
ENZ materials by combining ITO substrates with metallic metamaterials. The Maxwell-
hydrodynamic model was utilized to study the nonlinear response in metals and an ITO
film under the excitation of incident electromagnetic fields. By comparing the THz electric
field intensities of SRRs with and without ITO substrates, we demonstrated that the ENZ
mode can be excited in the presence of the ITO substrate. The strong coupling between
the ENZ mode and the plasmonic metasurface allows for a strong nonlinear response over
a wide wavelength range, thereby validating our multiphysics model. In addition, ITO
substrates can also be combined with other metallic nanostructures to capture the nonlinear
response of metallic metamaterials and other quantum effects, which are expected to have
applications in the design of nonlinear metamaterial devices.
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