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Abstract: The quantum Cramer–Rao bound (QCRB) provides an ultimate precision limit in parameter
estimation. The sensitivity of spatial measurements can be improved by using the higher-order
Hermite–Gaussian mode. However, to date, the QCRB-saturating tilt measurement has not been
realized. Here, we experimentally demonstrate tilt measurements using a higher-order HG40 mode as
the probe beam. Using the balanced homodyne detection with an optimal local beam, which involves
the superposition of high-order HG30 and HG50 modes, we demonstrate the precision of the tilt
measurement approaching the QCRB. The signal-to-noise ratio of the tilt measurement is enhanced
by 9.2 dB compared with the traditional method using HG00 as the probe beam. This scheme is more
practical and robust to losses, which has potential applications in areas such as laser interferometer
gravitational-wave observatories and high-sensitivity atomic force microscopes.

Keywords: high-order Hermite–Gaussian mode; tilt measurement; quantum Cramer–Rao bound;
homodyne detection

1. Introduction

The high-precision measurement of transverse displacement and tilt of an optical
beam has applications in several areas, such as the laser interferometer gravitational-wave
observatory (LIGO) detector [1], biological measurements [2,3], satellite positioning [4,5],
and atomic force microscopy [6]. Different from the longitudinal optical phase measure-
ment, this generally involves the transverse complex amplitude distribution of a laser beam,
spatial detection methods, such as quadrant detectors, or spatial mode-based homodyne
detection using high-order modes. Mode matching is crucial in such ultrasensitive spatial
detections. Therefore, the optimal detection scheme with ideal mode matching is required
to reach the ultimate measurable quantum limit.

Several methods are proposed to enhance the spatial measurements [7,8]. One involves
using non-classical light, such as spatial squeezing, to decrease the quantum noise below
the shot noise limit [9,10]. For example, by coupling a squeezed high-order mode squeezing
into a fundamental mode laser beam, a spatially squeezed beam can be used as the probe
to perform a transverse displacement beyond the standard quantum limit [11–13]. This
quantum technique was also demonstrated in the biological measurement beyond the
quantum limit [3] and in the spatial entanglement characterization [14]. Recently, there
have been experimental demonstrations of higher-order spatially squeezed beams, showing
that a higher-order spatially squeezed beam is an effective probe beam used to boost the
precision of spatial tilt and displacement measurements [15].

Another method involves increasing the spatial detection efficiency. A split detection
scheme with a quadrant photodetector is often used in transverse displacement detection.
However, split detection is proved to be only 64% efficient compared to the newly proposed
scheme of the so-called TEM10 homodyne detection, where a TEM10 mode local oscillator
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interferes with the fundamental mode probe to obtain the displacement information [16,17].
Recently, parallel research on weak value-based measurements also improved the signal-to-
noise ratio (SNR) of optical tilt measurements with a TEM10 homodyne detection [18].

One more method involves using the high-order mode as the probe beam. The higher-
order mode contains more Fisher information for a spatial measurement [19,20] and, thus,
has an improved spatial sensitivity compared with a lower-order one. This scheme was
proposed and experimentally demonstrated using the HG10 mode as the probe and HG20
mode as the local oscillator. Although an improvement factor of 1.41 was demonstrated, the
HG20 mode is actually not the optimal local mode used to obtain the transverse information
of the HG10 mode [21]. The quantum spatial scheme was also demonstrated with high-
order modes, while the optimal local modes were not used [18]. The optimal local modes
with high-order modes can increase the spatial detection efficiency, similar to the role that
the TEM10 homodyne detection plays instead of the split detection. The sensitivity of the
high-order mode-based scheme is ultimately determined by the quantum Cramer–Rao
bound (QCRB), which is closely related to the local mode selection of homodyne detection.

In this paper, we experimentally demonstrated the tilt measurement with a higher-
order HGm,0 (m = 0, 1, 2, 3, 4) mode as the probe beam. Using the balanced homodyne
detection with an optimal local mode, which is the superposition of the high-order HGm+1,0
and HGm−1,0 modes, we demonstrated the precision of the tilt measurement approaching
the QCRB. With m = 4, the SNR of the tilt measurement is enhanced by 9.2 dB compared to
the traditional method using HG00 as the probe beam.

2. Theoretical Model

The tilt of a high-order Hermite–Gauss (HG) mode is shown in Figure 1. Here, the tilt
is defined with respect to a pivot point centered on the beam waist. The transverse complex
amplitude distribution of a tilted beam with an arbitrary mode order can be regarded as
adding an extra propagating phase, and is given by

up(x) = ei 2π sin θ
λ xu(x cos θ), (1)

where u(x) is the transverse complex amplitude distribution of the original HG mode, λ is
the optical wavelength, and p is the transverse momentum of the beam. In the case of the
small tilt angle, we have p = 2π sin θ/λ ≈ 2πθ/λ.

Figure 1. The tilt of the high-order Hermite–Gaussian beam. A tilted HG40 mode beam is decomposed
in the HG40, HG30, and HG50 mode components. The tilt information θ is carried by the combination
of HG30 and HG50 modes. The ω0 is the beam waist of the incident HG00 mode.

Then Equation (1) becomes

up(x) ≈ u(x) + i
2πθ

λ
x · u(x). (2)

The transverse complex amplitude distribution of an nth-order HG beam can be
written as

un(x) = (
2

πω2
0
)

1
4

1√
n!2n

Hn(

√
2x

ω0
)e−

(
x

ω0

)2

, (3)
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where ω0 is the beam waist related to the corresponding fundamental mode, and Hn(X) is
the Hermitian polynomial, where n represents the mode order.

Substituting Equation (3) into Equation (2), we have

un(x, p) ≈ un(x) + i
2πθ

λ
xun(x) = un(x) + i

πθω0

λ
(
√

n + 1un+1(x) +
√

nun−1(x)), (4)

where xun(x) = ω0(
√

n + 1un+1(x) +
√

nun−1(x))
/

2 with n ≥ 1. We can see that the tilt
information θ is carried by the HGn+1,0 and HGn−1,0 modes, which are called the detection
modes in some literature [22].

In the quantum regime, the positive frequency part of an electric field operator of the
probe beam can be written as [17]

ε̂+(x) = i

√
h̄ω

2ε0cT

∞

∑
n = 0

ânun(x), (5)

where h̄ is the reduced Planck constant, ω is the frequency of the light field, ε0 is the vacuum
permittivity, c is the speed of light, and T is the detection time. ân is the annihilation operator
corresponding to the nth order mode, ân =

(
X̂+

n + iX̂−n
)/

2 could be written as a linearized
form of ân = 〈ân〉+ δân, where 〈ân〉 is the classical amplitude and δân is the quantum
noise operator.

When the probe beam is a bright HGn,0 mode, 〈ân〉 =
√

N, N is the photon number
of the HGn,0 mode. All of the other modes are in the vacuum state. Equation (5) can be
rewritten as

ε̂+(x) = i

√
h̄ω

2ε0cT
{
√

Nun(x) +
∞

∑
m = 0

δâmum(x)}. (6)

The probe beam undergoes a small tilt angle, say θ, we have

ε̂+θ (x) = i

√
h̄ω

2ε0cT
{
√

N[un(x) + i
πθω0

λ
(
√

n + 1un+1(x) +
√

nun−1(x)) +
∞

∑
m = 0

δâmum(x)}. (7)

It is proved that a balanced homodyne detection (BHD) with the “detection mode”
as the local oscillator can reach the QCRB of a spatial measurement [22]. The normalized
mode of the local oscillator is the superposition of the high-order HGn+1,0 and HGn−1,0
modes, written as

uLO(x) =

[√
n + 1 · un+1(x) +

√
n · un−1(x)

]
√

2n + 1
. (8)

The local oscillator field is then written as

ε̂+Local(x) = i

√
h̄ω

2ε0cT

[√
NLOuLO(x) +

∞

∑
m = 0

δâLO
m um(x)

]
, (9)

where NLO is the mean photon number of the local oscillator.
According to the beam splitter model, the light field operators on the two detectors of

BHD can be written as
ε̂+A(x) =

(
ε̂+θ (x) + ε̂+LO(x)

)/√
2, (10)

ε̂+B (x) =
(
ε̂+θ (x)− ε̂+LO(x)

)/√
2. (11)
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The output photon number of the BHD system is given by

n̂− =
2ε0cT

h̄ω

[∫ +∞

−∞
(ε̂+A(x))†

(ε̂+A(x))dx−
∫ +∞

−∞
(ε̂+B (x))†

(ε̂+B (x))dx
]

. (12)

Substituting Equations (7) and (9) into Equation (12), we have

n̂− =
√

NLO(
2πθω0

√
N
√

2n + 1
λ

+ δX̂−s ), (13)

where δX̂−s is the quantum noise of the signal beam and is related to the “detection mode”.
In Equation (13), the first term represents the signal, and the second term represents noise.
For coherent light (

〈
δ2X̂−s

〉
= 1), the signal-to-noise ratio (SNR) is defined as

SNRopt =

(
2πθω0

√
N
√

2n + 1
λ

)2

. (14)

When we choose an intermediate mode HGn+1,0 as the local oscillator, i.e., uLO
int (x) = un+1(x),

the corresponding BHD output and SNR are, respectively, given by

n̂− =
√

NLO(
2πθω0

√
N
√

n + 1
λ

+ δX̂−s ), (15)

SNRint =

(
2πθω0

√
N
√

n + 1
λ

)2

. (16)

We plot the SNRs varying with the mode order using the logarithmic scale in Figure 2,
with circle dots and square dots, respectively, corresponding to Equations (14) and (16).

Both are normalized to
(

2πθ
√

Nω0

/
λ
)2

, which represents the SNR with the coherent
HG00 signal mode. Both SNRs increase with the mode order increasing. The SNR of the
optimal scheme indicates an improvement of (2n + 1) for the nth-order mode compared to
the fundamental mode. Furthermore, the SNR of the optimal scheme is higher than that
of the intermediate one for any high-order mode. For example, with the first-order mode
probe, the SNR of optimal BHD is 1.5 times that of the SNR of the intermediate BHD.

Figure 2. Mode−order dependence of the normalized SNRs for the optimal (red circle dots) and
intermediate (black square dots) balanced homodyne detection.

We derive the QCRB of the tilt measurement by using a similar method to Reference [22].
We use the minimum measurable tilt to characterize the measurement precision. For the
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optimal BHD measurement discussed above, the minimum measurable tilt is defined as the
tilt with SNR = 1. According to Equation (14), the minimum measurable tilt is given by

θ
opt
min =

λ

2πω0
√

2n + 1
√

N
. (17)

The precision of the estimation of any physical parameter ϕ is limited by the Cramer–
Rao bound and only depends on properties of the probe beam, such as the intensity, beam
profile, and the quantum fluctuations. Furthermore, the variance of any unbiased estimator
of ϕ is necessarily greater than 1/IF, where IF is the Fisher information [23]. The minimum
measurable information of any parameter ϕ is bounded by the quantum Cramer–Rao
bound [22]

δϕ ≥ δϕmin =
σmin√
QNϕ

[
4
∥∥u′ϕ = 0

∥∥2
+

N′ϕ
Nϕ

]−1/2

, (18)

where δϕmin is the best achievable sensitivity for measuring a small variation of ϕ, σmin is
the quantum noise, Nϕ is the mean photon number, N

′
ϕ is its derivative with respect to ϕ,

Q is the number of measurement repetitions, and u′ϕ = 0 is the derivative of the normalized
transverse field distribution uϕ with respect to ϕ at ϕ = 0.

For tilt measurements with the high-order HGn,0 probe beam, ϕ is replaced by the
tilt θ, ‖u′θ‖2 =

∥∥∂[un(x, p)]
/

∂θ|θ = 0
∥∥2

= π2ω2
0(2n + 1)

/
λ2, N′θ = 0, σmin = 1 as the

coherent light is used. We then obtain the QCRB for the tilt measurement of

θQCR
min =

λ

2πω0
√

2n + 1
√

N
. (19)

By comparing Equations (17) and (19), we can see that the optimal BHD scheme
reaches the QCRB.

In fact, for the probe beam of the fundamental mode, the HG1,0 mode itself is the opti-
mal local oscillator, as there is no lower mode than zero. That is why, in References [16,17],
the sensitivity of displacement and tilt measurements at the Cramer–Rao Bound can be
achieved for HG0,0 probe beams using only HG1,0 mode homodyne detection. However,
for higher-order modes other than the fundamental mode, only the superposition mode
(formed by the combination of two modes as the local oscillator) can reach the QCRB. We
experimentally verify this theory by utilizing a probe beam that consists of modes up to
the fourth order in the following.

3. Experimental Setup and Results

We use different high-order HG modes as probe beams for tilt measurements, and
apply spatially balanced homodyne detection (BHD) with intermediate and optimal local
modes, respectively. The experimental setup is illustrated in Figure 3. A laser beam from an
1080 nm optical fiber laser is split into three beams, one is mode-converted into the HGn,0
mode as the probe by a mode converter (MC3). The other two beams are, respectively, mode-
converted into the HGn+1,0 mode and HGn−1,0 mode by two mode converters (MC1,2).
Then the two modes of HGn+1,0 and HGn−1,0 are coupled on a BS3 to produce the optimal
local oscillator.

The probe beam passes through a tilt modulator, which is made of a wedged electro-
optic crystal to perform a pure tilt modulation [24]. The tilted HGn,0 mode and optimal
local beam are coupled on a 50/50 beam splitter (BS4) for optimal BHD to demodulate the
tilt signals. In the intermediate BHD, the HGn−1,0 mode is blocked; only the HGn+1,0 mode
is left to be the local oscillator to demodulate the tilt signals.

The wedged crystal is driven by a sine wave signal to simulate a slight tilt signal at
3 MHz. The experimental parameters are as follows: the signal beam power, Ps = 30 µW;
the modulation peak-to-peak voltage is 3 V; the beam waist of HG00, ω0 = 220 µm; the
resolution bandwidth of the spectrum analyzer, RBW = 30 kHz; the video bandwidth,
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VBW = 300 Hz; and the analyzing frequency, f = 3 MHz. In Figure 3, we select the probe
beam with a mode order of n = 4.

Figure 3. Experimental setup for tilt measurements with different high-order HG modes. Mode
converter (MC), detector(D), beam splitter (BS), signal generator (SG), balanced homodyne detection
(BHD), 50/50 beam splitter (BS), digital storage oscilloscope (DSO), and split detector (SD).

As shown in Figure 3, the small fraction of the optimal local beam passed through
an aperture to extract the interference signal, which is used for the feedback control of
the relative phase between the HGn+1,0 and HGn−1,0 modes. The relative phase between
the HGn+1,0 and HGn−1,0 modes was locked to φ = 0 and the power ratio of HGn+1,0
and HGn−1,0 modes is (n + 1)

/
(n− 1). A small part (2%) separated from one beam of

BHD is used to construct the 4F phase monitoring system to check the tilt signal of a laser
probe beam [24]. The demodulated tilt signal from the spectrum analyzer (trace1) and the
interference signal (trace2) from the 4F monitoring system are shown in Figure 4, with the
scanning local phase. The tilt signal appears, approximately, at the interfering phase of
φ = π/2, which is consistent with the theory.

Figure 4. The phase monitoring from the digital storage oscilloscope (DSO) for the demodulated tilt
signal. Trace1 represents the demodulated signals by the spectrum analyzer (SA). Trace2 represents
the interference signals from one half of the split detector.

The experimental results of the demodulated tilt signal from the spectrum analyzer
are shown in Figure 5. With probe beams of the same optical power but different modes,
the shot noise limits (SNLs) are the same, shown by trace1in any single measurement, and
obtained by switching off the tilt modulation. Trace2 corresponds to the tilt signals with
the scanning phase of the local beam. The tilt modulation depths are the same for all of
the measurements. With the traditional scheme with the HG0,0 mode as the probe and
the HG1,0 mode as the local oscillator, the total power of the tilt signal of 6.6 dB above
the SNL is shown in Figure 5a. The results for the HG1,0, HG2,0, HG3,0, and HG4,0 modes
as the probes, with an intermediate high-order mode as the local oscillator, are shown in
Figure 5b–e. The total powers of the tilt signal are, respectively, 8.9 dB, 10.5 dB, 11.8 dB,
and 12.6 dB above the SNL. The results of the HG1,0 to HG4,0 modes as the probes, and the



Photonics 2023, 10, 584 7 of 9

superpositions of high-order modes as local oscillators, are shown in Figure 5f–i. The total
powers of the tilt signal are, respectively, 10.6 dB, 12.7 dB, 14.1 dB, and 14.8 dB above the
SNL. The results of the intermediate and optimal BHD are, respectively, shown in the red
and green boxes.

Figure 5. The different high−order HG modes as the probe beam vs. the total power of the tilt signal.
(a) The HG0,0 mode as the probe and the HG1,0 mode as the local oscillator. (b–e) The HG1,0 to HG4,0

modes as the probes, with the intermediate high-order modes as the local oscillators. (f–i) The HG1,0

to HG4,0 modes as the probes, and the optimal high-order modes as local oscillators. Trace1 (black
line) is the shot noise level with the signal beam being blocked. Trace2 (blue line) corresponds to the
total power of the tilt signal with the scanning of the phase of the local beam.

The SNRs derived from the total powers, which vary with the mode orders of the
probes, are shown in Figure 6, along with the optimal BHD (blue circle dots) and interme-
diate BHD (black square dots), respectively. The corresponding fitting results are shown
in red lines. With the increasing mode order of the probe and with the optimal BHD, the
SNRs become higher, showing a good agreement with the theoretical prediction. Further-
more, the results of the optimal BHD reach the quantum Cramer–Rao bound. For example,
with the HG4,0 mode as the probe beam, the SNR of the optimal BHD is 9.2 dB above the
shot noise limit (SNL), which approaches the ultimate value of 9.5 dB. The results show
an improvement of 2.3 dB compared to the intermediate BHD scheme, indicating great
potential for future applications.



Photonics 2023, 10, 584 8 of 9

Figure 6. The total power of SNR with different probe beams. The circle dots and square dots,
respectively, represent the experimental results with an optimal BHD and intermediate BHD. The red
lines are the theoretical fittings.

4. Conclusions

We have theoretically analyzed optical tilt measurements using higher-order Hermite–
Gauss modes. Using a probe beam that includes modes up to the fourth order, we experi-
mentally demonstrated the tilt measurement by the optimal BHD. The results show that the
tilt measurement precision reaches the so-called quantum Cramer–Rao bound. Compared
to the traditional scheme of the HG0,0 mode, with the HG4,0 mode as the probe beam, the
SNR is enhanced by 9.2 dB, which is in good agreement with the theory (9.5 dB). The
enhancement is equivalent to using a 9.2 dB spatially squeezed light as the probe beam, but
is more practical and robust to losses. This high-order mode-based scheme has potential
applications in areas such as laser interferometer gravitational-wave observatories and
high-sensitivity atomic force microscopes [6,25].
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