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Abstract: Imaging in both the visible and the near-infrared ranges has various applications in computa-
tional photography and computer vision. Comparing it with the traditional imaging system, integrating
pixel-level metasurfaces on the imaging sensor is effective to plot the route of visible and near-infrared
light to the right pixels, while the previously reported nanostructures were complicated to design and
fabricate. Here, a pixel-level color router based on metalens, which provides a much simpler construction
to improve the visible and near-infrared imaging efficiencies to 59% and 60%, is designed.
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1. Introduction

Visible light cameras have been widely used in daily life. However, the useful infor-
mation at the near-infrared (NIR) wavelengths is lost due to the weak detection ability
of the imaging sensor. Therefore, imaging from the visible to NIR wavelengths is of sig-
nificance to many applications. As an example of computer vision, facial recognition by
the visible light is vulnerable to the ambient light, while NIR light can correct this short-
coming [1–4]. The NIR light also has stronger penetration and smaller scattering of the air
particles than the visible light. Hence, the fusion of visible and NIR light can be used for
weak-light imaging [5–11].

Traditional imaging systems usually require two separated optical configurations to
capture the visible and NIR light, respectively, making the systems large, expensive and
complex. In addition, adding color filters on the imaging sensors will reduce the energy
by more than 50%. These problems can be resolved by integrating pixel-level metasurface-
based color routers. This kind of color router deflects different colors of light to different
pixels of the imaging sensor. It can achieve a light collection efficiency of more than 45%,
which represents the light collection efficiency limitation of the conventional color filter
with a transmission of 90%, thereby improving the imaging quality and contributing to the
development of sensor miniaturization. Metasurfaces, which consist of arrays of artificially
fabricated nanostructures, have the prominent ability to control the electromagnetic wave
properties for desired functions [12–17]. The Metasurface-based color routers can orient
the light rather than filtering it, which effectively increases the imaging efficiency [18–26].
However, the previously reported color metasurface-based routers suffer from having
complicated structures, posing high accuracy requirement for their fabrication [19–28].

In order to overcome the aforementioned problems, a pixel-level color router based on
a metalens is designed. This structure can simultaneously achieve efficient visible and NIR
imaging on the same imaging sensor, while the nanostructures are relatively simple. The
concept is illustrated in Figure 1. This thin film device can direct the visible (400–700 nm)
and NIR (700–1100 nm) light into different pixels with a collection efficiency of 59% and
60%, which is higher than the 45% of the conventional color filters. Furthermore, the unit
cells of our color routers are only composed of identical silicon-nitride nanopillars with
a side length of 180 nm and a height of 800 nm, which is much simpler than the former
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pixel-level and metasurface-based color routers. This work provides a new design guideline
for a single imaging sensor to achieve convenient and high-quality visible-NIR images.
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Figure 1. Sketch of the operating principle. The gray and red squares represent the pixels of the
imaging sensor for the visible and NIR light, respectively. The size of the pixels is 2 µm × 2 µm. The
(a) visible (white dashed lines) and (b) NIR (purple dashed lines) light are sorted and focused in the
corresponding pixels by the color router on the front of the imaging sensor. The black dashed line
represents one repeatable metalens as the color router.

2. Design Methods

In order to achieve pixel-level color routing, the target phase profile of the metalens
was calculated. As shown in Figure 1, the visible and NIR light were directed and focused
to the corresponding pixels by an array of periodic metalenses. Each metalens had a size
of 4 µm × 4 µm to cover four square pixels. The metalens is centrally symmetrical and
encodes two hyperbolic phase profiles for the visible and NIR light, respectively:

ϕ650 nm(x, y) = − 2π

λ650 nm
n
(√

f 2 + (x − x650 nm)2 + (y − y650 nm)2 − f
)
+ C650 nm (1)

ϕ860 nm(x, y) = − 2π

λ860 nm
n
(√

f 2 + (x − x860 nm)2 + (y − y860 nm)2 − f
)
+ C860 nm (2)

where 650 nm and 860 nm represent the working wavelength of visible and NIR light,
respectively. The boundary of the metalens is shown in Figure 1. The focal length of
the metalens was f = 4 µm; C650nm = 1 and C860nm = 4.1 are constants related to the
reference phases for the wavelength of 650 nm and 860 nm, which are tuned to match the
phase of the meta-atoms to the phase profiles and can be obtained according to Ref. [22]
(x650nm, y650nm) and (x860nm, y860nm) denote the focal points on the visible pixel and the NIR
pixel, respectively. Then, FDTD Solutions (Lumerical Inc. from Canada.), a commercial
software, was used to construct a phase library of meta-atoms to match the phase profile of
the metalens.

3. Results

As shown in Figure 2a, the cross-shape nanopillars of silicon nitride with a height of
H = 800 nm were used as the meta-atoms, which have accurate phase control and high
transmission from the visible to NIR wavelengths. The period of the meta-atom was set to
be P = 200 nm. The variation ranges of their lengths L and widths W were from 0.1P to 0.9P
and from 0.1P to P, respectively. The corresponding theoretical phase distribution diagram
is shown in Figure 2b. According to this theoretical phase distribution, we matched specific
meta-atoms from the phase library in order to obtain the design structure, as shown in
Figure 2c. The calculated output phases for the wavelengths of 650 nm and 860 nm are,
respectively, shown in Figure 2d, which show distribution congruence with the theoretical
results in Figure 2b.
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Figure 2. (a) Schematics of meta-atom with silicon nitride cross-shape nanopillar on glass. (b) The
theoretical phase required for the metalens at a wavelength of 650 nm and 860 nm. (c) Structure of
the metalens by obtaining the theoretical phase of (b), with a size of 4 µm × 4 µm. (d) The calculated
phase of the metalens at a wavelength of 650 nm and 860 nm. (e) The light collection efficiency of the
metalens. The dotted line represents the collection efficiency limitation of the conventional color filter
with a transmittance of 90%. The gray and red regions represent the wavelength range of visible
and NIR light, respectively. (f) The calculated PSFs of the metalens on the same focal plane at a
wavelength of 650 nm and 860 nm.

Finally, the focusing performance of the metalens for the broadband normal incident
light ranging from 400 nm to 1100 nm was also simulated. The light collection efficiency,
defined as the ratio of the transmitted light into the corresponding pixel to the total incident
light, was used to characterize the performance of the color router. Figure 2e shows the
results of light routing. The blue and red lines represent the light collection efficiency
of the imaging pixels for the visible and NIR light. The corresponding average light
collection efficiencies were 60% and 52% for the visible and NIR light, respectively. Both
results are higher than the dotted line in Figure 2e with a value of 45%. The point spread
functions (PSFs) of the wavelengths at 650 nm and 860 nm on the same focal plane were
also calculated by FDTD simulation and shown in Figure 2f. The results indicate that the
proposed metalens can effectively direct the corresponding light to the targeted pixels.

Unlike the traditional metalens, there is no need for the color router to focus the
light while it is only required to direct light energy to the corresponding pixels to the
maximum extent. Therefore, in order to simplify the nanostructures, the further following
optimization was performed:
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(1) The columns of meta-atoms in the metalens in Figure 2c were eliminated as much as
possible, while keeping the high average light collection efficiencies for the visible
and NIR light to the corresponding imaging pixels. The remaining meta-atoms are
illustrated in Figure 3a.

(2) Furthermore, the meta-atoms with very small featured sizes (<40 nm) were eliminated
due to their difficulty in fabrication. The remaining adjacent meta-atoms were also
eliminated to reduce the near-field coupling. As the square-shape meta-atoms were
easier to fabricate than the cross-shape ones, the square-shape meta-atoms were left
alone to the greatest extent during the process, as shown in Figure 3b.

(3) To further reduce the difficulty of the fabrication, the rest of the cross-shaped nanopil-
lars were replaced with the same square-shape nanopillars, which had similar phases.
Figure 3c shows the final structure of the optimized metalens. The side length of the
square-shape nanopillars was 180 nm and the height was 800 nm.
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Figure 3. Structure of the color router after (a) step 1, (b) step 2, and (c) step 3 of the optimization.
(d) The light collection efficiency of the final optimized color router (Figure 3c). The dotted line
represents the collection efficiency limitation of the conventional color filter with a transmittance of
90%. The gray and red regions represent the wavelength range of visible and NIR light, respectively.
(e) The corresponding calculated PSFs of the color router on the same focal plane at a wavelength of
650 nm and 860 nm.

Figure 3d shows the routing results of the simplified color router, which validates
its effective performance. Figure 3e shows the light-field distribution of the visible and
NIR light at the corresponding imaging pixels. Table 1 shows the light collection efficiency
for each optimized step. It is clearly shown in Figure 2 that optimization maintains the
light routing performance very effectively at the metalens, while achieving much simpler
nanostructures and greatly reducing the fabricating difficulty. It can be seen that the
obtained efficiency is slightly higher than the efficiency before optimization, which denotes
that optimization effectively matches the light collection characteristics of the visible and
NIR spectrum.
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Table 1. The calculated average light collection efficiencies for the visible and NIR light to the
corresponding imaging pixels during the optimization process.

Step For Visible Light For NIR Light

1 58% 53%
2 58% 60%
3 59% 60%

The tolerance of the incident angle on an imaging sensor determines the light routing
quality. Hence, the average collection efficiency of our color router with different incident
angles for the visible and NIR light was calculated and is shown in Figure 4 and Table 2.
They show that the light collection efficiency stays higher than 50% of the normal inci-
dence [22] when the incident angle is less than 35◦, indicating that the tolerant range of the
incident angle is about ±35◦. Here, the maximum tolerance incident angle is defined as the
angle when the efficiency drops to half of the normal incidence efficiency [22].
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Figure 4. The normalized average collection efficiencies for the visible and NIR light at different
incident angles. The dashed line indicates a collection efficiency of 50%.

Table 2. The normalized averages of light collection efficiencies for the visible and NIR light at
different incident angels.

Angle For Visible Light For NIR Light

0 1 1
10 0.63 0.67
20 0.63 0.69
30 0.76 0.69
40 0.43 0.39
50 0.16 0.14

4. Discussion

The meta-atoms that make up the metalens structure have rotational symmetry. Hence,
the color router is polarization-insensitive, providing a much simpler construction and
improved efficiency for visible and NIR imaging. As shown in Table 3, compared to previ-
ously reported metasurface-based color routers, our new design employs a much simpler
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nanostructure for fabrication by electron beam lithography and dry etching [19–22,25,28].
Our design method is versatile and can be applied when modifying the pixel size of the
imaging sensor. However, when the pixel size is too small, the range of available sizes is
insufficient to accommodate a sufficient number of meta-atoms for an effective color router.
As a result, the performance is compromised when the pixels are too small. Therefore, a
larger pixel size would be more favorable for achieving better results, e.g., larger average
collection efficiencies at an oblique incidence.

Table 3. Summary of metasurface-based color routers for imaging sensors.

References Material Height of the
Nanostructures (nm)

Minimum Size
of Nanostructures (nm)

Working Wavelength
Range (nm)

Ref. [19] GaN 600 50 400–1000
Ref. [20] Si3N4 600 125 400–700
Ref. [21] TiO2 300 80 380–780
Ref. [22] Si3N4 1250 ≤100 400–700
Ref. [25] Si3N4 600 100 400–700
Ref. [28] TiO2 150 ≤100 450–900

This work Si3N4 800 180 400–1100

5. Conclusions

In summary, a pixel-level metalens-based color router is proposed to effectively orient
the visible and NIR light into the corresponding imaging pixels with high collection
efficiencies of 59% and 60%, respectively. Unlike the previously reported integrating color
router based on complex nano-structures, this color router only composes of a series of
identical silicon-nitride nanopillars with the same size. Hence, it greatly reduces the
difficulty of fabrication. Furthermore, it has a wide tolerant range of ±35◦ for the incidence
angle. This color design is anticipated to have the potential to increase the imaging quality
for imaging sensors by improving the collecting efficiency for both the visible and NIR light.

In essence, this design method is a highly efficient and reliable technique for imaging
both color and NIR images of a given scene simultaneously. It can be extended to the
creation of RGB-NIR four-color channel color routers, which can be used to capture high-
quality images in both color and NIR. With the growing demand for advanced imaging
systems, the use of this design method is likely to become increasingly widespread in the
years to come.
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