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Abstract: In this paper, we report the use of crossed polarizer technique to measure the differential
group delay (DGD) of few-mode optical fiber (FMF). The windowed Fourier transform (WFT) is
applied in the analysis of beat length measurement in the spectral domain to obtain the dependence
of DGD as a function of wavelength. The birefringence of polarization-maintaining fiber (PMF) and
the DGD of FMF are measured by applying our method. We discuss the noise background, the
width of DGD peaks, and the possible errors introduced in the optical path in the modified crossed
polarizer technique.

Keywords: differential group delay; windowed Fourier transform; few-mode fiber; beat length; birefringence

1. Introduction

Few-mode fibers (FMFs) find key applications in large-capacity optical telecommu-
nication due to the development of mode division multiplexing (MDM) technology [1–4].
The proper design of differential group delay (DGD) and dispersion plays a key role in the
performance of remote communication systems [5–8].

Generically, DGD measurement is categorized into the time-of-flight (TOF) and inter-
ferometric techniques, including complex-transfer-function (CTF) methods [9–11], Rayleigh
scattering methods, optical low-coherence interferometry/reflectometry (OLCI/OLCR)
techniques, and spectral interferometric methods. It is difficult for the TOF technique
to measure the DGD of a fiber that is a few meters long since it requires the signals to
be well separated temporally. For a high resolution, the measurement using TOF must
require a significantly longer length of fiber sample to well distinguish the modal delay [12].
Rayleigh scattering methods employ the effect of polarization dependence of the Rayleigh
scattering [13–15]. In contrast, OLCI/OLCR merely needs a short sample where a high
resolution is also achieved by measuring the wavelength dependence of modal group delay
difference [16,17]. Spectral interferometric methods measure the DGD by analyzing the
amplitude or spectrum of the interferometer [18–30]. In this case, analyzing the data with
a window Fourier transform (WFT) can be very useful. This spectrogram approach has
been proposed for data taken by S2 (Spatially and Spectrally resolved imaging) [31,32]. In
summary, all DGD measurement techniques require relatively complex configurations of
the experimental setup, and some may not be easily accessible.

The crossed polarizer technique is a simple measurement that is usually applied
in the characterization of birefringence of polarization maintaining fiber. It has been
reported in the measurement of DGD of FMF [33] by inverse Fourier transformation of
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each spectrum component of the interference waveform. However, such a method requires
a significant amount of work to process each spectrum component separately. In this paper,
we demonstrate the crossed polarizer technique in the measurement of DGD of FMF where
WFT is utilized in the analysis of the measurement of beat length in the spectral domain.
Instead of building a complex and expensive experimental configuration, a broadband
light source, polarizer, and an optical spectral analyzer (OSA) are required to set up the
experiment where the differential modal dispersion can be fully resolved.

2. Experiment Setup and Theoretic Model

Figure 1 shows our experimental setup which is similar to [21]. A broadband polarizer
(P) is placed in front of the source to ensure that only one polarization state of the output
from a broadband source is launched into the fiber under test (FUT) via lens L1. The output
of FUT passes through an analyzer (A) before being coupled into a short single-mode fiber
(SMF). The analyzer ensures that the polarization states of the modes are aligned on the
SMF end-face. The SMF is connected to an optical spectrum analyzer (OSA).
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Figure 1. Experimental setup for spectral beating measurement. P: Polarizer. FUT: Fiber under test.
A: Analyzer. SMF: Single-mode fiber. OSA: Optical spectrum analyzer. L1, L2, and L3: Lenses for
coupling and collimating.

The spectral beating I(ω) out of modal interference measured by OSA is expressed as
follows (detailed derivation can be found in reference [23,34,35]):

I(ω) = I(ω)
[
1 + ∑ αmn cos(ωτmn)

]
(1)

where ω denotes the angular frequency, I(ω) is the background intensity, τmn is the DGD
of mth and nth modes, αmn is the normalized amplitude of interference between mth and nth
modes, and L is the length of FUT. The DGD is obtained by distinguishing the location of
peaks in the Fourier transform (FT) of spectral beating, which is written as,

F(τ) = F(τ) + ∑ αmn
[
F(τ − τmn) + F(τ + τmn)

]
(2)

where F(τ) =
∫

I(ω)e−iτωdω.
Equation (2) is derived under the assumption that τmn is independent of wavelength

because of the limited narrow band of the light source so that the dependence of modal
group delay difference on the wavelength is neglected, thus the spectral beat frequencies
are assumed constants in the measurement. In this way, by either applying the FT or
even counting the spectral fringes directly, the group birefringence can be calculated
accordingly. However, this assumption fails when the band of the light source is broader,
or the dependence of DGD measurement on the wavelength needs to be measured.

FT reflects the global properties and lacks the capability to map the local features of
the signal [36]. Instead, we applied WFT [37] in processing the spectral fringes out of the
modal interference where the DGD shows a strong dependence on the wavelength:

S(ξ, τ) =
∫

I(ω)g(ω− ξ)e−iτωdω (3)

where S(ξ, t) denotes the WFT spectrum. g(ω) is a window to sample, and a Hann window
is used throughout this paper, which is defined by:

g(ω) =

{ 1
2 [1− cos(2πω/σ)] |ω| ≤ σ

0 otherwise
(4)
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where the parameter σ controls the length of the Hann window. It should be noted that we
compared the Gaussian window, Hamming, and Hann window in the data analysis and
barely found notable differences.

3. Experiment Result
3.1. Characterization of Polarization-Maintaining Optical Fiber

First, we applied our method in measuring the group birefringence and beat length of
PMF. To obtain the maximized spectral interference, P and A were co-aligned by 45 degrees
between the two axes of PMF. The differential group delay (DGD) of the two polarized
fundamental modes was determined by the birefringence as shown below:

τ =
L
c

B− λL
c

dB
dλ

(5)

where B denotes the phase birefringence. A high birefringence could be introduced in the
PMF by the stress-applying part or design of the optical fiber structure [38–40]. It should
be noted that the stress-induced phase birefringence of the PMF is usually regarded as
independent of wavelength and far from the cutoff [41]. Therefore, the beat length in the
spectral domain is approximated to a linearly scaled wavelength as shown below:

LB =
λ

B
≈ λL

cτ
(6)

A 10 m commercial PMF (Nufern PLMA-GDF-25/250-M) was characterized in our
experiment. A laser-driven light source (LDLS, ENERGETIQ EQ-99X) was used as the
broadband source. We changed the initial condition so that almost the full fundamental
mode (LP01 mode) was excited, and we measured the spectral fringe of a 200 nm wide spectral
window (1000–1200 nm), which is shown in Figure 2a. The direct Fourier transform of the
interference fringe is shown in Figure 2b. Then, we divided the fringe into several segments
and windowed each segment using a Hann window (about 20 nm wide) with equal intervals
(about 4 nm wide). Although the spectral fringes in this research were plotted with respect to
wavelength, the Fourier transforms were taken with respect to frequency.
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We created a spectrogram by stacking the Fourier transforms of these windows to
form a three-dimensional mesh image to show the Fourier amplitude as a function of the
DGD and the center wavelength of the window. Such a spectrogram (WFT) is shown in
Figure 2c and its projection in the DGD-Amplitude plane is shown in Figure 2d, which
accords with the FT result. The width of DGD peaks was different due to the variety of the
number of sampling points. The DGD between the x-polarization and y-polarization state
of LP01 mode was 0.99 ps/m, so the beat length of this PMF was 3.56 mm at 1060 nm from
Equation (6). The beat length calculated by counting the periodicity of the interference
spectrum in Figure 2a is 3.40 mm at 1060 nm, which is consistent with the results above.
The projection of WFT in the DGD-Wavelength plane is shown in Figure 3a, from which
we can discover that the DGD is almost independent of wavelength. Figure 3b shows the
wavelength dependence of beat length, which accords with the theory that the beat length
of PMF is nearly linear with the wavelength.
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3.2. Characterization of Few-Mode Optical Fiber

An FMF (YOFC FM-SI-2) of 20 m length was measured, which has LP01 and LP11 at
1550 nm wavelength. At a wavelength near 1060 nm, the fiber allows four LP modes to exist.
A super luminescent diode (SLD, THORLABS S5FC1050P) was used as the broadband
source in the measurement.

Under the condition that four LP modes were excited, we measured the spectral fringe
of an 80 nm wide spectral window with a center wavelength of 1060 nm, which is shown
in Figure 4a. The FT and WFT on the interference fringes are shown in Figure 4b–d. The
projection of WFT in the Wavelength-Amplitude plane denotes the Fourier amplitude of
modal interference, and it is in line with the fringe profile.

Various peaks are observed in the projection in Figure 4d. The peaks of the Fourier
transform were distinguished by the dependence of DGD on the wavelength and the
differential group dispersion obtained from Figure 5a, which shows the projection of WFT
in DGD-Wavelength plane. Unexpected peaks appear at ~0.5 ps/m and its integral multiple,
which is attributed to the reflections of core-guided modes from optical components within
the setup [42]. These peaks were not introduced by modes propagating in the FUT because
the group delay difference represented by these peaks was independent of the fiber length.
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To verify the viability of this method and the accuracy of the measurement results,
we numerically simulated the FMF using the COMSOL software. The refractive index
distribution of the fiber was measured by Multiwavelength Optical Fiber Analyzer (In-
terfiber Analysis IFA-100, Sharon, MA, USA) to provide sufficient information for mode
construction. We simulated effective refractive indices at different wavelengths for different
LP modes by using the finite element method (FEM). The dispersion curves of LP modes
were obtained by using interpolation, and thus their group refractive indices and the DGDs
between all LP modes were calculated, and the results are plotted in Figure 5b. Comparing
Figure 5a,b, the simulated results are basically consistent with the measured results, though
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there are slight differences in numerical value. For example, the measured differential group
dispersion of LP11 was 1.07 ps/(nm·km) and the simulated result was 1.16 ps/(nm·km).
We attributed it to the uncertainty of the refractive index profile measurement of FUT and
the inhomogeneous distribution in the angular and longitudinal directions.

4. Discussion
4.1. Noise Background of FT of Spectral Fringes

Due to the featured light source spectrum, the wavelength-dependent coupling effi-
ciency of the mode, and random perturbation in the environment, the measured interference
fringes always accompany a fluctuating envelope even in a short spectral window. Thus,
the spectral background can lead to the rise of notable peak-like noise at small DGD.

We show a segment of the measured fringe in Figure 6a and normalized it by finding
local maximums and minimums, shown in Figure 6b. The homogenized fringes give rise to
one peak FT spectrum with a clean background where all noise peaks are eliminated.
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4.2. DGD Peak Width

For a fixed amount of sampling points (20001 sampling points in the measurement
of FMF), the width of the measured DGD peak is dependent on the dispersion of the
differential modal group. As shown in Figures 4d and 5a, the widths of all DGD peaks vary
from the others which we attributed to the slope of DGD lines as a function of wavelengths.
Obviously, the width of the DGD peak increases with the increase in the absolute value
of differential group dispersion. We numerically simulated modal interference between
two modes (LP01 and LP11 mode) with different differential group dispersion by using
Equation (1) and the widths of DGD peaks obtained by our method as shown in Figure 7.
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4.3. Error Induced in the Optical Path

The main errors of measurement are attributed to the partial reflection from optical
elements in the optical path and the limited polarization extinction ratio of the incident
light of FUT. Partial reflection at interfaces can be mostly eliminated by the anti-reflection
coating. While the polarizer before FUT ensures the incidence of linear polarized light
where the contribution of accumulated birefringence in the optical path to the measurement
of FUT can also be suppressed.

To illustrate, we used a 1 m single-mode PMF (COHERENT PM980) in the optical
path to couple the output of SLD to a FUT (5.1-m PM980). The linear polarized light from
SLD is incident at PM980 with the polarization direction paralleled at 45 degrees against
the local slow axis. Polarizer P is rotated to control the incident polarization at the input
end of FUT. The experimental setup is shown in Figure 8. The blue dashed arrows and red
dashed arrows represent the fast axis direction of PM980 and the polarization direction of
P, respectively. While the polarizer is aligned with the slow axis of PM980, the measured
spectral fringe is shown in Figure 9a and the corresponding FT is shown in Figure 9b, which
is similar to Figure 3. The birefringence of FUT is 4.32 × 10−4 (marked by the green arrow).
While the polarizer is aligned by 45 degrees with a slow axis, the measured spectral fringe
is shown in Figure 9c and the corresponding FT is shown in Figure 9d. Additional peaks
appear in the FT plot. Peaks (2) and (5) originated from the birefringence of PM980 (4.32 ×
10−4, marked by the red arrow) before FUT, namely, the birefringence in the optical path.
Peak (3) is introduced by the interference between modes corresponding to peak (2) and
peak (4).
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