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Abstract: The scattering phase function is crucial to analyze the light transport in the micron/nano
particle suspensions. A new method including a liquid–particle system and reference system is
proposed to measure the scattering phase function of the liquid–particle suspensions. In this method,
a reference system of a standard particle is used to obtain the correction factor to compensate for the
influence of the cuvette. Experimental validation was conducted for monodisperse silicon dioxide
microspheres and monodisperse polystyrene microspheres. By considering the influence of the
cuvette, both theoretical and experimental analyses prove that the proposed method can achieve a
good result in the measurement of the scattering phase function of liquid–particle suspensions for
particles with unknown size parameters and optical constants, especially when the size parameter of
the particle is larger than 10. The correction factors of scattering light distribution of silicon dioxide
microsphere suspensions with various mean particle sizes were obtained and analyzed. This method
provides an alternative and simple way of measuring the scattering phase function of micron/nano
particle suspensions.

Keywords: scattering phase function; micron/nano particle; correction factor; liquid–particle
suspensions

1. Introduction

The propagation of radiation through micron/nano particles has important appli-
cations in energy, chemistry, medicine, atmospheric aerosol science, and radiation heat
transfer [1]. The scattering phase function of micron/nano particles is generally used for
the optical characterization of the investigated medium and can be determined through ex-
perimental measurements or theoretical calculations [2–4]. However, theoretical arithmetic
can be employed to calculate the scattering phase function for particles of regular shape,
but it is not available for particles with unknown size distribution and composition [5].
Therefore, the experimental approach is a more reasonable and convenient way to obtain
the scattering phase function of the particle.

To understand the behavior and connections behind light scattering from particles
and measured light scattering distributions, several experimental methods have been ad-
vanced [6]. These methods can be classified as follows: Elastic scattering spectroscopy [7,8],
phase-sensitive detection method [9], LISST-VSF instrument [10–12], nephelometry
method [13–16], Fourier transform light scattering method [17,18], microscopic method [19],
volume scattering function (VSF) meter [20], and elliptical mirror method [21]. Elastic scat-
tering spectroscopy (ESS) is a novel neutron scattering spectroscopy used to measure the
dynamics of complex biological systems. It is a non-invasive optical technique that mea-
sures changes in the physical properties of cells [7,8]. Phase-sensitive detection is a powerful
tool for reducing detector noise; therefore, it is very important in infrared spectroscopy mea-
surements [9]. The LISST-VSF is the world’s first autonomous underwater instrument for
measuring the volume scattering function (VSF) in water with depolarization capabilities.
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However, the LISST-VSF’s “eyeball” optics may need to be calibrated to obtain accurate VSF
measurements in clear ocean water [10–12]. Nephelometry determines the turbidity of a
suspension by directly measuring the intensity of light scattered by insoluble particles in the
solution. Typically, the scattered light is measured at a certain angle relative to the incident
light source to avoid interference from any transmitted light [13–16]. Fourier transform
light scattering is a method for reconstructing angle-resolved light scattering (ARLS) that
can extend the angular range from a single spherical object [17,18]. However, this method
is only applicable to 3D symmetric objects. Microscopic method is a method for detecting
and imaging sub-wavelength objects by interfering with the light scattered by the object
with a reference light field [19]. Additionally, both photonic jets and whispering gallery
modes can be captured using optical imaging techniques. For example, near-field scanning
optical microscopy (NSOM) can be used to observe nanoscale jetting phenomena, while
spectrometers can be used to measure the spectral lines of whispering gallery modes [22,23].
Volume scattering function (VSF) instruments are a new optical method for measuring the
volume scattering function using image detection. The instrument is designed based on the
combination of two reflectors and uses a unique measurement principle to quickly measure
scattering at multiple angles simultaneously [20]. An ellipsoidal mirror scatterometer can
be used to measure the scattering from rough surfaces. It uses an ellipsoidal mirror to
direct light onto the rough surface and collects the scattered light, directing it onto a CCD
camera [21]. All of the above methods can measure the scattering phase function with high
accuracy and are applied in different fields. The main difference between these methods is
whether the detector is in direct contact with the sample being measured.

The scattering phase function represents the spatial distribution of the scattered energy
of particles. Spherical particles in particle suspensions are usually randomly oriented;
therefore, the scattering phase function is independent of the azimuthal angle and is only a
function of the polar angle. For samples contained in cylindrical glass vessels, there are two
main design schemes for scattering measurements [1], as shown in Figure 1: (a) The detector
rotates inside of the sample chamber; (b) the detector rotates outside of the transparent
sample chamber. The design of the former type (a) will limit the size of the instrument but
mitigate the sensitivity of the rotating periscope (or detector) to the scattered light since
the sticky substance attaches easily to the detector. The design of the latter type (b) can
help in overcoming the shortage of the former type; nevertheless, it makes the detector
signal dependent on the quality of the cuvette (sample vessel) wall. This dependent can
be avoided by considering the influence of a transparent sample chamber; however, the
measurement error on the accuracy of scattering phase function induced by the cuvette
wall has not been well discussed.
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Figure 1. Two typical designs of the nephelometer. (a) The detector rotates inside of the sample
chamber; (b) the detector rotates outside of the transparent sample chamber.

This work aims to propose a simple method to obtain the high-precision scattering
phase function of particles and compensate for the influence of the cuvette. To measure the
scattering phase function of particles in a cuvette, a reference system is used to eliminate
the influence of the cuvette wall. A comparison of the accuracy between the experimental
method and theoretical simulations is presented. In this work, the monodisperse silicon
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dioxide spheres and monodisperse polystyrene microspheres with known optical constants
and particle diameter distribution are considered as examples to verify this new method
for measuring the scattering phase function of particles. The scattering phase function of
microalgae with different concentrations was measured and analyzed.

2. Experimental Measurement and Sample Characteristics
2.1. Experimental Method

In measuring the scattering phase function of micron/nano particles, the samples are
diluted to proper concentrations to ensure that single scattering prevails. Figure 2 shows
the schematic diagram of the proposed method and experimental setup. As shown, typical
designs for the scattering measurement of particle suspensions consist of a light source, the
cuvette, the detector, and the rotating arm. A stepper motor is used to rotate the detector
around the sample at specific steps. These setups typically use an He–Ne laser as a light
source at 532 nm. The rotating arm and detector are controlled by a computer while the
light source is controlled manually. Two highly linear SM1PD1A photodiode detectors of
the same type are used in this experimental setup: Detector 1 measures the reflected light
flux through a cubic beam splitter; detector 2 monitors the transmitted light flux through
the beam splitter. The advantage of using two detectors for the scattering measurement is
to simultaneously obtain the incident and the scattered light fluxes in order that a slight
drift of the laser output light does not affect the measurement result [24]. The distance
between detector 2 and the cuvette is 485 mm. Two preamplifiers are used to maintain a
low bias across the photodiodes. The output signals of two detectors are automatically
phase-locked by using two lock-in amplifiers; therefore, the effect of background in the
measured result can be eliminated.
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Here, qO is the incident collimated light at point A where the laser light enters the
scattering medium. The detector is placed at an angle to the incident direction of light at
the center O. Two plano-convex lenses were also placed in the path of the beam before they
entered detector 2. The detector receives only the light scattered by the particles within the
plane of the laser beam and the detector, and the contribution of particles above and below
this plane to the scattered light can be neglected.

For a single scattering axisymmetric medium subjected to collimated irradiation,
the light flux at point O, along the path of the light beam after attenuation along AO
(LOA) [25,26] can be obtained as:

qO = q0tcuve−βeffLOA (1)

where tcuv is the transmittance of the cuvette; βeff is the effective extinction coefficient. The
detected light flux by a detector at a scattering angle Θ can be calculated from [27]:

qdetect(Θ) = q0t2
cuve−βeff(LOA+LOB)σ

Φ(Θ)∆Ω
4π

G(Θ) (2)

where LOB is the path of the light beam alone OB; σ is the scattering coefficient of the
scattering medium; Φ(Θ) is the scattering phase function of the scattering medium; ∆Ω
is the solid angle of detector 2; G(Θ) is the interaction coefficient between the scattering
medium and cuvette. The scattering phase function of particles can be obtained as:

Φ(Θ) =
qdetect(Θ)

q0∆Ω
× 4π

t2
cuve−βeff(LOA+LOB)σG(Θ)

(3)

The standard particles are considered as a reference system, and the scattering phase
function of the reference system is written as:

ΦRef(Θ) =
qdetect.Ref(Θ)

q0∆Ω
× 4π

t2
cuve−βeff.Ref(LOA+LOB)σRefG(Θ)

(4)

By using Equations (3) and (4), we have:

Φ(Θ)

ΦRef(Θ)
=

qdetect(Θ)

qdetect.Ref(Θ)
× X (5)

where qdetect(Θ)/qdetect.Ref(Θ) represents the ratio of the light flux detected by the detector
of the system under test at the scattering angle Θ to the light flux received by the detector of
the reference system with standard particles; X =

(
e−βeff.Ref σRef

)
/
(
e−βeff σ

)
is the correction

factor. Equation (5) indicates that the ratio of the scattering phase function of the scattering
medium to the reference system is only related to the received signal of the detector and X.
It can be seen that the reference system can be used to compensate for the influence of the
cuvette. Note that the correction factor X may not always be constant, which is related to
the effective extinction coefficient and the scattering coefficient of the scattering medium.

For further understanding the effect of the effective extinction coefficient and the
scattering coefficient on the accuracy of the correction factor X, based on Lorenz–Mie
theory, a theoretical analysis of the extinction efficiency factor and scattering efficiency
factor with different size parameters and optical constants of the particle is conducted as
shown in Figure 3. In the analysis, the size parameter of the particle varies from 0.1 to 1000.
From the figure, the extinction efficiency factor Qext and the scattering efficiency factor Qsca
under varying optical constants agree well with each other when the size parameter is
larger than 10. It is observed that the difference between them will be more significant for
refractive indices which are equal to 1.5, 2, 2.5, and 3. However, the absorption index has
no clear influence on the change in the extinction efficiency factor and scattering efficiency
factor in this research. Therefore, it is noted that the correction factor can be considered
as a constant and modified the scattering phase function when the size parameter of the
particle is greater than 10.
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Figure 3. The extinction efficiency factor Qext (a,c) and scattering efficiency factor Qsca (b,d) with
different size parameters and optical constants of particle. The refractive indices of the particle are
1.5, 2, 2.5, and 3, and the absorption indices of the particle are 1 × 10−2 and 1 × 10−5, respectively.

Here, the scattering light distribution of the scattering medium obtained by the experi-
mental approach can be expressed as:

SEXP(Θ) =
qD,2(Θ)

aqD,1(Θ)∆Ω
(6)

where qD,1(Θ) denotes the received signal of detector 1; qD,2(Θ) denotes the received signal
of detector 2; a is the ratio of the beam splitter and different sensitivities of detectors 1
and 2. In this work, the scattering light distribution of the reference system SEXP,Ref(Θ)
was measured and compared with the theoretical value of the scattering phase function
calculated by Lorenz–Mie theory. The correction factor X(Θ) at the scattering angle Θ can
be computed as:

X(Θ) =
SEXP,Ref(Θ)

ΦMie(Θ)
(7)

By using the correction factor to correct the scattering light distribution of the scattering
medium, the high precision value of the scattering phase function is obtained by:

Φ(Θ) = SEXP(Θ)/X(Θ) (8)

Note that the normalization processing of the scattering phase function Φ(Θ) is also
needed. Each sample should be measured several times under different magnifications by
using a preamplifier to increase the measurement accuracy.
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2.2. Experimental Uncertainty

In this proposed method, the experimental uncertainty of the scattering phase function
is obtained by the following equations. The scattering phase function of each sample was
measured 10 times. The average scattering phase function is given as:

ΦEXP =
1
M

M

∑
1

ΦM (9)

where M = 10 denotes the number of measurements. The combined standard uncertainty
of the scattering phase function can be expressed as:

∆ΦEXP =

√√√√ 1
M× (M− 1)

M

∑
1

(
TM −ΦEXP

)2 (10)

2.3. Sample Characteristics

The monodisperse silicon dioxide microspheres and monodisperse polystyrene mi-
crospheres (supplier: Baseline Chromtech Research Centre, Tianjin, China) were chosen as
exemplification particles, and the base fluid of these scattering medium is deionized water.
The liquid–particle suspensions were held in a cylindrical cuvette with a wall thickness of
1.5 mm. The diameters of the cuvette and the light beam are 20 mm and 1 mm, respectively.
All the samples were measured at room temperature and normal atmospheric pressure.
Data are collected at 1◦ increments from 0◦ to 175◦.

Figure 4 shows the micrograph of silicon dioxide microspheres and polystyrene mi-
crospheres with different mean diameters. The micrograph (a) was obtained by scanning
electron microscopy (JSM-6510MV, JEOL Ltd., Tokyo, Japan). The micrographs (b~f) were
obtained using a biological microscope (UB203i-5.0M, Chongqing, China) connected to a
CCD camera. The complex refractive index of silicon dioxide and polystyrene [28,29] at
532 nm are equal to 1.461 − i8 × 10−8 and 1.584 − i4.5 × 10−4.

Figure 5 shows the number frequency of the diameter of the silicon dioxide micro-
spheres. To achieve a well-mixed sample, an ultrasonic oscillator (Shanghai Wuxiang,
DL-1200D, Shanghai, China) was used to improve the dispersion of particles before the
experimental measurement. The particle size distributions were measured using a pop-
ular public domain image-viewing and processing program, namely, ImageJ software
(developed at the National Institutes of Health, http://rsb.info.nih.gov/ij, accessed on
10 May 2018.) after the measurement was finished. ImageJ reports the diameter distribu-
tions of silicon dioxide microspheres and polystyrene microspheres with different mean
diameters. More than 300 particles were counted for each sample. The size parameters
of silicon dioxide microspheres: (a) 0.20 µm, (b) 2.53 µm, (c) 5.2 µm, and (d) 14.8 µm are
corresponding to (a) 1.20, (b) 14.93, (c) 30.69, and (d) 87.63, respectively. The size parameters
of polystyrene microspheres: (e) 2.47 µm and (f) 10.2 µm are corresponding to (e) 14.58 and
(d) 60.20, respectively.

http://rsb.info.nih.gov/ij
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Figure 5. Measured diameter distributions for silicon dioxide microspheres and polystyrene mi-
crospheres with different mean diameters. Silicon dioxide microspheres: (a) 0.20 µm, (b) 2.53 µm,
(c) 5.2 µm, and (d) 14.8 µm, respectively. Polystyrene microspheres: (e) 2.47 µm and (f) 10.2 µm.

3. Experimental Validation

The monodisperse silicon dioxide microspheres and monodisperse polystyrene mi-
crospheres with known optical constants and particle diameter distribution were used to
verify the proposed method. The experimental validation of the scattering phase func-
tion of particles was conducted for suspensions of various mean particle sizes based on
Lorenz–Mie theory.

Different vessel diameters may affect the measurement results of the scattering phase
function and cause instability in the correction factor. Therefore, based on the Monte Carlo
method and Lorenz–Mie theory, the scattering light distribution in vessels with different
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diameters was analyzed first, as shown in Figure 6. The particles are SiO2 with a diameter
of 2.57 µm, a volume fraction of 0.005%, and a wavelength of 532 nm. The vessel diameters
are 1 mm, 2 mm, 5 mm, 10 mm, 20 mm, and 50 mm, respectively. As can be seen from
Figure 6, as the vessel diameter increases, the scattering distribution at 0 degrees decreases,
while the scattering distribution at scattering angles greater than 10 degrees increases.
In addition, an increase in vessel diameter makes the distribution of scattering energy
more stable and less fluctuating, which helps in obtaining a more stable correction factor.
Therefore, it can be considered that when the vessel diameter is significantly larger than
the particle diameter, the correction method proposed in this paper is effective.
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Figure 6. The scattering light distribution in vessels with different diameters, with a SiO2 nanoparticle
diameter of 2.57 µm and a wavelength of 532 nm.

Figure 7 shows the experimentally determined scattering light distribution of silicon
dioxide microsphere suspensions in liquid retrieved using Equation (6) and the scattering
phase function predicted by the Lorenz–Mie theory of diameter 2.53 µm. In the Lorenz–Mie
theory analysis, the particle size distributions are obtained experimentally as shown in
Figure 5. Note that the experimental data can only be obtained for scattering angles up to
175◦ where the detector does not block the incident beam. At all scattering angles, the value
of the optical thickness is less than 0.1 ensuring that single scattering prevails. Figure 8
shows the correction factor of scattering light at scattering angles from 0◦ to 175◦ based on
Equation (6). The data points of the correction factor vary with the scattering angles.

The scattering phase function for polystyrene microspheres with mean diameters
of 2.53 µm and 10.2 µm were compared with the data provided by Lorenz–Mie theory
and shown in Figure 9. The primary experiment result of scattering light distribution
of polystyrene microspheres is also presented in this figure. As shown in Figure 9, the
corrected result obtained by the new method agrees well with the predicted values of
the Lorenz–Mie theory. It is observed that the results provide a strong confirmation of
the validity of the presented method. This simple method is demonstrated to have good
accuracy in the measurement of the scattering phase function of liquid–particle suspensions.



Photonics 2023, 10, 511 10 of 13

Photonics 2023, 10, x FOR PEER REVIEW 9 of 13 
 

 

energy more stable and less fluctuating, which helps in obtaining a more stable correction 
factor. Therefore, it can be considered that when the vessel diameter is significantly larger 
than the particle diameter, the correction method proposed in this paper is effective. 

 
Figure 6. The scattering light distribution in vessels with different diameters, with a SiO2 nanopar-
ticle diameter of 2.57 µm and a wavelength of 532 nm. 

Figure 7 shows the experimentally determined scattering light distribution of silicon 
dioxide microsphere suspensions in liquid retrieved using Equation (6) and the scattering 
phase function predicted by the Lorenz–Mie theory of diameter 2.53 µm. In the Lorenz–
Mie theory analysis, the particle size distributions are obtained experimentally as shown 
in Figure 5. Note that the experimental data can only be obtained for scattering angles up 
to 175° where the detector does not block the incident beam. At all scattering angles, the 
value of the optical thickness is less than 0.1 ensuring that single scattering prevails. Figure 
8 shows the correction factor of scattering light at scattering angles from 0° to 175° based 
on Equation (6). The data points of the correction factor vary with the scattering angles. 

 
Figure 7. Scattering light distribution of silicon dioxide microsphere suspensions in liquid and scat-
tering phase function obtained by Lorenz–Mie theory with a diameter of 2.53 µm. 

0 30 60 90 120 150 180
10-6

10-4

10-2

100

102

104

Sc
at

te
rin

g 
Li

gh
t D

ist
rib

ut
io

n

Scattering Angle,Θ (degrees)

 1 mm
 2 mm
 5 mm
 10 mm
 20 mm
 50 mm

0 20 40 60 80 100 120 140 160 180
10-4

10-3

10-2

10-1

100

101

102

103

104

Silicon dioxide

 

 

 
Sc

at
te

rin
g 

Li
gh

t D
ist

rib
ut

io
n

Scattering Angle, Θ (degrees)

 Lorenz-Mie
 Experiement

Figure 7. Scattering light distribution of silicon dioxide microsphere suspensions in liquid and
scattering phase function obtained by Lorenz–Mie theory with a diameter of 2.53 µm.
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Figure 8. Correction factor of scattering light distribution of silicon dioxide microspheres.

Photonics 2023, 10, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 8. Correction factor of scattering light distribution of silicon dioxide microspheres. 

The scattering phase function for polystyrene microspheres with mean diameters of 
2.53 µm and 10.2 µm were compared with the data provided by Lorenz–Mie theory and 
shown in Figure 9. The primary experiment result of scattering light distribution of poly-
styrene microspheres is also presented in this figure. As shown in Figure 9, the corrected 
result obtained by the new method agrees well with the predicted values of the Lorenz–
Mie theory. It is observed that the results provide a strong confirmation of the validity of 
the presented method. This simple method is demonstrated to have good accuracy in the 
measurement of the scattering phase function of liquid–particle suspensions. 

 

Figure 9. Scattering phase function of polystyrene microsphere suspensions in liquid and predicted 
by Lorenz–Mie theory: (a) 2.47 µm, (b) 10.2 µm. 

4. Results and Discussion 
It is well known that particles with different diameters demonstrate different scatter-

ing properties. In order to analyze the applicability of the proposed method, an analysis 
of the variation of correction factor with different diameters is presented. Figure 10 shows 
the scattering light distribution of silicon dioxide microsphere suspensions in liquid and 
scattering phase function obtained by Lorenz–Mie theory with different mean diameters 
of 0.20 µm, 5.2 µm, and 14.8 µm, respectively. From Figure 10, the trends of the experi-
mentally measured scattering light distribution of these four samples are similar to the 
scattering phase function based on Lorenz–Mie theory. It is noted that the smaller the di-
ameter of the particle, the weaker the scattering ability of the particle, indicating that the 
scattering light distribution results are dominated by the cuvette for a small diameter of 
the particle. 

0 20 40 60 80 100 120 140 160 180
10-2

10-1

100

101

102

103

Scattering Angle, Θ (degrees)

Co
rre

ct
io

n 
Fa

ct
or

0 20 40 60 80 100 120 140 160 180
10-3

10-2

10-1

100

101

102

103

104

Polystyrene
D = 2.47 μm

 

 Lorenz-Mie
 Uncorrected
 Corrected

(a)

Sc
at

te
rin

g 
Ph

as
e 

Fu
nc

tio
n

Scattering Angle, Θ (degrees)
0 20 40 60 80 100 120 140 160 180

10-3

10-2

10-1

100

101

102

103

104

Polystyrene
D = 10.2 μm

 

 Lorenz-Mie
 Uncorrected
 Corrected

(b)

Sc
at

te
rin

g 
Ph

as
e 

Fu
nc

tio
n

Scattering Angle, Θ (degrees)

Figure 9. Scattering phase function of polystyrene microsphere suspensions in liquid and predicted
by Lorenz–Mie theory: (a) 2.47 µm, (b) 10.2 µm.

4. Results and Discussion

It is well known that particles with different diameters demonstrate different scattering
properties. In order to analyze the applicability of the proposed method, an analysis of
the variation of correction factor with different diameters is presented. Figure 10 shows
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the scattering light distribution of silicon dioxide microsphere suspensions in liquid and
scattering phase function obtained by Lorenz–Mie theory with different mean diameters of
0.20 µm, 5.2 µm, and 14.8 µm, respectively. From Figure 10, the trends of the experimentally
measured scattering light distribution of these four samples are similar to the scattering
phase function based on Lorenz–Mie theory. It is noted that the smaller the diameter of the
particle, the weaker the scattering ability of the particle, indicating that the scattering light
distribution results are dominated by the cuvette for a small diameter of the particle.
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Figure 10. Scattering light distribution of silicon dioxide microsphere suspensions in liquid and
scattering phase function obtained by Lorenz–Mie theory with different mean diameters of 0.20 µm,
5.2 µm, and 14.8 µm, respectively. (a) Experiment result, (b) Lorenz–Mie theory.

The correction factors of scattering light distribution of silicon dioxide microspheres
with four different diameters, 0.20 µm, 2.53 µm, 5.2 µm, and 14.8 µm, respectively, are
shown in Figure 11. It is observed that the correction factors of scattering light distribution
with a diameter of 2.53 µm, 5.2 µm, and 14.8 µm are similar to each other, but differ from
the correction factors with the diameter of 0.20 µm. This result agrees with the theoretical
analysis presented in Section 2.1. The results indicated that the reference system using
standard particles with a diameter of 2.53 µm can be used to correct the scattering phase
function of any unknown particles (size parameter > 10, scattering angle 6= 0), but is not
well-suited for the small-size particles. It is noteworthy that similar size particles considered
as a reference system can provide reliable results. For example, the silicon dioxide particles
with a mean diameter of 0.20 µm can be able to correct the scattering phase function of the
polystyrene microspheres with the same or approximate diameter. Generally, the proposed
method is demonstrated to eliminate the influence of the cuvette, especially when the size
parameter is larger than 10.

Photonics 2023, 10, x FOR PEER REVIEW 11 of 13 
 

 

 

Figure 10. Scattering light distribution of silicon dioxide microsphere suspensions in liquid and scat-
tering phase function obtained by Lorenz–Mie theory with different mean diameters of 0.20 µm, 5.2 
µm, and 14.8 µm, respectively. (a) Experiment result, (b) Lorenz–Mie theory. 

The correction factors of scattering light distribution of silicon dioxide microspheres 
with four different diameters, 0.20 µm, 2.53 µm, 5.2 µm, and 14.8 µm, respectively, are 
shown in Figure 11. It is observed that the correction factors of scattering light distribution 
with a diameter of 2.53 µm, 5.2 µm, and 14.8 µm are similar to each other, but differ from 
the correction factors with the diameter of 0.20 µm. This result agrees with the theoretical 
analysis presented in Section 2.1. The results indicated that the reference system using 
standard particles with a diameter of 2.53 µm can be used to correct the scattering phase 
function of any unknown particles (size parameter >10, scattering angle ≠ 0), but is not 
well-suited for the small-size particles. It is noteworthy that similar size particles consid-
ered as a reference system can provide reliable results. For example, the silicon dioxide 
particles with a mean diameter of 0.20 µm can be able to correct the scattering phase func-
tion of the polystyrene microspheres with the same or approximate diameter. Generally, 
the proposed method is demonstrated to eliminate the influence of the cuvette, especially 
when the size parameter is larger than 10. 

 
Figure 11. Correction factors of scattering light distribution of silicon dioxide microspheres with 
different diameters of 0.20 µm, 2.53 µm, 5.2 µm, and 14.8 µm, respectively. 

5. Conclusions 
A simple method is proposed to measure the scattering phase function of mi-

cron/nano particle suspensions. In this method, a reference system is used to compensate 
for the influence of the cuvette. The silicon dioxide microspheres and polystyrene micro-

0 20 40 60 80 100 120 140 160 180
10-3

10-2

10-1

100

101

102

103

104(a)

Scattering Angle, Θ (degrees)

 

Experiement
 D = 0.20 μm
 D = 5.2 μm
 D = 14.8 μm

Sc
at

te
rin

g 
Li

gh
t D

ist
rib

ut
io

n

0 20 40 60 80 100 120 140 160 180
10-3

10-2

10-1

100

101

102

103

104(b)

Scattering Angle, Θ (degrees)

 

Lorenz-Mie
 D = 0.20 μm
 D = 5.2 μm
 D = 14.8 μm

Sc
at

te
rin

g 
Li

gh
t D

ist
rib

ut
io

n

0 20 40 60 80 100 120 140 160 180
10-3

10-2

10-1

100

101

102

103

Scattering Angle, Θ (degrees)

Co
rre

ct
io

n 
Fa

ct
or

 

 D = 0.2 μm
 D = 2.53 μm
 D = 5.2 μm
 D = 14.8 μm

Figure 11. Correction factors of scattering light distribution of silicon dioxide microspheres with
different diameters of 0.20 µm, 2.53 µm, 5.2 µm, and 14.8 µm, respectively.
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5. Conclusions

A simple method is proposed to measure the scattering phase function of micron/nano
particle suspensions. In this method, a reference system is used to compensate for the
influence of the cuvette. The silicon dioxide microspheres and polystyrene microspheres
were considered as an example to verify this method. The scattering light distribution of
silicon dioxide microspheres and polystyrene microspheres with known optical constants
and particle diameter distributions were experimentally measured at scattering angles from
0◦ to 175◦. The results show that the new method has good accuracy in the measurement
of the scattering phase function of liquid–particle suspensions. The correction factors of
scattering light distribution with a diameter of 2.53 µm, 5.2 µm, and 14.8 µm are similar
to each other but differ from the correction factors with a diameter of 0.20 µm. The
results indicated that the reference system using standard particles with a diameter of
2.53 µm can be used to correct the scattering phase function of any unknown particles
(size parameter > 10, scattering angle 6= 0). The correction factor can be considered as a
constant and modified the scattering phase function when the size parameter of the particle
is greater than 10. The proposed method is demonstrated to eliminate the influence of the
cuvette and can provide reliable results.
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