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Abstract: Photoacoustic tomography is a fast-growing biomedical imaging modality that combines
rich optical contrast with a high acoustic resolution, at depths in tissues. Building upon the foundation
of this technique, novel quantitative photoacoustic tomography fully leverages its advantages while
further delivering improved quantification capabilities to produce high-accuracy concentration
estimates, which has attracted substantial research interest in recent years. The kernel challenge
associated with quantitative photoacoustic tomography is an optical inverse problem aiming to
recover the absorption coefficient distribution from the conventional photoacoustic image. Although
the crucial importance of the optical inversion has been widely acknowledged, achieving it has
remained a persistent challenge due to the inherent non-linearity and non-uniqueness. In the past
decade, numerous methods were proposed and have made noticeable progress in addressing this
concern. Nevertheless, a review has been conspicuously absent for a long time. Aiming to bridge this
gap, the present study comprehensively investigates the recent research in this field, and methods
identified with significant value are introduced in this paper. Moreover, all included methods are
systematically classified based on their underlying principles. Finally, we summarize each category
and highlight its remaining challenges and potential future research directions.

Keywords: quantitative photoacoustic tomography; optical inverse problem; spectral coloring;
fluence correction; forward modeling; fluence measurement; deep learning

1. Introduction

A major current focus in functional imaging is to estimate distributions of molecular
concentrations and related quantities, which serve as biomarkers for some diseases and
complement structural imaging techniques, enabling a more comprehensive understanding
of internal tissue states with significant medical value [1–7]. As an illustration, blood
oxygen saturation (sO2) is a pivotal factor in tumor progression, which is derived from the
concentrations of oxygenated and deoxygenated hemoglobin. As for a rapidly growing
tumor, an elevated rate of oxygen consumption may lead to a reduction in oxygen supply,
particularly in the central region where hypoxia possibly occurs. This highlights the
importance of quantifying blood oxygen saturation levels and their relationship with tumor
growth, which may offer insights into therapeutic interventions for cancer treatments [8–10].
Photoacoustic tomography (PAT) is a rapidly growing and promising biomedical imaging
modality utilizing the photoacoustic (PA) effect [11]. Benefiting from the optical absorption
measurement mechanism, it is intrinsically sensitive to molecular information and can
produce images with rich optical contrast. Meanwhile, the use of acoustic detection enables
PAT to achieve greater resolution and imaging depth compared to traditional purely optical
imaging techniques, attributed to the low scattering and attenuation of sound waves
in biological media [12–14]. Furthermore, PAT is envisioned to be a universal imaging
modality since it is theoretically capable of imaging any light-absorbing material, including
both endogenous chromophores, such as hemoglobin, and exogenous contrast agents such
as nanomaterials [15–17].
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However, conventional schemes that utilize PAT and linear spectral unmixing have
been found to yield unsatisfactory results in estimating molecular concentrations due
to the significant impact of spatially varying and wavelength-dependent fluence within
the illuminated volume, namely spectral coloring [18–21]. Quantitative photoacoustic
tomography (qPAT) is a novel imaging technique that has attracted substantial research
interest in recent years. Building upon the foundation of PAT, qPAT not only inherits
its advantages but also provides enhanced quantification capabilities to produce high-
accuracy concentration estimates [21–23]. In contrast with conventional schemes that
directly estimate chromophore concentrations from PA images via spectral unmixing,
qPAT takes advantage of an additional intermediate step, an optical inversion, to retrieve
absorption coefficient distributions from PA images. Then, the resultant distributions
are used to conduct spectral unmixing, just as illustrated in Figure 1. Theoretical details
for the conventional schemes are presented in Section 2.2. Due to this process, qPAT
effectively overcomes the undesirable effect of fluence, corrects the distorted spectral
profiles associated with each pixel from measurements, and ultimately contributes to
highly accurate concentration estimates.

Figure 1. Diagram of the entire process for quantitative photoacoustic tomography. Colors indicate
processes at different wavelengths. Obviously, three successive inversions are included.

In most previous research, qPAT has been commonly considered to contain two
inverse problems (optical and acoustic), from the measured acoustic time series to the
chromophore concentration distributions [22,24–26]. In contrast, the present paper further
divides the previous optical portion into a more specific optical inverse problem and
a spectroscopic inverse problem, as shown in Figure 1. In this manner, we can give
full prominence to the unsolved challenge, the newly defined optical inverse problem
that is dedicated to recovering absorption coefficient distributions from measured PA
images or more commonly absorbed energy density distributions (assuming a negligible
Grüneisen parameter), given that the acoustic and spectroscopic inversions have been
properly addressed by the well-established PAT and spectral unmixing techniques beyond
the scope of this study [20,27]. The difficulties associated with the optical inverse problem
arise from the following two major aspects. First, optical inversion is highly nonlinear,
since the initial pressure rise in each pixel is linearly dependent on the product of the
absorption coefficient and the received fluence, while the local fluence is in turn intricately
linked to the absorption coefficient distribution of the entire volume. On the other hand,
the non-uniqueness imposes intractability as well, leading to the result that tissues with
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distinct optical properties may lead to the same fluence map due to the highly stochastic
nature of optical interactions.

Over the past decade, significant advancements have been made in resolving the opti-
cal inverse problem. This study endeavors to conduct a comprehensive investigation of the
recent progress, including modifications and enhancements for canonical frameworks, as
well as newly developed methods. Among them, according to their feasibility, applicability,
and potential for further developments, the paper includes methods with considerable
value with necessary contexts and theoretical explanations. Notably, not all invasive ap-
proaches are within the scope of this study, such as methods requiring intravenous injection
or substance insertion. All included methods are systematically classified based on their
underlying principles, as shown in Figure 2. The rest of this paper is organized as follows:
Section 2 first provides a concise introduction to fundamentals. Section 3 offers an overview
of all the methods studied. Conclusive remarks on each category, as well as their remaining
challenges and future directions for research, are presented in Section 4.

Figure 2. Diagram of the categorization of optical inversion methods.

2. Theoretical Fundamentals
2.1. Generation of Initial Pressure Rise

In a PA process, short pulses of light are used to irradiate media, resulting in the ab-
sorption of photon energy and subsequently heating, thereby inducing local thermoelastic
expansion. This expansion, in turn, converts the temperature increase to a corresponding
initial pressure rise. If the excitation light pulse width satisfies both the pressure and ther-
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mal constraints, the initial pressure rise p0 (Pa) is directly proportional to the temperature
increase T (K):

p0 =
βT
κ

(1)

where β denotes the thermal coefficient of volume expansion (K), and κ denotes the isother-
mal compressibility (Pa−1). Combined with the photothermal conversion, the above
equation can be rewritten as [11,28]:

p0 = ΓηthµaΦ = ΓH (2)

where µa represents optical absorption coefficient (cm−1), and Φ is local optical fluence
(J· cm−2). H is the absorbed energy density, derived from the product of the fluence and
the absorption coefficient. Γ is the Grüneisen parameter (dimensionless) and ηth denotes
the efficiency (dimensionless) of converting light into heat energy, both of which are nearly
uniformly distributed within biological media. Hence, for simplicity, a common assumption
is that the energy density obtained by photon absorption is considered equivalent to the
initial pressure and then used as initial data for the optical inversion, which implies the
parameters are negligible. This assumption is widely adopted in the later-mentioned
studies. Notably, it is found in Equation (2) that p0 is not only determined by µa but
also depends on Φ, which provides a theoretical insight for the spectral coloring problem
mentioned in the next section.

2.2. Photoacoustic Tomography-Based Concentration Measurement

Photoacoustic tomography utilizes ultrasonic transducers positioned outside the
medium to capture broadband ultrasound waves generated by the PA effect and record
them as time series signals, namely PA signals. The PA image is subsequently formed
from the measured data via a reconstruction algorithm for photoacoustic computed to-
mography (PACT), or a focused-scanning scheme in the case of photoacoustic microscopy
(PAM) [13,29]. The pixel values of the PA image serve as a measure of the initial pres-
sure rises.

For quantitative measurement tasks that are based on PAT, it is necessary to obtain
a collection of multispectral PA images by illuminating media with light of different
wavelengths. In this manner, the spectral profile of the local initial pressure rise is resolved
in each pixel [30–33]. The fundamental assumption underlying this scheme is that fluence
is uniformly distributed within media, hence that, in each pixel, local initial pressure
rises are directly proportional to respective absorption coefficients. Subsequently, a linear
mixture model of spectra can be adopted, wherein the measured pressure spectrum is
proportional to the weighted sum of molar absorption spectra of constituent chromophores
and the associated weights represent the constituent concentrations [23], as shown in the
following formula:

p0(~r, λ) ∝ ua(~r, λ) =
N

∑
i=1

Mi(λ)Ci(~r) (3)

where p0(~r, λ) and ua(~r, λ) denote the measured initial pressure rise and the absorption
coefficient, respectively, at point~r and wavelength λ. For each of N individual components,
Mi(λ) and Ci(~r) denote the molar absorption coefficient at wavelength λ and the local
concentration at point~r, respectively. Then, if the molar absorption spectra of all compo-
nents are given, the concentrations of each chromophore in a single pixel would be readily
resolved via a linear regression algorithm [16,34]. This procedure is commonly referred
to as linear spectral unmixing. From the mathematical perspective, the above PAT-based
scheme is constituted by an acoustic inverse problem and a spectroscopic inverse problem.
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2.3. Spectral Coloring

In Section 2.2, the initial pressure, or absorbed energy density, is assumed to be pro-
portional to the absorption coefficient. However, this assumption can hardly hold in real
scenarios, particularly for imaging regions that are located deep [19–21]. The incident
light undergoes wavelength-dependent absorption and scattering as it propagates through
media, leading to the accordingly wavelength-dependent and spatially varying fluence.
Thus, the fluence cannot be simply assumed to have a uniform impact throughout the
entire region of interest [21,35]. Numerous studies have revealed that the measured initial
pressure spectrum extracted from a set of multispectral PA images differed dramatically
from the expected absorption spectrum due to the distortion by the unknown fluence spec-
trum, a phenomenon known as spectral coloring [19,22,36]. The spectral coloring results in
unacceptable concentration estimates, seriously hindering quantitative applications of PAT.

The phenomenon of spectral coloring has been acknowledged as the most critical chal-
lenge in PA-based quantitative measurements, attracting considerable attention in recent
times [20,22,36]. To address the impact of spectral coloring, it is necessary to eliminate the
fluence-related component from the measured data, namely recovering absorption property
distributions, which is precisely the essence of the optical inverse problem investigated in
this paper.

3. Methods for the Optical Inverse Problem
3.1. Forward Model-Based Methods

Forward model-based methods are based on a forward model that mathematically
describes the physical mechanism of data acquisition to address the optical inverse problem.
The complete schematic diagram of forward modeling is illustrated in Figure 3. Notably,
it is not essential to simulate the entire process for methods presented in this section, but
the light propagation model must be entailed. As shown in Equation (2), if the fluence
distribution is known, all other relevant variables are easily determined. Therefore, the
crucial factor of all forward operators is the process for simulating light propagation in
biological media, where both absorption and scattering play an important part.

Figure 3. Schematic diagram of the complete procedure for optical forward modeling. Circles with a
cross indicate a pixel-wise multiplication operation.

Several commonly adopted models for light propagation are outlined in the following.
The first thing to note is that, for any model here, it is necessary to specify the geometries
and optical properties (including absorption, scattering, anisotropy, and refractive index)
of the simulated medium along with the used illumination conditions in advance. The
radiative transfer equation (RTE) is a widely accepted model that accurately describes light
propagation by utilizing energy conservation within a localized volume. Nevertheless, the
RTE is an integrodifferential equation expressed in terms of radiance, which is typically
not available to obtain the analytic solution. Due to the radiance’s angular dependence,
both angular and spatial discretization are required for the numerical solution, resulting
in a computationally intensive process [11,37]. An established strategy to mitigate the
computational complexity associated with the RTE is to leverage assumptions that simplify
its expression. Among them, the diffusion approximation (DA) model is an extensively
adopted one, which assumes radiance is weakly anisotropic in strongly scattering media
and can be expressed via only the first two order spherical harmonics, leading to a diffusion
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equation in terms of fluence with high computational efficiency [11]. However, the DA
is not valid in proximity to sources and boundaries. To overcome this limitation, the
delta-Eddington model (delta-E) represents the fluence as the sum of collimated fluence
and diffuse fluence, thus compensating for forward-peaked scattering by introducing a
delta term in the phase function [38,39]. This enhancement extends the applicability of the
delta-E model to regions where the DA fails while maintaining comparable computational
efficiency. In contrast to the above models that are formulated explicitly, the Monte Carlo
(MC) model operates as a stochastic approach that employs a random walk algorithm of
photon packages, each with an initial weight, to generate fluence maps. This methodology
is widely considered to be the gold standard, delivering exceptional accuracy when a
sufficiently large number of photon packages are simulated [40]. Nevertheless, the MC
model remains computationally demanding, and it offers limited mathematical insights.
It is worth noting that within a given forward model-based framework, all those light
propagation models are available, despite featuring varying accuracy and computational
efficiency. As such, researchers must carefully navigate the trade-off between these factors
to select an appropriate model that aligns with the specific requirements of the problem
to be solved. The remainder of this section shall organize forward model-based methods
into four distinct subcategories according to different implementation frameworks, as
concluded in Table 1.

Table 1. A brief summary of forward model-based methods.

Category Number of
Forward Modeling Advantages Major Limitations

Fluence correction
methods [9,41–51] Single

Easy implementation;
little computational load.

Extremely high dependence on
predefined tissue properties, both
geometrical and optical.

Model fitting
methods [23,52,53] Multiple

Certain applicability to unknown
simple media;
good computational efficiency.

Low accuracy due to the unrealistic
optical homogeneity assumption.

Fixed-point iteration
methods [54–58] Iterative

High accuracy;
high capability for unknown
absorption distributions.

Requiring specified scattering
distributions.

Minimization-based
methods [59] Iterative

Highest accuracy;
high capability for all unknown
optical property distributions.

Computationally intensive and time-
consuming.

3.1.1. Fluence Correction Based on Prior Knowledge

Upon a cursory examination of Equation (2), one may observe that if the fluence
distribution is known, the optical inverse problem can be resolved via dividing the PA
image by the fluence pixel-by-pixel; this process is termed fluence correction [41]. Based on
this framework, optical properties are predefined as prior knowledge typically obtained
from previous literature, experience, and measured data, to produce fluence distributions.
This framework only requires modeling light propagation a single time with small compu-
tational efforts, but its efficacy heavily relies on the quality of the prior information. In the
simplest case, optical properties are assumed to be homogeneous throughout the region of
interest, by which light propagation models are easy to implement for estimating fluence
distributions and then recover the absorption distribution by fluence correction, such as
1-D exponential decay models [42,43], the DA [44], and the MC [9,45].

However, the above studies overlook the optical inhomogeneity in media, which is
particularly evident on surfaces and internal tissue boundaries where sharp discontinu-
ities in terms of optical properties occur. To achieve a high-accuracy fluence distribution
estimate, it is imperative to take more internal structure details within regions of interest
into consideration. Thanks to structural refinements, the assignments of optical properties
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are more realistic. Deng et al. [46] constructed the finger-joint skin as a two-layer model
with epidermis and dermis; Zhao et al. [47] divided the illuminated breast tissue into a
skin layer and a breast adipose layer; Tang and Yao [48] simulated the fluence distribu-
tion with a mouse brain model that was labeled with abundant tissue types and related
optical properties. In addition, complementary structural modalities (e.g., ultrasound (US)
imaging) can provide more insights into anatomical information. Han et al. [49] manually
segmented the object’s boundary and internal tissues via the co-registered US images
under the guidance of experienced physicians. Moreover, segmentation algorithms were
applicable as well. Pattyn et al. [50] adopted the seeded region growing method on the
US image to automatically identify the boundary and partition involved tissues. Mandal
et al. and Liang et al. utilized an active contour model [51] and a three-dimensional (3-D)
optimal graph search algorithm [45], respectively, to identify the unsmooth surfaces of
objects from backgrounds.

3.1.2. Model Fitting Methods

The second subclass of methods is to fit data from multiple measurements to a specified
forward operator. Based on the optical homogeneity assumption of media, Held et al. [52]
irradiated the sample at multiple locations to acquire a set of data. They approximated the
medium as a semi-infinite 3-D geometry and adopted the DA model to simulate light prop-
agation. In this manner, the effective attenuation coefficient fully determined the fluence
distribution. The fluence received at a specific point within the illumination volume varied
with the illumination location, owing to the distinctive distances between the source and
detection points. The effective attenuation coefficient was obtained from the constructed
characteristic curve of measured data and corresponding distances. Subsequently, the DA
model was able to generate the fluence map and the desired absorption coefficient was
ultimately retrieved by fluence correction. Similar frameworks have been explored in other
literature as well [23,53].

3.1.3. Fixed-Point Iteration Methods

The third subcategory pertains to an iterative calculation of the absorption coefficient
map from measured data through a fixed-point iteration algorithm. Under this framework,
the absorbed energy density distribution is treated as the original data from measurements
and used as the starting point of algorithms. Cox et al. [54] proposed the first fixed-point
iteration algorithm in this field, which approached the recovery of absorption coefficients
as a nonlinear equation-solving problem, as formulated in Equation (4) for each pixel:

ua(~r)Φ(~r) = Hmea(~r) (4)

where Hmea(~r) is the absorbed energy density at ~r from the measurement. In the k-th
iteration, if the residual between the simulated and measured absorbed energy density
failed to satisfy the prescribed error tolerance, the absorption coefficients were recalculated
by Equation (5), then the Φk+1(~r) was obtained from the delta-E model.

uk+1
a (~r) =

Hmea(~r)
Φk(~r)

(5)

Based on this framework, Liu et al. [55] took advantage of the MC model to improve
the accuracy of the Φk+1(~r) and Zhang et al. [56] recently adopted the DA model to achieve
high efficiency.

Additionally, Zhang et al. [57] utilized internal structure contours provided by high-
contrast Magnetic Resonance Imaging (MRI) to achieve organ-level segmentation within
the sample. Assuming uniform absorption distribution within each region, the unknowns
were significantly reduced, resulting in diminished computational complexity and fast
convergence.
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Wu et al. [58] proposed a novel algorithm that involved implementing spectroscopic
inversion to derive constituent concentrations following the calculation of the uk+1

a (~r).
Notably, the scattering coefficient map uk+1

s (~r) and anisotropy map gk+1(~r) were iteratively
updated based on the assumed linear relationships with the constituent concentrations.
Therefore, the algorithm to some extent extends the potential applicability of this framework
to scenarios where the scattering coefficient and anisotropy coefficient are not available.

3.1.4. Minimization-Based Methods

Each of the mentioned methods imposes certain limitations, such as the need for
prior knowledge or optical homogeneity assumptions, which can be challenging to fulfill
under real measurement scenarios, therefore constraining the potential for high-accuracy
applications. To overcome all above limitations, one effective approach is to solve the optical
inverse problem within an optimization framework, where optical properties (typically
absorption and scattering coefficients) are iteratively updated and fed into a forward
model to generate simulated data. The iteration process continues until a defined objective
function that evaluates the difference between the simulated data and the data obtained
experimentally by PAT is minimized. The underlying principle is that, as the difference
decreases, the updated parameters ultimately converge to the actual values. The framework
has demonstrated the ability to handle media with arbitrary inhomogeneities, even in
the absence of significant prior knowledge of the optical properties. Nevertheless, it
necessitates increased computational complexity and longer computation time, relative
to single modeling methods. As the assumption mentioned in Section 2.1, the measured
data conventionally represent the absorbed light energy density distribution within this
framework, assuming that the uniform Grüneisen coefficient has been normalized.

In a pioneering study, Cox et al. [59] proposed an optimization framework, as illus-
trated in Figure 4, to estimate the absorption and reduced scattering coefficients (µa, µ′s)
concurrently from the absorbed energy distribution Hmea. In each iteration, the simulated
absorbed energy density Hsim was calculated by forward modeling based on the delta-E
model. The objective function ε was formulated as the sum of squared differences between
Hsim and Hmea within all pixels, which was iteratively minimized until it converged to
the minimal.

Figure 4. Schematic diagram of the minimization procedure of Cox et al., as a typical framework in
this category of methods.

To the present day, this minimization-based framework has continued to be utilized as
a basis for subsequent research endeavors. Approaches developed to facilitate and enhance
this framework are concluded in the rest of this section.

(i) Research for implementing the minimization framework. To perform the for-
ward model-based minimization, optimization algorithms play a key role within the
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framework, as illustrated in Figure 4, which offers the update vector of iterative variables.
Two types of algorithms that merit mention are the gradient-based and Jacobian-based ap-
proaches. The former primarily refers to the limited-memory Broyden–Fletcher–Goldfarb–
Shanno algorithm (L-BFGS) [25,59–62], which is a quasi-Newton method. Quasi-Newton
methods aim to provide a super-linear convergence speed close to Newton’s method with
less computational effort by using the secant method to approximately update the Hessian
matrix, instead of calculating it from scratch [63]. On this basis, the popular L-BFGS further
utilizes gradient vectors of successive iteration points to directly update the inverse of
the Hessian matrix in a two-loop recursion manner, which, hence, is less computationally
intensive and highly memory-efficient due to only necessitating the calculation and storage
of gradients, especially for large-scale problems. On the other hand, the Jacobian-based
optimization strategy pertains primarily to the Gauss–Newton method [26,64,65], which
requires the explicit computation and storage of the Jacobian matrix. Although this ap-
proach is more storage-intensive, it has fewer computation processes when compared to
gradient-based methods.

Once the optimization algorithm is determined, the next issue requiring significant
concern is to obtain the derivatives of the objective function with respect to optical prop-
erties. Based on the perturbation theory, the variation in local absorbed energy caused
by variations in optical properties is contributed by two components, as formulated in
the following:

Ĥ(~r) ≈ µ̂a(~r)Φ0(~r) + µa,0(~r)Φ̂(~r) (6)

where Φ0 and µa,0 denote the absorption coefficient and fluence in the initial state, and
hat symbols are used to mark their perturbations. The first term is simple to solve, but
the second is intractable on account of the highly nonlinear relation of the fluence with
optical properties. To acquire the desired derivative, the underlying relationship between
perturbed optical properties and resultant changes in fluence must be established.

The methods employed to address the second term can be categorized into two groups.
Given an explicit form model, a well-established assumption is that the model retains good
validity for the perturbation state, which only considers the linear variations in involved
variables [24,66]. Therefore, the so-called sensitivity equations can be constructed [22],
revealing the required relationship to calculate the second term. Presenting the case of the
DA model for a simple explanation [25,67], the perturbed fluence distribution, induced
by small variations in the local optical properties at a given point ~r0, is governed by
the equations

(−∇ · D0∇+ µa,0)Φ̂ = −µ̂aδ(~r−~r0) ·Φ0 (7)

(−∇ · D0∇+ µa,0)Φ̂ = ∇ · D̂δ(~r−~r0)∇Φ0 (8)

where D0 is the diffusion coefficient of the initial state and its small variation is indicated
by a hat symbol. δ(~r−~r0) is a Dirac delta function. Detail implementations can be found
in the following works of literature [59,61,62]. It is noteworthy that the utilization of the
adjoint operator theory is a common approach to attain superior computational efficiency
in resolving such perturbation state equations [24,25,59–62].

In contrast with explicit models, the Monte Carlo (MC) simulation presents a greater
challenge in the computation of derivatives, owing to the limited mathematical insight
it offers. Hochuli et al. [68] proposed a radiance MC (RMC) algorithm that assumed the
angle-dependent radiance could be effectively expressed by a few orders of a harmonic
angular basis and provided a way to produce an analytical solution of the radiance in
an MC simulation manner. In this context, the MC simulation worked as the RTE; hence,
its derivative was able to be solved via a method for the RTE [61]. This algorithm has
been applied in several later studies and demonstrated considerable feasibility [69–72].
Additionally, Leino et al. [73] proposed an alternative algorithm that revitalized the
previously developed perturbation MC (PMC) method by Hayakawa et al. [74]. During
the MC simulation, all simulated trajectories were recorded to approximate the overall
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trajectory space. As the radiance of each trajectory was expressed by the incidence intensity
and a series of exponential decay functions associated with traveling movements, its
derivative with respect to the local absorption and scattering of each passing region was
easily computed. Performing this computation over the recorded space, the derivative
of fluence was subsequently obtained by summing up the radiance derivatives for each
trajectory.

(ii) Research for enhancements for the minimization framework. While the min-
imization framework can be conducted based on the above approaches theoretically, a
successful optical inversion with desired results demands further research. One of the most
significant obstacles is the non-uniqueness problem that arises from the highly stochastic
nature of optical interactions. Hence, tissues with distinct optical properties might result in
the same simulated distribution, leading to the possibility of converging to a wrong solu-
tion. A commonly adopted strategy for addressing the non-uniqueness is to incorporate
a regularization term into the objective function. Tikhonov regularization is frequently
employed to achieve solutions with desirable smoothness properties [75]. Alternatively,
total variation regularization has been demonstrated to effectively remove false details
while preserving sharp contrast at tissue edges or boundaries, making it particularly suited
for the piece-wise constant characteristic of biological tissues [22,76,77]. Some more ef-
forts have been made for the improved performance of total variation by featuring it with
directional sensitivity [78–80], which mitigates the excessive smoothness and recovers
directional textures.

Moreover, the utilization of multiple illumination sensing has proven the ability to
alleviate the non-uniqueness. It is postulated that measurements obtained from multiple
light source positions can impart a unique contribution to the desired optical property dis-
tributions [81–86]. The optimization algorithm considers the measured data from multiple
illuminations, resulting in an overdetermined condition where all independent measure-
ments constrain the optimization process to converge in the right direction. In addition,
analyzing measured data from multiple wavelengths delivers comparable effectiveness in
addressing the non-uniqueness [21,87–89]. In this context, the entire multispectral images
are concurrently processed, allowing for the direct estimation of local concentrations of
chromophores by solving both the optical and spectroscopic inverse problems together.
In that case, if the number of employed wavelengths surpasses the number of unknown
concentrations, an overdetermined condition is achieved as well, to pose further constraints
on the convergence process.

Furthermore, incorporating additional information from complementary measure-
ments demonstrates the capability in reducing solution space. Based on the standard
framework, Nykänen et al. [90] coupled the measured diffuse light emanating from the
surface by integrating its difference with data from forward modeling into the objective
function, resulting in a joint minimization problem that effectively alleviated the non-
uniqueness and produced improved estimates.

Apart from the non-uniqueness issue, imperfect measurement data also cause a consid-
erable issue, which is generally induced by system noise, limited detections, and reconstruc-
tion errors [91–94]. Since the optimization process is governed by minimizing the difference
between the measured and simulated data, the presence of inherent measured noise and
artifacts may propagate to results, leading to decreased accuracy. Tarvainen et al. [26,64]
proposed a Bayesian framework that treated all input and output parameters as random
variables following a Gaussian distribution with specified means and variances. The esti-
mation of optical properties was carried out by the mean of statistical inference complying
with the maximum posterior (MAP) estimation. The Bayesian framework has been demon-
strated in several studies to effectively account for measurement imperfections, mitigating
error propagation and resulting in a more accurate estimate [95–97].

Moreover, Naser et al. [89] proposed a method for generating a signal-to-noise ratio
(SNR) map based on a large dataset of background noise acquired under non-irradiation
conditions, which was utilized to evaluate the noise level of individual pixels. An optimal
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threshold was then determined and employed to exclude highly noise-corrupted data
from the minimization process. Kim et al. [83] adopted the sum of intensities in each
pixel obtained from multiple measurements with varying light source configurations as
an indicator for the signal-to-noise ratio (SNR). The SNR map was incorporated into the
objective function as a pixel-wise weighting factor for the squared difference, thus assigning
greater importance to pixels with higher SNR values.

It is noteworthy that, from a mathematical viewpoint, both the Bayesian-based and
SNR-based methods can be classified as variants of regularization. Hence, it follows
logically that other regularization techniques may also enable enhanced robustness to
measured errors.

In addition, some researchers have attempted to solve the acoustic and optical inverse
problems of qPAT together as a joint problem to alleviate the impact of measured data
errors [25,93,98–100]. The results of the optical forward operator were directly coupled
with the acoustic forward operator as input data and the value that needed minimizing
was the difference between the results from the acoustic forward operator and the raw
time series pressure recorded by ultrasonic detectors. In this context, the error-containing
images were no longer unchanged, as in the methods mentioned earlier, but were modified
iteratively to achieve the optimal solution from a global perspective of the measurement
process. It turned out that the direct scheme yielded superior results with better stability.

3.2. Fluence Correction with Assisted Techniques

The second category of methods is to measure fluence distributions through comple-
mentary techniques, after which absorption coefficient distributions are straightforwardly
derived via fluence correction, as mentioned in Section 3.1.1.

3.2.1. Fluence Correction with Diffusion-Based Techniques

Methods described in this section are founded upon the diffusion theory. Early efforts
in this field, as demonstrated by Yin et al. [101,102], involved the adoption of photodetectors
to measure the emergent flux, which was utilized to derive the fluence map through model-
based diffuse optical tomography (DOT). Subsequently, the absorption distribution was
recovered by normalizing the raw PA image with the resultant fluence map. Preliminary
validation experiments conducted on simple geometric phantoms yielded promising results,
with notable reductions in quantitative errors induced by the non-uniform fluence.

Recently, Ulrich et al. [103] adopted frequency-domain DOT using intensity-modulated
excitation light with a sinusoidal profile. They collected time-dependent optical signals
detected across surfaces and retrieved optical properties by employing a reconstruction
algorithm based on the time-dependent diffusion approximation (DA) model. Lastly, the
resultant properties were fed into the DA model to generate the fluence map.

Moreover, Mahmoodkalayeh et al. [104] proposed a mutual compensation method,
named the PAT-guided-DOT-compensated-PAT (PAT-DOT-PAT) scheme. The scheme
leveraged structural information from the initial PA image to guide the DOT and then
the DOT would generate fluence maps with higher resolution and finer spatial details.
Simulation results indicated that the PAT-DOT-PAT approach outperformed previous
DOT-compensated PAT methods in terms of estimating optical properties, leading to an
improved fluence estimate.

3.2.2. Fluence Correction with Acousto-Optic Theory

Daoudi et al. [105] and Hussain et al. [106,107] utilized the acousto-optic (AO) theory
to measure the local fluence directly. The basic principle was that modulated ultrasound
(US) focused within the sample could generate local fluctuations in physical path lengths
and refractive index, leading to the related modulation of the passing light [108]. In this
context, the local fluence was encoded into changes in the contrast of the speckle pattern
formed with the emanating light from the surface, and the fluence map was eventually
derived by scanning the US focus over the entire medium [109]. In introductory validations
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on tissue-like phantoms, the impact of fluence attenuation on quantified measurements
was effectively reduced [105,107].

More recently, Hussain et al. [110] devised a more general implementation scheme for
the joint AO-PA system to overcome the limitations arising from the need for a specific light
source configuration in earlier studies. The experimental results demonstrated that the
image amplitudes exhibited remarkable conformity with the local absorption coefficients
after compensating for fluence variations.

3.2.3. Fluence Correction with Passive Ultrasound

Jin et al. [111,112] took advantage of inward passive ultrasound (PU) waves that were
generated by a piezoelectric transducer as it strongly absorbed the backscattering photons
to compensate for the fluence variation. The amplitude of the passive ultrasound served as
an indicator of diffuse reflectance, which was related to the penetrated fluence. The diffuse
reflectance image was generated by scanning the laser focus over the entire area of interest
and then used to normalize the heterogeneous fluence distribution in the original PA image.
Experiments conducted with phantom models demonstrated the ability of this technique to
mitigate the adverse effects of fluence. Crucially, it is possible to implement this technique
on a standard PA system without requiring additional devices.

3.3. Data-Driven Methods

The third category of methodologies pertains to data-driven methods, distinguished
by the absence of an explicit physical model and the utilization of a learned mapping
model from a set of input–output data samples specific to the problem. Notably, sev-
eral data-driven methods can directly generate concentrations or other related quantities
from multispectral photoacoustic images without the intermediate step yielding optical
properties, which means the optical inversion is performed implicitly. In this context, the
effectiveness of these methods is assessed by the ultimate quantification results.

In early research, classical machine learning methods were employed due to the
advantages of simple principles and easy implementation. Kirchner et al. [113] proposed
a concept of voxel-specific context images, which consisted of the measured PA signals
around a given voxel and a voxel-specific fluence contribution map. For each voxel, the
fluence contribution map represented the impact of other voxels on its fluence and was
calculated from MC simulations in a stochastic manner. A random forest regressor was
adopted to estimate the fluence of each voxel from its context image, and the absorption
coefficient distribution was eventually derived by fluence correction.

In the last few years, the field of deep learning has undergone a rapid evolution,
which obviates the need for human-designed feature extraction algorithms required by
classical machine learning methods and instead automatically discovers the underlying
structure and feature representation of the data thanks to multilevel feature extraction
and excellent learning capability [15,114–116]. Owing to the supervised learning and
end-to-end nature of deep learning, a minimal requirement of assumptions and prior
knowledge exists, rendering it a superior capability to most traditional methods in complex
scenarios [117]. During the training process, the model automatically converges to the
optimal input–output mapping relationship according to specifically labeled datasets;
hence, the solution space is inherently constrained by the provided ground truth [118].
This method reduces the occurrence of meaningless results and mitigates the intrinsic
non-uniqueness compared to forward model-based optimization schemes. Moreover, the
computational requirements of deep learning are primarily attributed to the training phase,
while its implementation phase exhibits a remarkable degree of computational efficiency,
thereby facilitating real-time measurements.

Gröhl et al. [19] proposed a pixel-based algorithm that utilized a fully connected
feed-forward neural network to directly produce reliable quantitative results from the
spectral signature in a given pixel of multi-wavelength PA measurements while maintaining
low computational complexity. A more widely accepted deep learning scheme is based
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on convolutional units to extract features from PA images, which considers the spatial
correlation of measured data and generates the desired distribution in an end-to-end
manner. As per previous literature in this field, U-Net [119] has emerged as the most
prevalent architecture. Owing to its distinctive encoder–decoder architecture, U-Net can
produce outputs of the same size and resolution as the input image, rendering it a naturally
suitable choice for the optical inverse problem. More importantly, the used skip connections
enable the fusion of spatial information from earlier layers with feature representations
from deeper layers, resulting in the preservation of fine-grained image details alongside
highly abstracted features [118]. Some representative U-Net-based studies are stated in the
following section.

3.3.1. Methods Based on U-Net

Cai et al. [117] devised a novel approach to estimate chromophore concentration or
sO2 from multispectral PA images through a U-Net architecture integrated with the residual
learning mechanism. The integration of skip connections between the input and output of
each convolutional block was utilized to facilitate effective information propagation across
the network, thereby avoiding performance deterioration in a deep network. Validation
results indicated that the proposed network exhibited superior quantification accuracy,
particularly for deep-seated regions where the estimate error was significantly reduced.
Additionally, the network demonstrated a robust noise suppression capability, enhancing its
reliability in the presence of artifacts in the input image. Recently, numerous networks have
been devised by modifying the traditional convolutional unit with sophisticated neural
counterparts to facilitate refined feature extraction, building upon the U-Net architecture,
including the fully dense U-Net and U-Net++ by Madasamy et al. [120], the EDA-Net by
Yang and Gao [121], and the DR2U-Net by Yang et al. [122].

Luke et al. [123] presented the O-Net architecture, which comprised two parallel U-
Nets to conduct sO2 estimation and vascular segmentation on simulated multi-wavelength
images, respectively. The employed loss function exclusively considered predictions of
sO2 within the blood vessels predicted by the segmentation network, enabling an accuracy
improvement to focus on the vessel regions. The obtained quantification outcomes sur-
passed those obtained via linear unmixing, signifying the efficient resolution of the optical
inverse problem.

Moreover, Bench et al. [118] extended the O-Net architecture by incorporating 3-D
neural units, thereby enhancing the perception of spatial information and the network
performance on account of the 3-D nature of the physical process involved. The two U-
nets used were trained separately, and the output of the segmentation network was not a
binary image of vessel identification but its confidence distribution, ranging from 0 to 1,
which enabled an improved calculation of the mean sO2 by abandoning predictions within
uncertain pixels.

In addition, Li et al. [124] also exploited an architecture consisting of two U-Nets, but
for different tasks. Specifically, the first U-Net was dedicated to estimating the absorption
coefficient, and the second U-Net aimed to generate the corresponding fluence map. These
outcomes, together with the further derived PA image, were utilized to compute residuals
with the true values. Subsequently, the residuals obtained from the three aspects were
aggregated into a loss function to effectively govern the training process. The simulation
experiments indicated that the proposed network yielded satisfactory outcomes; it achieved
a remarkable reduction in the relative error by over 36% and an increase in the peak signal-
to-noise ratio (PSNR) of more than 15%, compared to a standard U-Net [125].

Moreover, recent research attempted to incorporate other complementary measured
data to enable a comprehensive perception of the object’s properties. Zou et al. [126]
proposed a novel network that combines a pre-trained ResNet-18 with a standard U-Net.
First, the ResNet-18 was trained independently on US images to accomplish a segmentation
task. In the next step, the output of the fully connected layer in the ResNet-18 was reshaped
and then transferred to the U-Net. Ultimately, the U-Net was trained to estimate absorption
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maps with PA images, enhanced by coupling the object’s anatomical features from the
ResNet-18. The conducted experiments revealed that the network took full advantage of
the structural and optical characteristics and offered excellent accuracy in quantification.
In addition, Madasamy et al. [120] extended the application of the Y-Net [127] to estimate
absorption distributions, which comprise an extra contraction path for raw time-series data.

3.3.2. Dataset Acquisition

It is well-known that the superior performance of neural networks highly depends
on sufficient high-quality datasets. Therefore, data acquisition plays a critical role in suc-
cessfully implementing such networks. However, labeling experiment images with true
optical parameters, particularly in deep-lying regions, is challenging due to the lack of
reliable in vivo measuring techniques [124,128]. An alternative approach is to generate
simulated data with a synthetic model with tissue-like geometry and parameters within
physiological ranges [118,129,130]. Recently, Schellenberg et al. [128] adopted a generative
adversarial network to create synthetic tissue geometries. The GAN was trained on man-
ually segmented anatomy images from experimental data, enabling it to forge anatomic
structures that closely resemble real tissue.

While simulation-based data acquisition is conveniently accessible, there exists a
notable domain gap between synthetic and experimentally acquired data [114,118]. This
difference results in a significant reduction in prediction accuracy when models trained
on simulated data are applied to real scenarios. To address this issue, Li et al. [124]
proposed a novel approach that utilized two generative adversarial networks (GANs) to
achieve domain translation in an unsupervised pattern. One GAN was trained to translate
simulated initial pressure images into data of the experimental domain, while the other
GAN performed the inverse translation. The unsupervised pattern was implemented by
imposing a cyclic constraint that ensured the inverse effects of the two GANs. Specifically,
the cyclic constraint compelled that an input image be restored to its original domain after
being processed by both GANs. A preliminary validation demonstrated the effectiveness of
this network with the remarkable agreement between the intensity probability distributions
of the simulated and experimental images.

3.4. Decomposition-Based Methods

The fourth category of methods operates on the assumption that related variables can
be represented by the weighted sum of a finite set of given basis functions. In this context,
the kernel issue is to determine the parameter associated with each basis function. Rosenthal
et al. [131] employed a spatial frequency-domain approach to analyze the logarithm of
absorbed energy density and decomposed it into a linear combination of different frequency
components. Dictated by diffusion theory, the spatial distribution of fluence was typically
smooth throughout the entire region; in contrast, the optical coefficients were likely to
exhibit abrupt variations at the boundaries between different tissues. On this basis, the
frequency components were divided into two groups, and the absorption coefficient was
finally recovered from the relevant set of components.

In recent research, Tzoumas et al. [132] proposed the eigenspectral theory, which
assumed that the fluence spectral profiles at any arbitrary point could be linearly repre-
sented by shared basis spectra. In the first step, a set of fluence spectra was extracted from
chosen grids within the illuminated volume, which constituted the dataset. Subsequently,
principal component analysis (PCA) was employed to identify the three major components,
Φ1(λ), Φ2(λ), and Φ3(λ), which were used along with the average spectrum ΦM(λ) to
form the basis spectrum. Finally, the fluence was formulated by the following equation:

Φ(~r, λ) = ΦM(λ) + m1(~r)Φ1(λ) + m2(~r)Φ2(λ) + m3(~r)Φ3(λ) (9)

where m1(~r), m2(~r), and m3(~r) were three eigenfluence parameters specific to the spatial
varying fluence. Therefore, the complexity of the wavelength dependence of the fluence
was dramatically decreased. Unknown variables including the eigenfluence parameters and
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the local concentrations of constituents within chosen grids were resolved via a constrained
optimization algorithm. Subsequently, the eigenfluence parameters for the entire region
were attained via cubic interpolation and then employed for producing the fluence map to
execute fluence correction. The feasibility was demonstrated through validation results,
which revealed acceptable estimate accuracy for the quantification task of sO2, indicating
the successful resolution of the optical inverse problem.

Later, based on the eigenspectral theory, Olefir et al. [133] adopted spectral reliability
maps to perform the optimization in a Bayesian framework, giving rise to enhanced
robustness to measurement errors. The spectral reliability map was calculated from a great
number of simulated data, manifested the pixel-wise noise covariance, and worked as
automatic weights for the measured spectral data.

More recently, Olefir et al. [134] took further advantage of the eigenspectral theory
by combining it with deep learning algorithms, removing the necessity of setting ad hoc
hand-engineered constraints in the previous studies. A network replaced the constrained
optimization process, which took a bidirectional recurrent neural network connecting with
convolutional blocks, to properly handle the selected measured spectra and their spatial
characteristics. The trained network was able to directly produce eigenfluence parameters
when measured spectra were fed in.

4. Discussion

The optical inverse problem has garnered significant attention and made substantial
advancements in related methods over the last decade. Section 3 provides a comprehensive
overview of these methods, and a summary of all categories is presented in Table 2.
Notwithstanding the mentioned advancements, there are remaining issues and limitations
that require further attention. This section undertakes an analysis of these challenging
factors, along with offering suggestions and future research directions, to catalyze further
developments.

Forward Model-Based Methods. The first reviewed forward model-based methods
rely on mathematical models to describe the underlying physical process of data acquisition
and generate simulated counterpart data. For the fluence correction approaches that only
require computing the forward operator once, it can yield improved quantitative results
with less time consumption, especially suitable for cases with lower accuracy demands.
However, the effectiveness of the methods is highly dependent on the prior knowledge
of optical and anatomical parameters that cannot be determined for in vivo scenarios,
which hinders practical applications. In the future, the research focus is supposed to lie
in iterative modeling frameworks, especially minimization-based methods. Albeit with a
compromised imaging speed, the minimization-based framework has demonstrated great
potential for clinical translation due to its broad applicability and minimal restrictions.
However, before that, the non-uniqueness involved, which presents a significant obstacle,
necessitates more research efforts. Moreover, there are two common challenges for all
forward model-based methods. Firstly, there is a trade-off in the light propagation model
selection, as an improvement in modeling accuracy may lead to an increase in time con-
sumption. In this regard, the high-accuracy Monte Carlo simulation technique, which can
leverage the computational power of rapidly evolving graphic processing units (GPUs) for
high-speed computation, holds significant potential [135,136]. Furthermore, the accuracy
of forward model-based methods is largely contingent on a thorough understanding of the
experimental setup, e.g., the specific type and location of light sources. In practical applica-
tions, acquainting and reproducing these conditions in sufficient detail for simulations can
be complicated and exceedingly time-consuming, especially when experimental conditions
are subject to change during measurements. Consequently, there is a pressing need for
research aimed at improving the robustness of such methods in the face of incomplete or
imperfect knowledge of the experimental configurations.

Fluence Correction with Assisted Techniques. Section 3.2 provides an overview of
methods that utilize alternative techniques to produce fluence distributions. Although the
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inherent complexities associated with the PA field are circumvented, several limitations still
exist. The effect of diffusion-based techniques suffers from low spatial resolution, because
of the high light scattering [101,104]. As for the acousto-optic theory, the scanning point
density determines the fluence resolution. However, an increased scanning point density
comes with the cost of a proportional reduction in imaging speed [110]. It is anticipated
that the evolution of these techniques will further facilitate addressing these issues. In
addition, due consideration ought to be given to emerging theories. On the other hand,
this category of methods commonly requires additional devices in a standard PA imaging
system. Hence, it is crucial to pay enough attention to integrating these devices into a
compact and effectively coupled system. Furthermore, Nykänen et al. [90] have proposed
a promising approach that warrants exploration, wherein the data acquired through PAT
and DOT are combined in a joint minimization problem. This integration appears to
generate a synergistic effect that can ameliorate the inherent limitations associated with
each technique.

Data-Driven Methods. The emerging data-driven approaches are mentioned in
Section 3.3. The advantage of these methods is that they do not rely significantly on
prior knowledge and do not require constructing a specific physical model. Classical
machine learning methods require human-designed feature extraction algorithms that
are intractable and inefficient, especially for highly complex problems such as the optical
inverse problem. Thus, preeminent deep learning algorithms are underscored which adopt
deep neural networks containing multilevel nonlinear mappings that enable adaptive
feature extraction and representation learning without human intervention. The U-Net has
exhibited exceptional performance in its initial applications, thereby attracting significant
research attention and boosting a flurry of related results. It is reasonable to conjecture
that the U-Net will continue to be a dominant architecture for some time. Hence, there
is a feasible and valuable research direction that involves generating improved variant
networks based on the U-Net. Two promising frameworks that merit consideration in this
regard are the multi-input U-Net and the multi-task U-Net. Networks fed with multiple
inputs, such as the Y-Net [127] and the ultrasound-enhanced U-Net [126], have demon-
strated the ability to outperform the U-Net with a single input (the PA image) because the
multifaceted information ensures that the network performs a more comprehensive feature
extraction. As for multiple-task U-Net, two U-Nets are frequently utilized to address the
optical inverse problem alongside related tasks, e.g., vessel segmentation [118,123] and flu-
ence estimation [124]. Through such an integrated framework, synergies between multiple
tasks can be harnessed to attain superior outcomes. Notably, the practical implementation
of deep learning techniques still faces several challenges that necessitate further considera-
tion. The first and most important point is that the absence of dependable in vivo optical
property measurement techniques poses a significant challenge in generating abundant
labeled data required for network training. Numerical biological phantoms can serve as a
viable alternative to produce sufficient data, but their utility is hindered by the domain gap
issue [128]. Recent research using GAN-based simulated data realism enhancement has
demonstrated promising potential in addressing the domain gap problem, though further
comprehensive validation is necessary to ascertain its efficacy [124]. In addition, there is
an urgent need to establish standardized datasets to facilitate the uniform validation of
proposed networks in studies, which makes it intuitive for the concerned researchers to
conduct performance comparisons [116]. Moreover, a trained network is typically tailored
to a specific training dataset that corresponds to a particular situation, thereby limiting
its applicability when system settings or scenarios differ. In this context, augmenting the
generality of the network represents an essential research direction, where the transfer
learning technique is a possible solution for achieving this goal.
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Table 2. A brief summary of all reviewed categories of methods.

Category Key Processes Advantages Limitations

Forward modeling-based
methods

Utilizing a forward model to
generate simulated counterparts
of related variables.

Abundant choices of available
frameworks with distinct features;
a logically simple understanding
due to the high conformity to the
underlying physical process.

High dependence on the performance of the used
light propagation model;
a strict requirement of adequate knowledge of
the experimental configurations.

Fluence correction
via other techniques

Resorting to other techniques
to measure the fluence map and
correcting its impact.

Avoiding inherent complexity and
limitations in the PA field.

Inherent drawbacks from the used assisted
techniques;
incorporating additional devices and procedures;
compromising the system’s compactness.

Deep learning methods
Training deep neural networks
to produce desired distributions
in an end-to-end manner.

Significantly less dependence on
prior knowledge of the object
tissue and related physics;
high computational efficiency in
the implementation phase.

The extensive demand for training data labeled
with true values and the lack of reliable in vivo
measurement techniques;
low generality of trained networks to system
configurations and target scenario.

Decomposition-based
methods

Decomposing related variables
into a linear combination of a
set of prescribed basis functions.

Producing acceptable results at a
relatively less computational cost.

Very limited applicable cases due to the use of
strong assumptions and the incomplete collection
of basis functions.
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Decomposition-Based Methods. The last classification of methods takes advantage
of decomposition techniques to express related variables by a collection of basis functions
founded on simplified assumptions. These intelligent methods often enable satisfactory
results with less computational effort. Nonetheless, their practicality is rather restricted
owing to underlying assumptions. Therefore , the theoretical validity of the linear repre-
sentation and the adequacy of the incomplete collection of basis functions need further
research. Specifically, the eigenspectral theory operates under the assumption that the light
propagation within media is chiefly affected by several constituent chromophores, such
that a finite number of basis spectra associated with these chromophores can be extracted
to represent the transmitted spectrum [132]. However, the assumption may not hold for in
vivo applications, where the interactions between light and tissues are intricate. In addition,
the basis spectra are derived from the spectra sampled at discrete grids on the image via
PCA. The grid selection determines the applicability of the basis spectrum to the whole
image. Therefore, the efficient selection of sampled spectra warrants further research.

From a global perspective. A general issue is that most of the findings and conclu-
sions in this area are based on simulation results. More experimental validations should
be performed to examine the clinical applicability of methods with the tissue property
heterogeneity and all other measurement factors taken into consideration [114,116]. For
the entire process of qPAT, it is worth noting that the acoustic inversion and spectroscopic
inversion also play a key role in achieving a complete concentration estimate for qPAT,
despite being beyond the scope of this paper. The high-quality PA image is a prerequisite
for accurate qPAT. In most of the methods discussed in this paper, the PA image is assumed
to be well-established and error-free. However, in practical applications, factors such as
finite characteristics of detection and system noise can cause artifacts and errors in the PA
image [27,91,137]. Zuo et al. [94] recently proposed the concept of spectral crosstalk that
indicates a mutual interaction exists between the reconstructed spectra of two arbitrary
pixels in PA images, inducing spectral distortions. Based on this observation, methods
that can process multiple wavelength images at once may be more effective because of
the ability to consider information on spectral profiles. On the other hand, even after
performing the optical inversion, a certain level of fluence-induced residual error exists.
Therefore, the commonly used linear unmixing algorithm might still produce undesirable
results. In this context, some sophisticated unmixing algorithms can be utilized to process
the results from the optical inversion, e.g., independent component analysis that shows
robustness to the residual spectral error [18]. Furthermore, if computing power is sufficient,
it seems more reasonable to solve the three inversion problems in one step, so that all the
comprehensive information of the whole process can be considered together, which can
effectively avoid the errors arising from the individual steps and eventually superimposed
on the quantitative results through error propagation.

5. Conclusions

Quantitative Photoacoustic Tomography (qPAT) is a promising biomedical imaging
modality that exploits photoacoustic signal measurements to extract quantitative infor-
mation regarding chromophore concentrations and related quantities. The optical inverse
problem focused on by the present paper constitutes the most critical and challenging
issue in qPAT, and it has generated considerable research interest. Its essence is to re-
cover the absorption coefficient distribution from conventional PA images or absorbed
energy maps to address the impact of spatially varying and wavelength-dependent fluence.
The study conducts a comprehensive investigation of recent progress in this field and
consequently fills the void of a current review. Compared to conventional concentration es-
timation approaches that overlook the optical inverse problem, the reviewed methods have
demonstrated superior performance, particularly the forward model-based minimization
frameworks and methods based on the U-Net. Several methods have also undergone initial
in vivo experimental validation, contributing to the progress of clinical translation. Despite
these accomplishments, the field remains in its infancy in general, and several challenges
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persist, as outlined in Section 4. We believe that these issues will be suitably resolved
through in-depth studies. Furthermore, it is envisioned that the successful resolution of
the optical inverse problem would pave the way for achieving in vivo measurements of
molecular concentration distributions. Being the initial review conducted in the current
decade, we anticipate that this paper will not only offer a comprehensive understanding
for related researchers but also promote further progress in this field.
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