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Abstract: In this work, we fabricated the antireflection microstructures (ARMs) on ZnSe surfaces
using a femtosecond Bessel direct laser writing in burst mode. The morphology and transmittance
performance of ARMs with different single-pulse energies (from 200 nJ to 500 nJ), different burst
modes (burst 1, 3, and 5 modes), different periods (from 3 µm to 6 µm), and different arrangements
were investigated. The results revealed that tetragonally arranged ARMs fabricated by 500 nJ of
single-pulse energy, the burst 3 mode, and a period of 3 µm show the best transmittance performance.
The average transmittance of the ARMs was about 17.13% higher than that of bulk ZnSe in the range
of 8–12 µm, and the highest transmittance of 81.75% (an improvement of 18.63% on one side of the
ZnSe) was achieved at 12.36 µm. This process makes it possible to enhance ARMs’ transmittance in
the infrared wavelength range by using direct laser writing in burst mode.
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1. Introduction

Zinc selenide (ZnSe) is one of the most promising large bandgap semiconductors,
which has aroused extensive attention because of its broad transparency in wavelengths
(0.45–20 µm) [1], high refractive index (average n~2.45) [2], large bandgap (3.24 eV) [3],
high exciton binding energy, and exciton gain. Due to the properties above, ZnSe was
extensively used in optoelectronic devices [3–5] and infrared optics [6–10]. However, the
high refractive index of infrared optics is a considerable challenge since it ultimately results
in significant reflection losses (greater than 30%). Therefore, lowering the reflection losses
brought on by the high refractive index is imperative. The conventional method to improve
surface transmittance is plating a single or multi-layer antireflection coating (ARC) on the
surface. This technique can provide more than 99% transmittance from visible to far-IR
wavelengths, but the coating has poor chemical and mechanical durability. Fabricating
an antireflection microstructure (ARM) on the surface is a different alternative method
to increase surface transparency [11,12]. ARMs, which can significantly reduce Fresnel
loss, can be prepared mainly by direct imprinting [13–15], dry or wet etching [16–21], laser-
induced periodic surface structures [22–24], and direct laser ablation [25–33]. Among the
conventional methods, the critical advantage of direct laser ablation is that the fabrication
method is straightforward, and ARMs can be prepared on most materials.

Moreover, a few additional steps and materials are required during direct laser abla-
tion, significantly reducing the production costs. Nowadays, many research groups have
applied direct laser ablation to ZnSe [25,26], ZnS [27–31] and other materials [32,33] to
fabricate ARMs. M.K. Tarabrin et al. reported the demonstration of ZnSe single crystal
reflectivity reduction of up to 3% in a spectral range of 3.5 to 15 µm by using femtosecond
laser pulses for microstructure formation without employing any etching technique [26].
Jia et al. fabricated micrometer-level inverted pyramid and cone arrays on ZnSe through
femtosecond laser direct writing, and the measured transmittance was about 11.3% higher
compared with that of plain ZnSe at 9 µm in an ideal situation [25]. When the period of
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the ARM is much smaller than the wavelength, the microstructure can be equivalent to a
multilayer of the thin film medium. The periodicity, depth, and profile of the crater will
greatly affect the equivalent refractive index gradient distribution. Based on the effective
medium theory (EMT), a general rule is that the transmittance increases as the refractive in-
dex gradient becomes smoother. Hence, transmittance is determined by the morphological
parameters of ARM [2]. Some articles have reported the influence of different shapes and
craters on ARMs’ performance [25,28], but a few papers have reported using femtosecond
laser burst mode to prepare ARMs. In addition, laser burst mode operation can improve the
ablation rates in semiconductors and dielectrics [34]. Therefore, exploring the effect of burst
mode operation on crater depth and ARM performance is worthy of an in-depth study.

In this paper, we fabricated ARMs using an axicon-shaped femtosecond laser in burst
mode on a single side of the ZnSe surface. Additionally, we examined the transmission
of ARM in the infrared range of 8–12 µm using different burst modes, pulse energies,
spatial periods, and arrangements of craters. The result illustrated that the increase in pulse
energy and the number of sub-pulses could increase the depth of the crater and improve
the performance of ARMs. The highest transmittance of 81.75% (improved by 18.63%) was
achieved at 12.36 µm in the case of 500 nJ of single-pulse energy, the burst 3 mode, and a
tetragonal arrangement. This process makes it possible to enhance ARMs’ transmittance by
using direct laser writing in burst mode.

2. Experiment

The laser source used to fabricate ARMs was a femtosecond fiber laser (Wuhan Yangtze
Soton Laser Co., Ltd., Wuhan, China), with a center wavelength of 1030 nm and a pulse
width of about 400 fs. It offers a horizontal, polarized, fundamental Gaussian mode, with
a diameter of 3.9 mm. The repetition rate of 0.1 MHz was used in the experiment. The
axicon (Edmund Inc.; base angle α = 2◦; refractive index nαx = 1.45) was used to convert
the Gaussian beam to a Bessel beam. The 4f system, which consists of a plano-convex lens
(f = 150 mm) and a micro-objective (100×, NA = 1.25, and a working distance of about
0.18 mm), was used to obtain suitable miniature Bessel beams, as is shown in Figure 1a.
The ZnSe crystal (Optics & Fine Materials), with a diameter of about 10 mm and thickness
of 1 mm, was mounted on a 3-axis motorized stage (P-611.3S, PI. Inc., Karlsruhe, Germany),
with an accuracy greater than 10 nm. The shaped Bessel beam was then focused on the
surface of ZnSe to fabricate ARMs.
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Figure 1. (a) Schematic diagram of femtosecond laser processing system. (b) A single laser pulse 
and two burst modes consisting of N = 3 and 5 pulses with tsep = 25 ns and the same total fluence; 
the frep represents the repetition of 0.1 MHz. 

Figure 1. (a) Schematic diagram of femtosecond laser processing system. (b) A single laser pulse and
two burst modes consisting of N = 3 and 5 pulses with tsep = 25 ns and the same total fluence; the
frep represents the repetition of 0.1 MHz.

The single-pulse energy was set from 200 nJ to 500 nJ, with a time interval of 1 s.
The time interval was determined by the time it took for the femtosecond laser to directly
irradiate the ZnSe material. Pulse picker of the laser was performed to generate a pulse
train with different numbers of sub-pulses (from 1 to 5; tsep = 25 ns) to prepare a single
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crater of ARM on the ZnSe sample, as illustrated in Figure 1b. The sub-pulses of the pulse
train from 1 to 5 were defined as burst 1 to burst 5 modes, respectively. ARMs’ structures
of 0.1 × 0.1 mm2 with a period from 3 µm to 6 µm were produced on the ZnSe surface.
Finally, the scanning electron microscope (SEM, SU8220, Hitachi, Tokyo, Japan) was used to
measure the ARMs’ surface morphology. The profile of a single crater was examined using
an atomic force microscope (AFM, Dimension ICON, Bruker, Billerica, MA, USA). Finally,
transmission in the ranges from 5 µm to 15 µm was measured by a Fourier Transform
Infrared Spectrometer (Nicolet Continuum FT-IR Microscope, Thermo Scientific, Waltham,
MA, USA).

3. Results and Discussion

Several research groups have investigated ARMs and concluded that the structure
depth is crucial for ARMs’ performance [35,36]. The Bessel beam was used to increase the
depth of the laser-induced crater and reduce the diameter of the crater. The calculated
focused Bessel beam and Gaussian beam inside the ZnSe material are shown in Figure 2.
As described in Figure 2a, the Bessel beam generated in the experiment contains a core
surrounded by concentric higher-order rings, with most of the energy concentrated at the
core of the Bessel beam. The energy accumulation of the Bessel beam along the axis of the
propagation direction is depicted in Figure 2b, and the core shows a higher aspect ratio than
that of the Gaussian beam. According to Figure 2b,c, the calculated Bessel beam FWHM
values of the core along the radius and axis of the propagation direction were 688 nm and
6.02 µm, respectively. Compared to the calculated Bessel beam FWHM values of the core
along the axis of the propagation direction, the Gaussian beam FWHM values of the core
along the radius and axis of the propagation direction were 11.4 µm and ~0.8 µm, which
is not conducive to the preparation of ARMs with deep craters, as is shown in Figure 2e,f.
Thus, the Bessel beam was used to create deeper craters on ARMs, as well as improve the
ARMs’ performance.

To understand the influence of burst mode, single-pulse energy, structure period, and
arrangement on ARMs’ performance, ARMs of 0.1 × 0.1 mm2 with various parameters of
energy (E = 200 nJ, 300 nJ, 400 nJ, and 500 nJ), burst modes (burst 1, burst 3, and burst 5),
and structure periods (p = 3 µm, 4 µm, 5 µm, and 6 µm) were prepared on the ZnSe sample.
Figure 3a–d shows SEM images of different parameters of ARMs (E = 500 nJ; burst 3 mode;
p = 3 µm, 4 µm, 5 µm, and 6 µm). The figure illustrates that the diameter of each crater is
~2 µm, and the craters generated severe recasting at the edge and the annular area.

The depth of craters with different single-pulse energies and burst modes are illus-
trated in Figure 4a. The AFM result demonstrates that single-pulse energy significantly
impacts the depth of the craters, and the depth of the craters increases as the single-pulse
energy level rises. Furthermore, compared to the traditional single-pulse operation, the
burst mode operation has an essential influence on the depth of the craters. Among the
burst mode operations, when the single-pulse energy level is lower (200 nJ) or higher
(500 nJ), there is less difference in the craters’ depth. When the energy of a single pulse is
moderate (300–400 nJ), the depth of the craters grows as the number of sub-pulses rises.
When the energy reaches 500 nJ, the number of sub-pulses rises, the craters’ depth increases,
and the depths of the craters are 1.09 µm (burst 1), 1.26 µm (burst 3), and 1.29 µm (burst
5), respectively. The profiles and the morphology of the craters with 500 nJ of single-pulse
energy and in burst modes from burst 1 to burst 3 are shown in Figure 4b–g. In addition,
the profiles around the center of the craters in burst 5 mode differ significantly from those
in bursts 1 and 3 mode. By fitting the crater profiles, the profiles in burst 1 and burst 3
modes are more similar to the Gaussian type, while the profile in burst 5 mode is more
similar to the Lorentz type. These two different shapes may impact the refractive index
distribution at the interface between air and material, which might also influence the ARMs’
performance [28].
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Figure 2. Normalized intensity distribution of the Bessel light field in the ZnSe material. (a) Radial
light field cross-section at position y = 0. (b) Calculated Bessel beam intensity along propagation
z. (c) The on-axis Bessel beam intensity along propagation z. Normalized intensity distribution of
the Gaussian light field in the ZnSe. (d) Radial light field cross-section at position y = 0. (e) Calcu-
lated Gaussian beam intensity along propagation z. (f) The on-axis Gaussian beam intensity along
propagation z.
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Figure 4. (a) The average depth of the ARMs’ craters in different single-pulse energy and burst mode.
The AFM image of ARMs’ craters with 500 nJ of single-pulse energy and (b) burst 1, (d) burst 3,
and (f) burst 5 modes. The profiles along the center of the ARMs’ craters with 500 nJ of single-pulse
energy and (c) burst 1, (e) burst 3, and (g) burst 5 modes. The white scale bar represents 2.5 µm.

Then, the transmission of the bulk ZnSe sample and ARMs of 0.1 × 0.1 mm2 with
various parameters was measured by using an FTIR spectrometer in the range of 5–15 µm.
The results illustrated that the average transmission of the unprocessed bulk ZnSe sample
was ~62.32% in the range of 5–15 µm. Based on the results of the craters’ profiles, the
number of sub-pulses and single-pulse energy have an impact on the depth and profile of
the craters. To show the influence of craters’ size and morphology on ARMs’ performance,
the transmission spectrums of ARMs at different single-pulse energies (E = 200 nJ, 300 nJ,
400 nJ, and 500 nJ) and the number of sub-pulses (burst 1, burst 3, and burst 5) were
measured. From the transmission of different parameters shown in Figure 5a, compared
to burst 1 and burst 5 modes, burst 3 mode exhibits higher transmittance values in the
range of 8–15 µm. The average transmittance values of ARMs in the range of 8–15 µm are
79.45% (burst 3), 78.39% (burst 1), and 75.85% (burst 5), respectively. In addition, with
the increase in single-pulse energy, there was a significant increase in transmittance, as
illustrated in Figure 5b. The average transmittance values of ARMs at single-pulse energies
from 200 nJ, 300 nJ, 400 nJ, to 500 nJ in the range of 8–15 µm were 67.66%, 72.00%, 76.55%,
and 79.45%, respectively. This verifies that the depth of the ARM has an impact on the
average transmittance. In the case of 500 nJ of single-pulse energy and burst 3 mode, the
average transmittance of the ARM was improved by 17.13% in the range of 8–12 µm, and
the highest transmittance of 81.75% (improved by 18.63%) was achieved at 12.36 µm.
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To compare the theoretical and experimental transmittance differences of the ARMs
with 500 nJ of single-pulse energy and burst 1, burst 3, and burst 5 operations, the profiles
along the center of the ARMs’ craters were fitted, as depicted in Figure 6b,d,f. As previously
illustrated in Figure 4c,e,g, the characteristics of the burst 1 and burst 3 modes are more
similar to the Gaussian type, while burst 5 is similar to the Lorentz type. The general form
of the Gaussian type is as follows:
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in the range of 5–15 µm in (a) burst 1 mode, (c) burst 3 mode, and (e) burst 5 mode. The period of
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However, the Lorentz type is shown as:

y = y0 +
2A
π

(
w

4(x − xc)
2 + w2

) (2)

The parameters of the fitted profile of the ARMs’ craters in three burst modes are
shown in Table 1. Then, the Finite Difference Time Domain (FDTD) method was performed
to analyze the ARMs’ structure, which had the above-mentioned shape, in the range of
5–15 µm, as shown in Figure 6a,c,e, respectively. To ensure the accuracy of simulation
calculations, we directly imported the three above-mentioned types of crater profiles into
the theoretical calculations. The depths of the craters were 1.09 µm (burst 1), 1.26 µm
(burst 3), and 1.29 µm (burst 5), respectively, and the diameter of each crater was ~2 µm.
The period of the ARMs was set to 3 µm. The figure illustrates that the simulation and
experiment results were in general agreement.

Table 1. The parameters of the fitted profile of the ARMs’ craters in three burst modes.

y0 (µm) A (µm) w (µm) xc (µm)

Burst 1 0.0348 −0.93588 0.89048 1.43323
Burst 3 0.05236 −1.7127 1.17805 1.47026
Burst 5 0.05726 −1.37681 0.67921 1.46701

To further explore the effects of period and arrangement on ARMs’ performance,
ARMs with a period from 3 µm to 6 µm and hexagonal and tetragonal structures were
fabricated in burst 3 mode with 500 nJ of single-pulse energy. As illustrated in Figure 7a, as
the period of ARMs decreases, the transmission generally increases, and ARMs with the
period of 3 µm exhibited a better performance. In the case of the ARMs with a period of 3 µm
to 6 µm and with 500 nJ of single-pulse energy and a tetragonal arrangement, the average
transmission values of the ARMs were 79.45%, 70.41%, 65.64%, and 64.06%, respectively.
Similar to the tetragonal arrangement, the average transmission values of ARMs with the
period of 3 µm to 6 µm in 500 nJ of single-pulse energy and hexagonal arrangement were
76.14%, 71.27%, 66.76%, and 64.68%, respectively, as is shown in Figure 7b. Compared to
tetragonally arranged ARMs with the same parameters, the hexagonal arrangement ARM
exhibited a better average transmission value with a period of 4 µm to 6 µm in the range of
8–15 µm, but exhibited a worse average transmission value with a period of 3 µm in the
range of 8–15 µm.
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4. Conclusions

In summary, we fabricated ARMs on the ZnSe surface using femtosecond Bessel
direct laser writing in burst mode. The morphology and transmittance performance of
ARMs with different single-pulse energies (from 200 nJ to 500 nJ), different burst modes
(burst 1, burst 3, and burst 5), different structure periods (from 3 µm to 6 µm), and different
arrangements were investigated. Among these parameters, the single-pulse energy and
burst mode significantly impacted the depth of the ARMs’ craters, and thus, affected the
ARMs’ performance. Then, the profiles of ARMs’ craters (500 nJ of single-pulse energy)
in three burst modes were fitted, and the FDTD method was performed to verify the
ARMs’ transmittance. The results illustrated that in the infrared range of 8–15 µm, the
transmittance performance increased as the single-pulse energy increased. As the number
of bursts increases, the depth of the ARMs’ craters increases (from 1.09 µm in burst 1 to
1.29 µm in burst 5 mode). However, the best transmittance performance of the ARMs was
in burst 3 mode rather than burst 5 mode, which may be due to the different shape of the
ARMs’ craters under other bursts. Finally, the average transmittance of the tetragonally
arranged ARM was increased by 17.13% in the range of 8–12 µm, and the outstanding
transmittance of 81.75% (improved by 18.63%) was attained in 12.36 µm for 500 nJ of
single-pulse energy, the burst 3 mode, and the period of 3 µm. This process makes it
possible to enhance ARMs’ transmittance in the infrared range by using direct laser writing
in burst mode.
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