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Abstract: In this paper, the 946/1030 nm dual-wavelength LG01 mode vortex laser is obtained by
applying the intracavity cascade pumped structure and annular-beam end-pumped method, an
innovative and pioneering exploration of the transverse mode of the dual-wavelength laser. First,
we demonstrate the oscillation characteristic theoretical model of the dual-wavelength LG01 mode
laser, considering the reabsorption effect. Then the length of the laser crystal and the transmittance of
the output mirror are simulated and analyzed, respectively, related to the oscillation characteristics
of the 946 and 1030 nm LG01 mode vortex lasers. Finally, a 946/1030 nm LG01 mode vortex laser
with the same handedness is successfully achieved in our experiment. With 20 W of annular-beam
pump power, the output power of 946 and 1030 nm LG01 mode vortex lasers is 0.404 and 0.510 W,
the slope efficiency is 3.6% and 6.2%, and the total optical-optical conversion efficiency is 4.6%. At
the maximum output power, the fluctuations of output power within 1 h are 4.02% and 4.23%, and
the beam quality factors M2 are 2.32 and 2.27, respectively, for 946 and 1030 nm LG01 mode vortex
lasers. The wavefront phase exp(iφ) of the 946/1030 nm dual-wavelength is also proved by the
self-interference method.

Keywords: dual-wavelength laser; LG01 mode; intracavity pumped

1. Introduction

A dual or multi-wavelength laser can output two or more different laser wavelengths
in a single device. Compared with combining laser beams output from two or more in-
dependent lasers utilizing dispersion elements, dual or multi-wavelength lasers have the
advantages of compactness, simplicity, and reliability. At present, dual or multi-wavelength
lasers are mainly obtained in solid-state lasers by controlling the gain-loss between different
wavelengths or in semiconductor and fiber lasers based on comb filters to suppress mode
competition [1–3]. Because of their simple structure, diverse operation modes, and high
beam quality, research on dual and multi-wavelength has long been of great significance in
the field of lasers. Reviewing the development of research on dual or multi-wavelength
solid-state lasers, there has been a lot of extended research on dual-wavelength lasers,
such as novel wavelength combination [4–7], pulse modulation [8–10], power-ratio tun-
ing [11–13], linewidth compression [14,15], and gain competition management [16–18], etc.
However, as far as it is known, little research has been conducted on output transverse
modes among the many extended studies of dual or multi-wavelength lasers.

LG mode beams have the unique properties of an annular-shaped profile, spiral
wavefront, and orbital angular momentum(OAM), and they are widely used in optical
tweezers [19,20], super-resolution microscopic imaging [21], quantum information process-
ing [22], optical communications [23]. Recently, OAM beams also have found applications
in a couple of new fields, such as defect detection in nanostructures [24], artificial spin ice
systems [25], direction-sensitive detection of spinning objects [26], and the first reliable
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ptychographic imaging of highly periodic structures [27]. In addition, dual or multi-
wavelength lasers are widely used in biomedicine [28], laser detection [29], terahertz wave
generation [30], nonlinear optical mixing [31], etc. Combining the concepts of vortex light
and dual-wavelength, the dual-wavelength vortex laser as a new type of laser will have
important potential application value in some fields mentioned above. Among them,
the dual-wavelength vortex laser can play a further role in conducting intracavity sum-
frequency experiments to obtain LG mode vortex laser in the blue wavelength band, which
has not been reported yet; and variability of topological charge during the sum-frequency
process can also be investigated.

In this paper, a 946/1030 nm dual-wavelength LG01 mode vortex laser is first proposed
by taking the intracavity cascade pumping structure and annular-beam end-pumped
method. For the Section 2, the oscillation characteristic model of a 946/1030 nm intracavity
cascade pumped dual-wavelength LG01 mode laser is established. For the Section 3, the
length of the laser crystal and the transmittance of the output mirror are under analysis,
respectively, related to both the oscillation characteristics of the 946 nm (threshold pump
power, output power, and intracavity power) and 1030 nm (threshold pump power and
output power) LG01 mode vortex laser. For the Section 4, the 946 and 1030 nm dual-
wavelength LG01 mode vortex laser with the same handedness is obtained, and the output
power is 0.404 and 0.510 W at the 20 W annular-beam pump power, respectively. Details of
the study of the 946/1030 nm dual-wavelength LG01 mode vortex laser are given in the
following sections.

2. Theoretical Analysis

The energy level schematic of the intracavity cascading pumped method is shown in
Figure 1. An Nd:YAG crystal is pumped by an 808 nm laser diode (LD) to achieve a 946 nm
laser through energy level transition ( 4F3/2 →

4 I9/2 ), and then a Yb:YAG crystal is directly
pumped by 946 nm in the resonant cavity to achieve a 1030 nm laser through energy level
transition ( 4F5/2 →

4 I7/2 ). The operation schematic of the intracavity cascading pumped
method is shown in Figure 2. Nd:YAG and Yb:YAG crystals are all located in the resonant
cavity, and the 1030 nm resonant cavity is located in the 946 nm resonant cavity. The
Nd:YAG crystal is pumped by 808 nm LD to achieve a 946 nm laser, and then the Yb:YAG
crystal is directly pumped by 946 nm in the resonant cavity to realize a 1030 nm laser,
finally realizing a 946/1030 nm dual-wavelength laser output. The 946 and 1030 nm lasers
come from two crystals, respectively, so the intracavity cascade pumped scheme avoids the
gain competition between spectral lines.
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In end-pumped solid-state lasers, different modes of laser can be obtained based on
the pump light with different irradiance distribution or pumping off-axis gain medium,
such as the TEM00 mode, Hermite–Gaussian (HG) mode, and LG mode. The TEM00 mode
laser is obtained when the light source with point irradiance distribution pumps the gain
medium along the direction of the optical axis, which is the pump source and pumping
method used in the vast majority of lasers at present [32,33]. The HG mode laser can be
excited by pumping off-axis with the help of a fiber-coupled laser diode, and the order of
the HG laser will be increased as the transverse separation of the fiber from the optical
axis increases [34,35]. In addition, the HG mode laser can be converted to an LG mode
laser using a cylindrical lens set outside the resonant cavity, which is also an indirect
method to obtain the LG mode laser [36]. However, a laser with annular-shaped irradiance
distribution end-pumped gain media is currently more common for obtaining the LG
laser [37,38]. Because the pump beam with an annular-shaped irradiance distribution and
the LG laser has good mode-matching effects in the gain medium, the LG laser can be
obtained directly in the cavity based on this method. In the previous work, we obtained a
946 nm LG01 mode vortex laser by end-pumped Nd:YAG crystal with an 808 nm annular
beam [39]. The 946 nm LG01 mode vortex laser has a two-lobe transverse irradiance
distribution at any position in the cavity. Meanwhile, the light irradiance of a 946 nm LG01
mode vortex laser within a distance is superposed in the resonator to obtain an annular
distribution, which can achieve a good mode-matching effect with a 1030 nm vortex laser
equipped with Yb:YAG crystal.

Next, assuming that the pump beam is of an annular-shaped irradiance distribu-
tion and the output laser is of the LG01 mode, the oscillatory characteristic model of the
946/1030 nm intracavity cascade pumped dual-wavelength LG01 mode laser considering
the reabsorption effect is established. The rate equations describing the intracavity cascaded
pumped dual-wavelength laser can be expressed as:

d∆NI(r,z)
dt = f IΨIξpI(r, z)− ∆NI(r,z)−∆NI

0(r,z)
τI

− c
nI

σI f I∆NI(r, z)ΦI ϕ0I(r)
(1)

dΦI
dt

=
cσI
nI

y
∆NI(r, z)ΦI ϕ0I(r)dV − ΦI

τqI
(2)

d∆NΠ(r,z)
dt = fΠΨΠξpΠ(r, z)− ∆NΠ(r,z)−∆N0

Π(r,z)
τΠ

− c
nΠ

σΠ fΠ∆NΠ(r, z)ΦΠ ϕ0Π(r)
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dΦΠ

dt
=

cσΠ

nΠ

y
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τqΠ
(4)

where the subscripts I and Π are used to represent the parameters in the 946 and 1030 nm
resonators, respectively. ∆N is the population inversion density; Φ is the photon number
density in the resonant cavity; Ψ is the pumping rate; ξp is the photon spatial distribution
function of the pump beam; ∆N0 is the distribution function of the natural particle number
inversion in the thermal equilibrium state without pumping; τ is the fluorescence lifetime
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of the particles involved in the transition of the upper energy level of the laser crystal; c is
the speed of light; n is the refractive index of the laser crystal; σ is the emission cross-section
of the oscillating light; ϕ0 is the photon spatial distribution function of the oscillating beam;
τq is the intracavity photon lifetimes; f = f1 + f2, f1 and f2 are the ratio of the number of
upper and lower level particles participating in the transition to the total number of lower
level particles.

The 808 nm beam with an annular-shaped profile as the pump source and the 946 nm
LG01 mode vortex laser as the intracavity pump source ξp can be expressed as [40]:

ξP I(r, z) =


αp I exp(−αp I z)

π(b2−a2)(1−exp(−αp I dI))
(a ≤ r ≤ b)

0 elsewhere
(5)

ξPΠ(r, z) =
4r2

πω0I4

αpΠ exp
(
−αpΠz

)
1− exp

(
−αpΠdΠ

) exp
(
− 2r2

ω0I2

)
(6)

where αp is the absorption coefficient of the laser crystal to the pump beam; d is the length
of the laser crystal; b is the outer radius of the annular beam; a is the inner radius of the
annular beam; ω0 is the beam waist radius of the fundamental mode in the laser crystal.

Under stable operation, the normalized irradiance distribution function per unit
volume in laser crystals ϕ0 for 946 and 1030 nm LG01 mode vortex lasers is:

ϕ0 I(r) =
4r2

πω0 I4dI
exp

(
− 2r2

ω0 I2

)
(7)

ϕ0Π(r) =
4r2

πω0Π
4dΠ

exp
(
− 2r2

ω0Π
2

)
(8)

Other single-round losses LI (except transmission loss γT I and reabsorption loss
2N0

1IσIdI) in the 946 nm laser resonator include the loss of the resonator itself L0I , the
absorption loss γα caused by the Yb:YAG crystal, and the insertion loss Rloss caused by
the total reflection mirror of the 1030 nm laser resonator. Other single-round losses in the
1030 nm laser resonator only are considered for the loss of the resonator itself L0Π . In the
946 and 1030 nm laser resonators, the smallest size elements are the Nd:YAG and Yb:YAG
crystals, which are much larger than the radius of the mode. Compared to several other
losses, the diffraction losses caused by the crystals can be almost negligible such that we
can attribute the losses caused by them to a part of the loss term of the intracavity itself.
On this basis, the expressions of the threshold pump power Pth I , output power PoutI , and
intracavity power Pin I of the 946 nm LG01 mode vortex laser are established:

Pth I =
πhvp I(L0I+γα I+Rloss+γT I+2N0

1I σI dI)(b2−a2)
2σI τI ηαI( f1I+ f2 I) 1(

2a2
ωo I

2

)
exp

(
− 2a2

ωo I
2

)
−
(

2b2
ωo I

2

)
exp

(
− 2b2

ωo I
2

)
+exp

(
− 2a2

ωo I
2

)
−exp

(
− 2b2

ωo I
2

)
 (9)

PoutI =
2TI
(

Pp − PthI
)
ωo I

2ηαIhνoI/hνpI

(L0I + γα I + Rloss + γT I)(b2 − a2)
(10)

Pin I =
1 + RI
1− RI

2TI
(

Pp − PthI
)
ωo I

2ηαIhνoI/hνpI

(L0I + γα I + Rloss + γT I)(b2 − a2)
(11)
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The intracavity power of the 946 nm LG01 mode laser is used as the pump power of
the 1030 nm LG01 mode laser. Further, the output power PoutΠ and threshold pump power
PthΠ of the 1030 nm LG01 mode vortex laser is expressed as:

PoutΠ =
4TΠ(PinI − PthΠ)ηαΠhνoΠ/hνoI

6
(

LoΠ + γTΠ + 2N0
1ΠσΠdΠ

)C1
C2
− N0

1ΠσΠdΠC3
(12)

PthΠ =
πhvpΠ

(
L0Π + γTΠ + 2N0

1ΠσΠdΠ

)(ω0Π
4

ω0I 2 + 3ω0I
2 + 3ω0Π

2 + ω0I
4

ω0Π
2

)
8σΠτΠηαΠ( f1Π + f2Π)

(13)

where 
C1 =

(
ω0Π

4

ω0I 2 + 3ω0I
2 + 3ω0Π

2 + ω0I
4

ω0Π
2

)2

C2 = ω0Π
8

ω0I 4 + 8ω0Π
6

ω0I 2 + 16ω0I
4 + 24ω0Π

4 + 32ω0I
2ω0Π

2

C3 = ω0I
4

ω0Π
4 +

ω0Π
2

ω0I 2 + 3ω0I
2

ω0Π
2 + 3

(14)

3. Simulation Analysis

Laser crystal and output mirror are important components in the laser system. Laser
crystal parameters (doping concentration and length) and output mirror transmittance
greatly influence the threshold pump power and output power, especially in the quasi-
three-level system. Next come simulations and analyses of laser crystal parameters and
output mirror transmittance related to the threshold pump power, output power, and
intracavity power of the 946 nm LG01 mode vortex laser and the threshold pump power
and output power of the 1030 nm LG01 mode vortex laser. The simulation results can
provide a reference for subsequent experiments.

The important parameters used in the simulation of the oscillation characteristics of
946 and 1030 nm LG01 mode vortex lasers are shown in Table 1. Referring to the previous
literature, the doping concentration of the Nd:YAG crystal is set at 1%, and the particle
number density of the corresponding ground state energy level is 1.38 × 1017/mm3. The
transmittance of the 1030 nm resonator’s total reflection mirror to the 946 nm laser is 99%,
so the insertion loss is Rloss = 1− T = 0.01. The absorption coefficient αΠ of the
Yb:YAG crystal to 946 nm laser is set as 0.5 cm−1, and the length of the Yb:YAG crystal is set
as 2 mm, so the absorption loss is γα I = 1− exp(−αΠdΠ) = 0.095. When the transmittance
of the output mirror is 1%, 3%, 5%, and 10%, the relationship between the threshold pump
power, output power, and intracavity power of the 946 nm LG01 mode vortex laser and
the length of the Nd:YAG crystal are shown in Figure 3a–c, respectively. When the length
of the Nd:YAG crystal is 0–10 mm, the threshold pump power initially decreases rapidly,
and then the trend of threshold pump power becomes flat after the crystal length is 2 mm;
the output power increases rapidly before the crystal length is 3 mm, after which the
growth rate slows down and gradually declines. The variation of intracavity power with
the increase of crystal length is consistent with that of output power with the increase
of crystal length. Combining the threshold pump power and output power, we set the
length of the Nd:YAG crystal as 3 mm. When the pump power is 20 W and the length of
the Nd:YAG crystal is 3 mm, the relationship between the threshold pump power, output
power, and intracavity power of the 946 nm LG01 mode vortex laser and the output mirror
transmittance are shown in Figure 3d–f. The threshold pump power increases with the
increase of the output mirror transmittance, and the intracavity power has the opposite
variation. The output power first increases and then decreases with the increase of the
output mirror transmittance. The transmittance is 2.5–25%, and the output power exceeds
1 W. On this basis, we set the output mirror transmittance at 946 nm as 2.5%.
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Table 1. The important parameters used in the simulation of the oscillation characteristics of the 946
and 1030 nm LG01 mode vortex lasers [41–45].

Parameter Nd:YAG Yb:YAG

λp [nm] 808 946
L0I 0.05 0.05

σ [cm2] 4 × 10−20 1.8 × 10−20

τ [µs] 230 950
α [cm−1] 8 (808 nm) 0.56 (946 nm)

f1 0.0074 0.046
f2 0.6 0.7

ω0 [µm] 200 180
a and b [µm] 200 and 100 -
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Aligned with the study on the doping ion concentration of the Yb:YAG crystal, the
doping concentration of Yb3+ is set at 0.5%, and the particle number density of the cor-
responding ground state energy level is 6.9 × 1016/mm3. When the transmittance of the
output mirror is 1%, 3%, 5%, and 10%, the relationship between the threshold pump power
and output power of the 1030 nm LG01 mode vortex laser and the length of the Yb:YAG
crystal are shown in Figure 4a,b, respectively. When the length of the Yb:YAG crystal is
0–10 mm, the threshold pump power originally decreases rapidly, and then the trend of
threshold pump power becomes flat after the crystal length is 2 mm; the output power
gradually increases as the length of the crystal increases. In addition, considering the
intracavity loss of the Yb:YAG crystal to 946 nm laser, the crystal length should not be too
long. Therefore, we set the Yb:YAG crystal length as 2 mm. When the pump power is 20 W
and the length of Yb:YAG crystal is 2 mm, the relationship between the threshold pump
power and output power of the 1030 nm LG01 mode vortex laser and the output mirror
transmittance are shown in Figure 4c,d. The threshold pump power increases with the in-
crease of the output mirror transmittance. As the output mirror transmittance increases, the
output power first increases rapidly, then decreases slowly. The lower operating threshold
is preferred, so we set the output mirror transmittance at 1030 nm as 4%.
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4. Experiment Setup

The experimental setup of the 946/1030 nm dual-wavelength LG01 mode laser is
shown in Figure 5. The pump source is an 808 nm laser diode connected and output by
a fiber pigtail with a core diameter of 200 µm and a numerical aperture of 0.22. First, the
pump beam passes through the lens L1 (f = 43 mm) and is collimated into a parallel beam.
Then, it is shaped into an annular beam by a reflector M placed at 45◦, where the center of
the reflector M is an elliptical etched area (the long axis: 5

√
2 mm, the short axis: 5 mm).

Then, the beam diameter is adjusted by aperture D, and finally, it is converged into the laser
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crystal through lens L2 (f = 80 mm). The efficiency of the coupling system is 58.5%. The
gain medium of the 946 nm laser is a Φ4 mm × 3 mm 1%-doped Nd:YAG crystal, which
is coated with 808 and 946 nm antireflection film on the S1 side and 946 nm antireflection
film on the S2 side. The gain medium of the 1030 nm laser is a Φ4 mm × 2 mm 0.5%-doped
Yb:YAG crystal and its S1 and S2 sides are coated with 946 and 1030 nm antireflection
coatings. The two crystals are wrapped with indium foil and installed in water-cooled
fixtures made of red copper, and the temperature is controlled at 15 ◦C. The resonator of
this laser includes 946 and 1030 nm resonators. The 946 nm resonator is composed of M1,
Nd:YAG crystal and M2, and its cavity length is 75 mm. The 1030 nm resonator is composed
of the M3, Yb:YAG crystal, and M2, and its cavity length is 35 mm. M1 is a plane-concave
mirror (curvature radius: 300 mm). Its S1 and S2 sides are coated with 808 and 1064 nm
antireflection films, and the S2 side is also coated with 946 nm high-reflection film. M3 is
also a plane-concave mirror (curvature radius: 300 mm). Its S1 side is coated with a 946 nm
antireflection film, and its S2 side is coated with a 946 nm antireflection film and 1030 nm
high-reflection film. M2 is a plane-plane mirror, and its S1 and S2 sides are coated according
to the simulation results. The final transmittance of M2 to 946 and 1030 nm is 2.5% and
3.9%, respectively. The output laser is divided into 946 and 1030 nm LG01 mode vortex
lasers by dichroic mirror M4, which is convenient for measuring the parameters of different
wavelength lasers separately.
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5. Results and Discussion

We used the fiber-optic spectrometer (StellarNet, BW-UVN-50) to measure the spectra
of the output laser, and the results are shown in Figure 6. Notably, the 808 nm pump laser
is not completely absorbed at the high pump power state. We used an RG830 glass filter
during the experiment to absorb the residual pump laser. When the pump power of the
annular beam is 20 W, the center wavelength of the dual-wavelength laser is 946.48 and
1029.49 nm. The results show that the intracavity cascade pumped scheme successfully
achieves the dual-wavelength laser.

Vortex lasers with opposite handedness have the same threshold pump power, so the
handedness of vortex lasers directly generated without pre-regulation is easy to change
randomly. In order to reduce the insertion loss caused by additional optical elements, a
stable handedness of the 946 nm LG01 mode vortex laser has been achieved by adjusting the
transverse position of the Nd:YAG crystal [39]. A mode converter composed of cylindrical
lenses converts the generated vortex laser into a Hermite–Gaussian (HG) laser. The vortex
laser’s topological charge and handedness change are determined by the number of node
lines and the direction of the long axis of the HG laser. The 946 nm vortex laser is adjusted
to a direction parallel to the optical axis by a reflector to facilitate the measurement. The
measurement diagram and results are shown in Figure 7. By carefully adjusting the lateral
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position or pitch angle of the laser crystals, the long-axis of the 946 and 1030 nm HG01
mode lasers have the same handedness over the whole pump range. The results show that
the 946 and 1030 nm lasers are LG01 mode and have the same handedness.
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Further, we carried out experiments and concluded the relationship between the
power of the 946 and 1030 nm LG01 mode vortex lasers and the pump power of the annular
beam, respectively, and the results are shown in Figure 8. When the pump power of the
annular beam is 9.7 W, the 946 nm LG01 mode vortex laser comes to the start of the output;
When the pump power of the annular beam is increased to 11.9 W, the 946 and 1030 nm
LG01 mode vortex laser start to output simultaneously. When the pump power of the
annular beam is increased to 16.1 W, the output power of the 946 and 1030 nm LG01 mode
vortex laser is consistent, and their size is 0.277 W; When the pump power of the annular
beam is 20 W, the output power of 946 and 1030 nm LG01 mode vortex lasers is 0.404 and
0.510 W, while the corresponding slope efficiency is 3.6% and 6.2% respectively. The total
optical-optical conversion efficiency is 4.6%. Since the full mirror M3 and Yb:YAG crystal
will bring losses to the 946 nm laser oscillation, this is one of the reasons for the lower
output power and slope efficiency of the 946 nm LG01 mode laser. Another reason is that
the dual-wavelength vortex laser is output only in a single handedness, and the laser with
opposite handedness is suppressed.
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pump power of the annular beam.

The output power of the 946/1030 nm LG01 mode vortex laser and 808 nm LD varies
steadily over time, shown in Figure 9. The output power of the 946 and 1030 nm vortex
lasers was recorded every 2 min for a total test time of 1 h. The output power of the 946
and 1030 nm LG01 mode lasers fluctuates by 4.02% and 4.23% with the time, respectively.
However, the total output power fluctuation is 0.91%, which is smaller than the fluctuation
of the 946 and 1030 nm LG01 mode vortex lasers, respectively. This phenomenon indicates
weak competition between the output power of the dual-wavelength vortex laser. In
addition, the pump power of 808 nm LD fluctuates by 0.37% over time.
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The trend of the beam quality factors M2 of the 946/1030 nm LG01 mode vortex laser
with incident pump power as well as time is given in (a) and (b) in Figure 10, respectively.
The theoretical value of the beam quality factor M2 for the LG01 mode vortex laser is 2.
When the pump power is 13 W to 20 W, the beam quality factor M2 for the 946 nm LG01
mode vortex beam is in the range of 2.20 to 2.32, and the beam quality factor M2 for the
1030 nm LG01 mode vortex beam is in the range of 2.14 to 2.27. The beam quality factors
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M2 of both 946 and 1030 nm LG01 mode vortex lasers increase slightly with increasing
pump power. The inset in Figure 10a shows the beam factor test results for the 946 nm and
1030 nm LG01 mode vortex lasers at a pump power of 20 W, and the results are 2.32 and
2.27, respectively. In addition, we measured the beam quality factor over time for the 946
and 1030 nm LG01 mode vortex lasers at a pump power of 20 W. In the early stage, the
beam quality factors of the 946 and 1030 nm vortex lasers are relatively stable, and with
the increase of time, the beam quality factors of the 946 and 1030 nm vortex lasers show a
slowly rising trend due to the accumulation of thermal effects.
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At present, the phase structure of LG-mode laser is mainly measured by the iterative
phase retrieval methods and interferometric methods. Using an iterative phase retrieval
method, the spiral phase structures of the vortex laser (the tightly focused vortex laser [46],
vortex laser containing both a fundamental field and its copropagating second harmonic
field [47]) were characterized. Based on the Mach–Zehnder interferometer, the interference
of the LG01 mode laser with a plane wave or spherical wave was carried out, and the
interference pattern with Y-shaped stripes or single-arm spiral stripes proved that the
output laser has a wavefront phase exp(iφ) [48,49]. In addition, based on the Michelson
interferometer, the self-interference of the 4th-order vortex laser was also carried out, and
the interference pattern containing a pair of fork-shaped stripes (four forks separated from
one singularity) demonstrated that the output laser has the spiral phase exp(i4φ) [50]. We
also used the self-interference method to measure the wavefront phase of the 946 and
1030 nm LG01 mode vortex lasers. The optical path diagram of the measuring device and
the results are shown in Figure 11a,b. The output laser is at first divided into two beams of
transmitted laser and reflected laser with equal irradiance through the spectroscope G1,
in which the reflected laser passes through the mirror M1 and then passes through the
spectroscope G1 again. The transmitted laser passes through the compensation plate G2,
the mirror M2, the compensation plate G2 and then passes through the spectroscope G1
again. Finally, the two lasers come to the CCD element and have an interference there. We
adjust the front and rear positions of mirror M1 to make the optical paths of the two paths
equal. The self-interference patterns of the 946 and 1030 nm lasers both contain a pair of
opposite Y-shaped fringes, which are marked with dashed red lines. Separating a fork from
a singularity indicates that the 946/1030 nm LG01 mode vortex laser contains the wavefront
phase exp(iφ).
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6. Conclusions

In summary, a novel 946/1030 nm dual-wavelength LG01 mode vortex laser is de-
signed and experimentally studied in this paper. Firstly, the theoretical model of oscillation
characteristics of intracavity cascade pumped dual-wavelength LG01 mode vortex laser
considering the reabsorption effect is established, and the length of the laser crystal and the
transmittance of the output mirror are simulated and analyzed related to the oscillation
characteristics of the 946 and 1030 nm LG01 mode vortex lasers. Finally, the experimen-
tal setup is built, and the parameters of the 946 nm and 1030 nm LG01 mode lasers are
presented, respectively. With the annular-beam pump power of 20 W, the output power
is 0.404 and 0.510 W, and the slope efficiency is 3.6% and 6.2% for the 946 and 1030 nm
LG01 mode vortex lasers. The total optical-optical conversion efficiency is 4.6%. For the
maximum output power, the power fluctuates by 4.02% and 4.23% within 1 h. The beam
quality factors M2 are 2.32 and 2.27 for the 946 and 1030 nm LG01 mode vortex lasers,
respectively. The interference patterns of the 946 and 1030 nm lasers measured by the
self-interference method contain a pair of opposite Y-shaped fringes, indicating that the
generated dual-wavelength vortex laser has the wavefront phase exp(iφ). The 946/1030 nm
dual-wavelength LG01 mode vortex laser is developed for the first time, and the feasibility
of intracavity pumping for dual-wavelength LG01 mode vortex laser is verified, which is of
great significance for research on dual-wavelength intracavity sum-frequency.
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