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Abstract: Compact waveguide crossing is a fundamental component of optoelectronic fusion chip
solutions due to its orders-of-magnitude smaller footprint than that of conventional photonic in-
tegrated circuits. In this paper, we suggest 2 × 2 compact silicon-on-silica waveguides that can
implement all of the fundamental Boolean logic functions, including XOR, AND, OR, NOT, NOR,
XNOR, and NAND, operated at 1.55 µm. Three input waveguides, one output waveguide, and a
design area compose the proposed waveguide. The execution of the specified logic gates relies on
the constructive and destructive interferences produced by the phase variations between the input
beams. The contrast ratio (CR) is employed as a performance metric to assess how well these logic
functions operate. In comparison to other reported designs, the proposed waveguide achieves higher
CRs at a high speed of 120 Gb/s.

Keywords: logic functions; waveguide crossing; contrast ratio

1. Introduction

The need for computational resources has grown significantly in today’s information
society, and the density of conventional integrated circuit transistors is reaching its physical
limit. In the past decade, there has been considerable growth in the field of integrated
photonics, particularly in the area of silicon photonics, due to the high transmission effi-
ciency, low power consumption, affordable and dense integration, and compatibility with
complementary metal–oxide–semiconductor (CMOS) manufacturing processes [1]. Since
the inception of silicon photonics in the telecommunications industry, many applications
that are based on this platform have grown to include sensing, optomechanics, nonlinear
optics, quantum optics, and even neuroscience. On the other hand, optoelectronic and
photonic devices and circuits based on silicon-on-insulator (SOI) are appealing because they
can be fabricated using the CMOS process and have the potential for monolithic integration
on CMOS chips. SOI is produced by depositing a thin layer of crystalline silicon on a
silica (silicon dioxide) insulating layer. Moreover, the SOI waveguide crossing is a crucial
device unit to create a variety of implementation schemes, such as shaped taper waveguide
crossing [2–5], multimode interferometers [6–8], and photonic crystal waveguide cross-
ing [9,10]. However, low insertion loss was reported using these structures, especially
in 2 × 2 [2], but large crossings are unattractive for large-scale photonic interconnects.
All-optical Boolean functions, on the other hand, are essential elements for information
optical processing because they efficiently overcome the fundamental restrictions of their
electronic equivalents, particularly the constrained data transfer speed and bandwidth.
Recently, a variety of optical waveguides have been employed to implement all-optical
Boolean functions [11–22]. However, the majority of these described devices have used
photonic crystal structures or are constructed from noble costly metals to implement only
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one, or at most two, logic operations. Furthermore, these reported schemes necessitate
highly accurate and advanced microfabrication technologies. Due to these impediments,
it is still difficult to implement multifunctional logic functions with high performance
using simple and inexpensive waveguides. Therefore, in this paper, we propose compact
2 × 2 silicon-on-silica waveguides to realize seven basic Boolean logic functions, i.e., XOR,
AND, OR, NOT, NOR, XNOR, and NAND, operated at the 1.55 µm telecommunications
wavelength. The proposed waveguide consists of three input waveguides, one output
waveguide, and a design area. Based on the constructive and destructive interference
produced by the phase differences between the input beams, the considered logic functions
operate. By employing Lumerical finite-difference-time-domain (FDTD) simulation tools,
the contrast ratio (CR) is calculated to evaluate how effectively the logic functions work.
Through comparison of the outcomes with other reported designs [11–22], it is shown that
the proposed design exhibits higher CRs at a high speed of 120 Gb/s.

2. 2 × 2 Silicon Waveguide

The proposed waveguide comprises a silicon core that is printed on a silica substrate
as cladding, which is advantageous for controlling the size of optical devices as well as
for linear and nonlinear applications [1]. This waveguide has three input ports that are
open to transverse electric mode polarized waves, one output port, and a design area. The
design area measures 2 µm by 0.6 µm, the top and lower arms are separated by 4 µm, and
the width of the input and output arms are both set to 0.4 µm. The coupling gap between
the top and lower arms is 0.1 µm, and the bend radius is 2 µm. The total waveguide
cross-section area is 6 × 4.8 µm2. The input beams have the same wavelength and intensity.
A schematic diagram of the 2 × 2 silicon waveguide and the light field distributions are
displayed in Figure 1.
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Figure 1. (a) Schematic diagram and (b) light field distributions of 2 × 2 silicon waveguide.

The threshold transmission (Tth) value is initially set to 0.14, which is the minimum
normalized power required to generate the spectral transmission (T). T = Iout//Iin, where
Iout = |Eout|2 is the intensity at Pout and Iin = |Ein|2 = I1 + I2 + I3 is the sum of the
intensities at three input ports [15]. The intensity monitors of the FDTD are set to record
the simulation findings. The logic output is ‘1’ when T > Tth; otherwise, the output is ‘0’
(i.e., T < Tth). The incident beams must match in phase to maximize T. The destructive
interference scatters the incident beams when the phases of the incident beams are out
of phase with the waveguide, producing a ‘0’ output. The CR described by CR(dB) =
10 ln

[
P1

mean/P0
mean

]
[19,20], where P1

mean and P0
mean are the mean peak powers of outputs

‘1’ and ‘0’, respectively, is employed to evaluate the performance of the considered logic
functions better and more accurately than other metrics [23].

Figure 2 depicts the spectral transmission (T) and the loss versus the operating wave-
length (λ) when the input beams are injected at the three input ports with the same phase
of 0◦. Due to the constructive interference between the input beams utilizing the suggested
waveguide, a high T of 0.865 and a low loss of 0.63 dB/µm are achieved. The scattering
at the interfaces between the slots and the design area and the material absorption are
responsible for these negligible propagation losses. Moreover, this graph demonstrates
that our waveguide generates a high T and a low loss across the entire range of exploitable
telecommunication wavelengths, i.e., 1.3–1.6 µm.
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Figure 2. Spectral transmission (T) and loss versus operating wavelength (λ) utilizing 2 × 2 silicon
waveguide.

The design area, which controls the coupling gap between the upper and the lower
waveguide’s arms, is essential for the suggested design to achieve the considered logic
functions with high CRs. Therefore, Figure 3 illustrates the simulation of the effect of the
design area’s volume on the normalized spectral transmission (T) at 1.55 µm. This figure
shows that the maximum T occurs between 0.40 and 0.60 µm3, which gives flexibility in
the practical implementation of the suggested design. A closer look at this figure reveals
that by varying the design area’s volume, the light scattering and absorption within the
materials increase, which, in turn, causes higher losses.
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Figure 3. Spectral transmission (T) versus volume of design area utilizing 2 × 2 silicon waveguide at
1.55 µm.

The process variations, such as those in waveguide thickness, etching depth, waveg-
uide width, and material refractive indices, result in phase errors that introduce uncertainty
in the responses of photonic devices [24–26]. Therefore, it is necessary to study the effect of
the phase error on the performance of the logic operations. Figure 4 shows the dependence
of the normalized spectral transmission (T) on the phase error utilizing the 2 × 2 silicon
waveguide at 1.55 µm. This figure shows that by increasing the amount of phase error, T is
decreased, which, in turn, reduces the CR.
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Figure 4. Spectral transmission (T) versus phase error utilizing 2 × 2 silicon waveguide at 1.55 µm.

The top and lower waveguide arms are separated by a gap of 4 µm. This gap plays a
central role in the waveguide performance. Therefore, Figure 5 shows the relation between
the spectral loss and the gap between the waveguide arms utilizing the proposed 2 × 2
waveguide crossing at 1.55 µm. It can be seen that the loss deteriorates with the widening
of the separated gap. This happens because if the separated gap is increased, the upper
and lower waveguide arms move away from their convergence point at the design area,
which induces no interferences between the incoming beams, and thus naturally results in
a loss increase.
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1.55 µm.

The bending radiation losses are caused by the coupling of light from core modes
to cladding modes when the optical waveguides/fibers are bent. These losses must be
simulated correctly as they critically affect the device’s performance. Therefore, Figure 6
shows the bending loss as a function of the bend radius (R) using the proposed waveguide
at 1.55 µm. The form of the obtained curve agrees well with the trend that bending losses
increase for smaller R. Accurate measurements of bending losses in silicon waveguides
with submicron dimensions fabricated on SOI wafers that experimentally verify this fact
are reported in [27,28].
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Realizing a highly flat and low dispersion over a broad wavelength range is a key
challenge for integrated waveguides. Dispersion flattening has proven to be a challenge for
silicon waveguides due to the tight light confinement and severe waveguide dispersion
in the highly nonlinear integrated waveguides. Additionally, it may be advantageous
to reduce phase mismatching and eliminate the need for high pump power in nonlinear
processes by optimizing the dispersion profile in silicon waveguides [29]. The transverse
size of silicon strip and rib waveguides would need to be quite large to produce one
zero-dispersion wavelength in the desired wavelength range, which is typically around
1.55 µm [30,31]. The waveguide dispersion [32] is decreased with the increase in the
operating wavelength (λ), as shown in Figure 7. The proposed 2 × 2 silicon waveguide
achieves a low dispersion of 0.54 ps2/m at 1.55 µm and also exhibits flattened dispersion
from the 1.45 to 1.6 µm wavelength, which is potentially useful for both telecom and
mid-infrared applications. The device’s performance can be optimized through the control
of the waveguide dispersion by varying the waveguide’s geometry [32].
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3. Logic Functions
3.1. XOR

For the XOR, AND, and OR operations to be implemented, a reference beam (REF)
needs to be inserted into Pin3 of Figure 1. A reference phase difference between the input
beams is introduced using the REF (all ‘1’s), which can produce either constructive or
destructive interference. Two additional beams are supplied to Pin1 and Pin2, respectively.
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Pout generates a logical ‘1’ as a result of the constructive interference between the input
beams when Pin1 and Pin2 are ‘0’ and ‘1’, or vice versa (i.e., 01 or 10), with REF adjusted at
the same phase of 0◦. Due to destructive interference between the input beams, Pout results
in a ‘0’ when both Pin1 and Pin2 are ‘1’ launched at θ1 = 180◦ and θ2 = 90◦ with REF at θREF
= 0◦. The XOR gate is then implemented between the two input beams. The distributions
of the light fields for the logic XOR gate at 1.55 µm are shown in Figure 8.
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The considerable disparity between P1
mean and P0

mean allows the proposed waveguide
to have a high CR = 39.64 dB. The simulation findings for the XOR function are provided in
Table 1.

Table 1. Simulation findings for XOR (Tth = 0.14).

Pin1 Pin2 Pin3 (REF) T Pout CR (dB)

0 0 1 0.009 0

39.64
0 1 1 0.524 1
1 0 1 0.552 1
1 1 1 0.012 0

3.2. AND

By connecting two beams to Pin1 and Pin2, as well as the REF (all ‘1’s) to Pin3, the
AND function is performed (see Figure 1). The phase angle of REF is adjusted to θREF = 0◦.
Destructive interference manifests because of the phase difference between the input beams
when the two beams ‘1’ and ‘0’, or vice versa (i.e., 01 or 10), are injected at a different phase
than the REF phase, leading to an output of ‘0’. Because the input beams and REF have the
same phase, i.e., θ1 = θ2 = θREF = 0◦, constructive interference produces ‘1′’ at Pout when
both input beams are ‘1’. The AND logic operation is therefore functionally accomplished.
Figure 9 displays the light field distributions for the logic AND gate at 1.55 µm.
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The simulation findings for the AND function with CR = 31 dB are summarized in
Table 2.

Table 2. Simulation findings for AND (Tth = 0.14).

Pin1 Pin2 Pin3 (REF) T Pout CR (dB)

0 0 1 0.009 0

31
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3.3. OR

Two beams are sent into the waveguide from Pin1 and Pin2, respectively, while the
REF is supplied from Pin3, similar to the XOR and AND operations. When all input
beams propagate at the same phase, i.e., θ1 = θ2 = θREF = 0◦, the OR function can be
straightforwardly achieved, yielding a ‘1’ output as a result of constructive interference
between the input beams. Utilizing a 2× 2 silicon waveguide at 1.55 µm, Figure 10 displays
the light field distributions for the logic OR function.
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The simulation findings for the OR function at 1.55 µm concerning T and CR are
summarized in Table 3. A high CR = 42.75 dB is achieved by utilizing the proposed
waveguide due to the wide gap between P1

mean and P0
mean.

Table 3. Simulation findings for OR (Tth = 0.14).

Pin1 Pin2 Pin3 (REF) T Pout CR (dB)

0 0 1 0.009 0

42.75
0 1 1 0.524 1
1 0 1 0.552 1
1 1 1 0.865 1

Table 4 compares the simulation findings of the considered logic functions at 1.55 µm
using the proposed waveguide with and without REF. The obtained CRs are much greater
with than without REF, according to the cited data.

Table 4. CR without and with REF.

Operation CR (dB)
Without REF

CR (dB)
With REF

XOR 6.5 39.64
AND 5.2 31
OR 6.8 42.75

3.4. NOT

A clock light (Clk) and an input beam are, respectively, sent into the proposed waveg-
uide from Pin1 and Pin2 in Figure 1 to perform the NOT function. In a manner, and similar
to REF, the Clk introduces an additional phase shift to the propagating beams, altering
the waveguide balance and producing the desired output. To achieve this function, the
phases of the Clk (all ‘1’s) and input beam should be adjusted at θClk = 180◦ and θ2 =
0◦, respectively. The input beams suffer different phases when Pin2 is set to ‘1’, inducing
destructive interference and producing a logical ‘0’ output (i.e., T < Tth). The Clk does not
go through a differencing phase when Pin2 is set to ‘0’, producing a logical ‘1’ output (i.e., T
> Tth) at Pout. Thus, the NOT function is realized. Figure 11 depicts the NOT function’s
light field distributions at 1.55 µm.
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The simulation findings for the NOT function are listed in Table 5. These findings
demonstrate that a NOT logic function at 1.55 µm with CR = 24.63 dB can be formed
utilizing the suggested waveguide.

Table 5. Simulation findings for NOT (Tth = 0.14).

Pin1 (Clk) Pin2 T Pout CR (dB)

1 0 0.552 1
24.631 1 0.047 0
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3.5. NOR

The Clk beam is injected into Pin1 to realize the NOR (NOT–OR) function, while the
other two beams are injected into Pin2 and Pin3, respectively (see Figure 1). A logical ‘0’ is
produced at Pout due to the destructive interference when the combination of (01, 10, or 11)
OF the input beams is injected at various angles. If the (00) combination of the two beams
is launched, the Clk beam with θClk = 180◦ will cancel the phase balance of the three input
ports, thereby resulting in a logical ‘1’ at Pout. Thus, the NOR gate is created, as seen in
Figure 12.
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Table 6 provides a summary of the simulation findings for the NOR gate with
CR = 25.53 dB.

Table 6. Simulation findings for NOR (Tth = 0.14).

Pin1 (Clk) Pin2 Pin3 T Pout CR (dB)

1 0 0 0.552 1

25.53
1 0 1 0.054 0
1 1 0 0.052 0
1 1 1 0.023 0

3.6. NAND

It is possible to perform the NAND (NOT–AND) operation by injecting the Clk into
Pin1 and the other two beams into Pin2 and Pin3, respectively. Due to the Clk’s θClk = 180◦,
the output is ‘1’ when Pin2 and Pin3 are ‘OFF’ (i.e., 00). Constructive interference occurs
when (01, 10) is launched with Clk at the same angle of 180◦, producing a ‘1’ at the output.
When (11) is launched with Clk at different phases, i.e., θClk = 180◦, θ2 = 90◦, and θ3 = 0◦, as
shown in Figure 13, the concomitant destructive interference results in a ‘0’ at the output.
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The findings of the NAND function are compiled in Table 7. The mean peak power of
‘1’ is greater than ‘0’ when using our design at 1.55 µm, enabling a high CR = 33.38 dB for
the NAND function.

Table 7. Simulation findings for NAND (Tth = 0.14).

Pin1 (Clk) Pin2 Pin3 T Pout CR (dB)

1 0 0 0.552 1

33.38
1 0 1 0.525 1
1 1 0 0.865 1
1 1 1 0.023 0

3.7. XNOR

The Clk enters Pin1, and the two additional beams are injected from Pin2 and Pin3,
similarly to the NOR and NAND functions, to carry out the XNOR (exclusive-NOR)
function. When the input beam combination (11) is introduced along with the Clk at the
same phase of 180◦, Pout produces a ‘1’ output due to constructive interference. The Clk
at 180◦ produces a ‘1’ output for the (00) combination. As depicted in Figure 14, Pout
comprises a ‘0’ when the beam combinations (01) or (10) are injected with a different phase.
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A high CR = 26 dB for the XNOR function is achieved employed the proposed waveg-
uide. The XNOR simulation findings are provided in Table 8.
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Table 8. Simulation findings for XNOR (Tth = 0.14).

Pin1 (Clk) Pin2 Pin3 T Pout CR (dB)

1 0 0 0.552 1

26
1 0 1 0.054 0
1 1 0 0.052 0
1 1 1 0.865 1

The working data rate of the proposed waveguide is calculated to be 120 Gb/s for
an optical bandwidth of 30 GHz and four beam levels (i.e., 00, 01, 10, 11) according to the
Nyquist formula [33].

The manufacturing constraints are often referred to as a bottleneck. As more applica-
tions rely on nanophotonic devices, photonic design is becoming increasingly challenging
and sophisticated. Designers are increasingly turning to advanced optimization techniques
rather than traditional photonic design methodologies to address this challenge [34–37].
These new techniques examine devices with totally arbitrary geometries rather than modi-
fying relatively straightforward known geometries with a small number of parameters, as
is the conventional practice. In order to take advantage of the extra degrees of freedom,
devices have been created that have incredibly small footprints, high efficiency, and inno-
vative features that cannot be accomplished using conventional techniques [38–46]. The
silicon and silica utilized in the proposed waveguide are common in the Earth’s crust and
play a significant role in the composition of the mantle. Because the nanofabrication tech-
nologies are already in place, it would, therefore, be possible to implement the proposed
waveguide based on the key outcomes of the conducted simulation. In fact, it has been
reported that several Boolean logic functions can be implemented experimentally based on
different waveguides [16,22,47–49].

In order to check whether our work contributes in advancing the relevant the state-of-
art, we compared our principal outcomes on the realization of the target logic functions
using the proposed waveguides with those of other designs employed for the same purpose.
To this end, we constructed Table 9, whose inspection reveals that, in contrast to other
reported designs, the suggested waveguides allow for the performance of the specified
logic functions at 1550 nm with higher CRs.

Table 9. Evaluation of the proposed design in comparison to other published waveguide-based logic
functions.

Operations Design Wavelength (nm) CR (dB) Ref.

AND, XOR, OR T-shaped photonic crystal
waveguides 1550 8.29–33.05 [11–13]

AND, XOR, OR, NOT, NAND,
NOR, XNOR Photonic crystal waveguides 1550 5.42–9.59 [14]

XOR, AND, OR, NOR, NAND,
XNOR Dielectric-loaded waveguides 471 24.41–33.39 [15]

NOT, XOR, AND, OR, NOR,
NAND, XNOR Metal slot waveguide 632.8 6–16 [16]

NOT, XOR, AND, OR, NOR,
NAND, XNOR Metal–insulator–metal structures 632.8 15 [17]

NOT, XOR, AND, OR, NOR,
NAND, XNOR Dielectric–metal–dielectric design 900 and 1330 5.37–22 [18]

AND, XOR, OR, NOT, NAND,
NOR, XNOR Silicon-on-silica waveguides 1550 20.51–30.33 [19]

AND, XOR, OR, NOT, NAND,
NOR, XNOR K-shaped silicon waveguides 1550 30.5–34 [20]

AND, OR, NOT, NAND Inverse design on silicon platforms 1300 0.5–5.79 [21]
AND, NOR, XNOR Silicon photonics platform 1550 >10 dB [22]

XOR, AND, OR, NOT, NOR,
NAND, XNOR 2 × 2 silicon-on-silica waveguides 1550 24.63–42.75 This work
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4. Conclusions

We have designed a full family of fundamental Boolean logic functions operated
at 1.55 µm, using compact 2 × 2 silicon-on-silica waveguides. The proposed scheme
consists of three input waveguides, one output waveguide, and a design area. Lumerical
FDTD analysis software was used to perform these logic functions. The key for the proper
operation of these functions is inducing and exploiting the appropriate tuning of the phase
angle of the input-launched beams. By conducting numerical simulations based on FDTD
analysis, we assessed and verified the high performance of the target gates. Moreover, we
compared our outcomes to those of other reported similar designs and confirmed that the
proposed waveguide results in higher CRs at higher operating speeds of up to 120 Gb/s.
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