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Abstract: We developed an extensible LED-induced fluorescence detection module with a highly
integrated and ultra-compact structure. A target-oriented design methodology was used to demon-
strate the module’s optimal design. Lucigenin solution was used as a test sample in evaluation trials
to demonstrate the module’s quantitative fluorescence detection capability. Results showed that the
integrated module has an outstanding linear response in the range of 0–1 µmol·L−1, with sensitivity
and limit of detection (LOD) of 0.1692 V/µmol·L−1 and 0.03 µmol·L−1, respectively. Statistical
analyses showed that our integrated module has extremely high repeatability and accuracy, i.e., the
values of Pearson’s correlation coefficient and root-mean-square error exceeded 0.9995 and 1.8‰,
respectively. More importantly, the integrated module possesses favorable extensibility and can
realize on-demand rapid fluorescence-signal detection of other targets using appropriate parameter
combinations. This module offers new opportunities for reliable, cost-effective and easy-to-use
fluorescence-signal detection, especially in resource-constrained fluorescence detection applications.

Keywords: extensible; LED-induced; ultra-compact; fluorescence detection; lucigenin concentration;
quantitative analysis

1. Introduction

The fluorescence quantitative analysis method (FQAM) is a versatile technological
means of analyzing substances [1]. As is well known, many substances have endoge-
nous fluorophores—or can be conjugated to a fluorescent reagent—and when activated
by excitation light at a specific wavelength, emit fluorescence [2]. Thus, FQAM has been
applied in various fields, including pharmacology [3], biology [4], physiology [5,6], and
environmental sciences [7–9]. The measuring devices used for this application include
fluorescent illuminometer (FI) [4], fluorescence spectrometer (FS) [1,7] and other special
instruments [3,8,9]. Although these devices have shown remarkable capabilities in ana-
lyzing small sample volumes with high sensitivity and low detection limits [10,11], their
adoption has been limited outside of research laboratories, especially in in situ detection.
Potential barriers to in situ detection include the cost and complexity of the required optical
system, the bigger size, the short lifespan (200–300 h), and the requirement for professional
personnel to conduct the analyses to obtain reliable results [12].

Researchers have proposed various fluorescence detection schemes in recent years
to enable the application of FQAM in more situations. For example, Yang Jinlan et al.
developed a fluorescent polyethyleneimine-protected copper nanoclusters (PEI-CuNCs)
probe for quantitative analysis of biothiols and acetylcholinesterase (AChE) [4]. They
found that two biothiols, glutathione and cysteine, were detected with LODs of 0.26 M
and 0.34 M within linear ranges of 0.5–25 M and 1–25 M, respectively. Cui Yaoyao et al.
built an excitation emission fluorescence matrix for four categories of polycyclic aromatic
hydrocarbons and parallel factor framework-clustering analysis (PFFCA) using FS [7]. They
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found that the specificity of this method is as high as 96.7% for six types of oil samples.
However, the size and cost of FI and FS, the complex preparation process and the frequent
bulb replacement required still restrict the application of FQAM outside the laboratory.
Thus, several self-developed devices have been proposed for online or in vivo application.
For instance, Martin Brandl et al. developed a portable fluorescence sensor system for
the analysis of dissolved organic matter (DOM) [8]. Li Wanxiang et al. built a detection
scheme using a linear CCD for simultaneous measurement of absorbance and fluorescence
of chlorophyll-a [9]. They used the CCD integration time transformation method to quanti-
tatively analyze chlorophyll-a concentration in natural water and reduced the minimum
detection limit from 0.01 µg/L to 0.0025 µg/L in the detection range of 0.0025–130 µg/L.
Heykel et al. developed a compact fiber fluorescence detection device [13]. They mounted
a polystyrene microsphere at the end of the fiber and achieved single molecule sensitivity
and remote detection capabilities. Yu-Chung et al. developed a fiber fluorescence detection
system [14]. They used a dual-clad optical fiber to excite fluorescent nanosphere samples
and achieved ultrasensitive two-photon fluorescence detection in neoplastic cells for early
screening and treatment in vivo. These self-developed devices have shown powerful prac-
ticability in online or in vivo quantitative fluorescence detection. However, these devices
are complicated, time consuming, and require sampling for laboratory measurement and
analysis, which are not suitable for in situ fluorescence detection. In addition, the low
coupling efficiency and higher alignment requirement between the fiber core and spatial
light beam has been a significant barrier to further lowering prices and compressing size.

Light-emitting diodes (LEDs), which have various advantages including being ex-
tremely compact, cost-effective, energy-efficient and power-stable, have the potential to
facilitate the multi-function, integration, and miniaturization of the fluorescence quantita-
tive analysis system. LEDs are semiconductor-based light sources in which the bandgap
(eV) affects the energy and wavelength of the light emitted, and which may suit the ex-
citation criteria of most fluorescent molecules [15]. For example, LEDs have been used
as excitation light sources when developing absorption- [16,17], fluorescence- [18] and
reflection- [19] spectroscopy-based optic-analytical instruments for various analytical appli-
cation. These LED-induce fluorescence detection schemes have promoted the development
of a comprehensive environmental surveillance system that can more strictly control wa-
ter pollution and track changes in marine ecology. Therefore, we have reason to believe
that the LED-induced scheme will promote the miniaturization and integration of FQAM
techniques and solve the cost and power consumption problems.

In this study, we developed an extensible LED-induced fluorescence detection module.
A target-oriented design methodology based on the 3D fluorescence spectrum was built by
adjusting the LED’s central wavelength and narrowband filter parameters to determine the
concentrations of fluorescence molecules. Full performance evaluation trials using lucigenin
as a fluorescent indicator demonstrated that the integrated module has an outstanding
linear response in the range of 0–1 µmol·L−1, with sensitivity and limit of detection (LOD)
of, respectively, 0.1692 V/µmol·L−1 and 0.03 µmol·L−1. Pearson’s correlation coefficient
(R), root-mean-square error (RMSE), and mean absolute percentage error (MAPE) of the
multiple-sample measurements exceeded 0.9995, 1.8‰, and 5.079%, respectively, based
on statistical analysis of the data. In conclusion, automatic inspection can benefit from the
LED-induced integrated module’s higher linearity, repeatability and stability, as well as its
modular and expandable architecture.

2. Theoretical Method and Device
2.1. Measurement Analytic Theory

In our module setup, the excitation light (λEX) from the LED is projected into a sample
solution, as shown in Figure 1a. The sample region irradiated by the excitation light is
defined as the detecting volume V. Part of the excitation light is absorbed by the sample
solution and the remainder is scattered. The fluorophore absorbs the photon energy and
jumps to an excited state when the sample region is irradiated by the excitation light. The
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fluorophore in the sample solution subsequently emits fluorescence when it returns to the
ground state.
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Figure 1. (a) Schematic view of fluorescence excitation. PEC: Photo-Electric Converter. (b) Raw
fluorescence signal F(t) received by the PEC at 0.4 µmol/L.

The fluorescence intensity of the solution F is related to the solution’s absorption
intensity Ia and the fluorophore’s fluorescence quantum yield β.

F = βIa = β(I0 − It) (1)

where I0 is the intensity of excitation light and It is the intensity of transmitted light. Based
on the Lambert-Beer law [20],

I0/It = ekCL (2)

where C is the concentration of fluorophore, L is the optical path length in the detecting
volume and k is the absorption coefficient. Substitute Equation (2) into Equation (1),

F = βI0(1− It/I0) = βI0

(
1− e−kCL

)
(3)

This equation can be simplified using Taylor’s expansion of e−kCL. When kCL is very
small,

e−kCL ≈ 1− kCL (4)

Substitute Equation (4) into Equation (3),

F = βI0kCL = QI0CL (5)

where Q is the fluorescence constant related to the fluorophore, defined as the product of
fluorescence quantum yield β and the absorption coefficient k. Therefore, the fluorescence
signal F(t) measured by the PEC can be derived using

F(t) = αF = QMI0C (6)

where α is the photoelectric conversion efficiency and M = αL is the module’s system
parameter, which is only relevant to the photoelectric structure parameter. Obviously, the
measured fluorescence signal F(t) is associated with only the intensity of excitation light
I0 and the concentration of fluorophore C once the module’s parameters are determined.
Meanwhile, the measured fluorescence signal is linearly correlated with the concentration
of fluorophore under stable intensity of the excitation light. Figure 1b shows the raw
fluorescence signal converted by the analog digital converter.

2.2. Integrated LED-Induced Fluorescence Module

The integrated LED-induced fluorescence module is illustrated schematically in
Figure 2a. The blue light emitted from the LED is projected into the sample consecu-
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tively through a collimating lens, a homogenizer, a filter-2 and a dichroscope. In this
fluorescence configuration, the collimating lens gathers and collimates the excitation light
and the homogenizer modulates it into a uniform light column. The homogenizer is used
to improve spot quality to eliminate measurement error caused by the non-uniformity of
the excitation light I0. A uniform light spot, 6 mm in diameter, is formed. The light column,
whose spectrum is narrowed by the filter-2, is reflected at 90 degrees by the dichroscope.
The uniform light spot irradiates fluorescent molecules in the sample and the ensuing
light is emitted at longer wavelengths. Part of the emission light passing successively
through the dichroscope and filter-1 is focused onto the APD’s detecting window by the
focusing lens. The dichroscope is used to separate the excitation path and emission path
and to eliminate scattered excitation light in the propagation direction. Furthermore, the
attenuator, which has a rough inner surface, is mounted at the end of the excitation path
to eliminate scattered reflection. Our module configuration did not include the focusing
objective lens used in the confocal fluorescence system, hence dramatically reducing the
size.
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Figure 2. (a) Schematic view of the module configuration. APD: Avalanche Photodiode; LED: Light-
Emitting Diode. (b) Photograph of the module during the testing process. LP: Light Path; SPC: Signal
Processing Circuit; LSP: Light Shielding Plate; SC: Sample Cell.

In addition, the high integration of the LED excitation source is our fluorescence
module’s most important feature, as shown in Figure 2b. The integrated module is an
elaborate fluorescence system requiring optics, mechanisms, electricity and computations,
and is only 65 mm × 55 mm × 35 mm in size. An LED with 0.5 W radiated power
and 475 nm peak wavelength was used as the excitation source. Its spectral response is
represented by the red curve in Figure 3. Filter-2, with a 20-nm bandwidth, was used to
tailor the radiation spectrum of the LED to get the excitation light whose spectral response
is represented by the blue curve in Figure 3. Then, the excitation light spot with a diameter
of 6 mm was built in the SC, whose axis is about 8 mm away from the module’s light
outlet. The peak wavelength and full width at half maximum (FWHM) of the excitation
light spot are 475 nm and 16.8 nm, respectively. Furthermore, the APD type is BPW21R
(Vishay Semiconductors), whose wavelength of peak sensitivity and range of spectral
bandwidth are 565 nm and 420–675 nm, respectively. The SPC is an integrated control unit
that carries a 24-bit analog–digital converter (LTC2484, Linear Technology Corporation,
Milpitas, CA, USA) and MCU (STM32L010K4, ST Microelectronics, Geneva, Sweden). The
MCU is responsible for signal processing and transmission, and a UART (maximum baud
rate: 115,200 bps/s) is used for data exchange. LP is a tubular structure that is used to
arrange all optical devices along an axis. An LSP with two magnetic sheets is used to shield
against environmental interference.
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In conclusion, LED is used as the excitation source in the fluorescence module and has
various performance advantages over lasers [13]:

(i) Abundant selection of excitation wavelengths: the range of commercially available
LED central wavelengths range from 255 to 4600 nm.

(ii) Lower economic cost: LEDs often have a service life of up to 100,000 h at a cost of less
than $1.

(iii) Small size, higher power, and straightforward operation: an LED is only a few
millimeters in size, yet it can easily provide watts of output power with a constant
drive current.

2.3. Target-Oriented Design Methods

The three-dimensional Excited-Emission Matrix (3D-EEM) fluorescence spectroscopy
is one of the most efficient and commonly used techniques for analyzing fluorophore
content [7]. However, the FS used in the 3D-EEM is bulky and time consuming, the
lamp requires replacing regularly, and sampling is required for laboratory measurement
and analysis. These are not suitable for automatic in situ analysis. Therefore, a compact
device that enables rapid quantitative analysis of a specific fluorescent target is necessary.
Here, a target-oriented design methodology guided by 3D-EFM is proposed. The 3D-EFM
of lucigenin was obtained using an F280 steady-state fluorescence spectrometer (Tianjin
Gangdong SCI.&TECH. Co., LTD, Tianjin, China), as shown in Figure 4a. The intersection
between the red-dotted and pink-dotted lines in the 3D-EFM can be regarded as a point of
separation between the excitation and emission paths. 1© the selection rules for the best
separation point should not only satisfy the peak wavelength of the excitation light, but
also consider the dichroscope’s transmission wavelength. In our module configuration,
the dichroscope’s transmission wavelength is 490 nm, which is a commercially available
beam splitter. The dichroscope’s transmission wavelength should be longer than the peak
wavelength of the excitation light and their difference should be larger than 10 nm in order
to eliminate scattered light from the sample cell. Lucigenin’s emission curve under an
excitation wavelength of 475 nm is shown in Figure 4b. 2© the solid pink line defines
the range of wavelengths entering the emission path. 3© The peak point in this range
is regarded as the module’s probe point. Thus the emission light, whose spectrum was
narrowed by the line filter-1, is received by the APD. The choice of central wavelength and
filter-1 bandwidth needs to be a synthetic tradeoff to maintain higher response sensitivity
and avoid signal saturation, as shown by the red rectangle in Figure 4b.
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Figure 4. (a) 3D fluorescence scanning spectra of lucigenin (scanned range: 240–480 nm). (b) Luci-
genin’s emission curve under an excitation wavelength of 475 nm.

The optimized parameters for the integrated module are shown in Table 1. Based on the
3D fluorescence scanning spectra of lucigenin, filter-1’s central wavelength does not match
the optimal fluorescence emission wavelength that is used for distinguishing fluorescent
molecules with overlapping emission spectra. Furthermore, the difference between the
transmission wavelength of the dichroscope and the center wavelength of filter-1 should be
greater than 10 nm. In addition, parameter optimization has to balance between sensitivity,
detection limits and the optical device’s manufacturing capacity. An integrated fluorescence
detection module based on the lucigenin–chemiluminescence system was developed. This
target-oriented design methodology possesses favorable extensibility and can enable rapid
on-demand fluorescence-signal detection of other targets using an appropriate fluorescence
reagent (Luminol or Sudan red et al.) and its parameter combinations.

Table 1. Integrated fluorescence module parameters for detecting lucigenin.

Device Parameter Values

LED
Peak wavelength: λ0 475 nm
Transmitted power: PLED 0.5 W

Dichroscope Transmission wavelength: λT 490 nm

Filter-1
Central wavelength: λ1 505 nm
Operation bandwidth: BW f−1 1 nm

Filter-2
Central wavelength: λ2 475 nm
Operation bandwidth: BW f−2 20 nm

AD Digitalizing bit 24-bit

APD
Peak sensitivity 565 nm
Spectral range 420–675 nm

MCU

Basic frequency 32 MHz

Flash memory 16 Kbyte

RAM 2 Kbyte

3. Experimental Section
3.1. Materials

Lucigenin (N, N-dimethyl-9,9′-biacridinium nitrate) [21,22] was used as a test sample
in our experiments, as shown in Figure 5. Lucigenin is a well-known, commercially
available chemiluminescence luminophore that has been wildly adopted to detect reactive
oxygen species [23], Mn2+ ions [24] and Cl− ions [25]. Furthermore, it can emit bright
fluorescence light at low concentrations, which means that it can be used as a good indicator
of fluorescence calibration. Lucigenin’s features of lower costs and excellent chemical
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stability in aqueous solutions are especially suitable for in situ fluorescent hybridization
testing. These advantages make it promising for sensitive analyses.
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Figure 5. Schematic illustration of the photoluminescence strategy for detecting lucigenin activity.

3.2. Integrated Fluorescence Module Testing

To demonstrate the practicability of the integrated module, a lucigenin concentration
detection experiment was carried out, as depicted in Figure 6. First, stock lucigenin solution
with concentration of 1 mmol·L−1 was diluted and divided into three portions labeled
S1, S2 and S3. The lucigenin concentration in each sample varied from 0 µmol·L−1 to
1 µmol·L−1. The sample volume in each centrifuge tube was approximately 130 µL. The
centrifuge tubes were successively placed into the sample cell. The sampling command was
sent by the UART every 1 ms and the measured data were averaged over 10 ms. Finally,
the average fluorescence intensity across 10 measurements was used as the observed value
for the sample. The time required to measure a single sample using the integrated module
was approximately 100 ms.
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3.3. Results and Discussion

Figure 7a–c illustrate the experimental results from three sets of samples. The time
taken to measure each concentration point is 10 s, and the number of observed values
recorded by the integrated module is 100. The average is shown by the solid black line
in Figure 7a–c. It is obvious that the observed values of the three sample sets increased
with the increase in the concentration of lucigenin solution. The integrated module’s
LOD are not higher than 0.03 µmol·L−1. Figure 7d shows the linear relationship between
observed values and lucigenin solution concentrations. The red dotted line is a theoretical
measurement curve (y = 0.1692x + 0.007) calibrated in advance using concentrations
ranging in value from 0 to 1 µmol·L−1. We can see that all observed values are uniformly
distributed along this curve and the sensitivity of the measurement is 0.1692 V/µmol·L−1
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in the concentration ranging from 0 to 1 µmol·L−1. The non-zero intercept of the theoretical
measurement curve indicates that the theoretical zero point of integrated module is 0.007 V.
That is because module synthesis noise, including optical and electrical noise, cannot
be completely eliminated. Therefore, the zero-point output of the integrated module is
adjusted to 0.01 V to increase its resistance to disturbances. Theses experimental results
indicate that our integrated module is highly consistent across multiple measurements.
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To demonstrate the integrated module’s measuring precision, we recorded the values
observed at 0.03 µmol·L−1 and 0.2 µmol·L−1, as shown in Figure 8. Each recording duration
was 10 s. We see that the lower the lucigenin concentration in the detection volume, the
flatter the observation. This is because the number of fluorescent molecules that go in
and out of the detection volume is affected by random thermal motion. These data show
that the observed errors in the values of the integrated module resulting from multiple
measurements remain within 0.1 mV. Thus, when combined with the integrated module
measurement curve, the effect coefficient of random thermal motion is no greater than
0.59 nmol·L−1. Therefore, the integrated module has higher precision.

The experimental data were analyzed in order to evaluate the performance of the
integrated module. The linear correlation between the observed values of the three sam-
ples and the sample concentrations was evaluated by computing Pearson’s correlation
coefficients. The calculation formula is as follows:

Ri =
1

N − 1

N

∑
j=1

( xij − x̂ij

σx

)
, i = 1, 2, 3; j ∈ [0, 1] (7)

where Ri is Pearson’s correlation coefficient of sample i, N = 100 is the number of repeated
measurements, xij and x̂ij are the integrated module’s observed value and theoretical value
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in the j concentration of sample i, respectively. σx is the standard deviation of xij. The
measurement accuracy of the integrated module was evaluated using the RMSE whose
formula is:

RMSEi =

√
(xij − x̂ij)

2 (8)

where RMSEi is the root-mean-square error of sample i. The reliability of the integrated
module measurement was evaluated using the MAPE, which is calculated using the
formula:

MEAPi =

(∣∣∣∣∣ xij − x̂ij

xij

∣∣∣∣∣
)
× 100% (9)

where MEAPi is the mean absolute percentage error of sample i.
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Table 2 shows the results of the statistical analyses. It indicates that the linear corre-
lation coefficient between observed values and lucigenin concentrations is above 0.9995,
and the RMSEs of multiple measurement results are lower than 1.8‰. Additionally, the
MAPE of the sampling data is not more than 5.1048%, which is close to the reliable indexes
of medical instruments. Therefore, this measurement model was shown to be effective and
reliable.

Table 2. Performance metrics of the FCS module.

Sample R RMSE MAPE

S1 0.9998 1.2‰ 5.1048%
S2 0.9995 1.8‰ 5.0790%
S3 0.9998 1.2‰ 5.0968%

We conducted a comprehensive comparison between the integrated fluorescence
module and other devices, as shown in Table 3. The LED-induced integrated module
has several distinct advantages in terms of sensitivity, correlation and LOD compared
with other fluorescence devices. Our integrated module has also been released from the
constraints of a costly and bulky fluorescence detection equipment and is anticipated to
leave the lab to meet more in situ detection needs. Despite the integrated module currently
being limited to the detection of a single fluorescent chemical, module cascading or multi-
color multiplexing [26] makes it possible to detect numerous fluorescent compounds
simultaneously.
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Table 3. Comparison between the integrated fluorescence module and other devices.

Excitation Sample
Performance indicators

Ref.
Sensitivity Correlation LOD

LED Lucigenin 0.1692 V/µM >0.9995 0.03 µM *
LED Chlorophyll-a / 0.9917 0.0025 µg/L [9]
LED DTT-Lucigenin 3.59 a.u./µg·mL−1 0.993 2.2 ng/mL [21]

Xenon lamp Tyrosinase 1.04/µg·mL−1 0.9981 1.0 µg/mL [22]
Laser Glutathione 2.61/µM 0.995 180 nM [24]

Xenon lamp Carbaryl / 0.93 9.2 × 10−7g/L [27]
LED Amiloride 23.3 a.u./ng·mL−1 0.9997 1.43 ng/mL [28]

µM: µmol·L−1; mM: mmol·L−1; *: this study; DTT: 1,4-Dithiothreitol.

4. Conclusions

We have developed an integrated fluorescence module with an LED-excitation source
and demonstrated a target-oriented module design methodology for measuring lucigenin
concentration. The results proved that the FCS module has an outstanding linear re-
sponse in the range of 0–1 µmol·L−1, with sensitivity and LOD of 0.1692 V/µmol·L−1

and 0.03 µmol·L−1, respectively. Based on statistical data analysis, Pearson’s correlation
coefficient (R), root-mean-square error (RMSE) and mean absolute percentage error (MAPE)
of the multiple-sample measurements were all above 0.9995, 1.8‰ and 5.079%, respectively.
We believe that the FCS module has also been released from the constraints of a costly,
bulky FCS equipment and is anticipated to leave the lab to meet more in situ detection
needs.
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