# Changes in Wavefront Error of the Eye for Different Accommodation Targets under the Application of Phenylephrine Hydrochloride

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

^{2}.

## 3. Results

#### 3.1. Pupil Size

#### 3.2. Zernike Coefficients

## 4. Discussion

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Fernández, J.; Rodríguez-Vallejo, M.; Burguera, N.; Rocha-de-Lossada, C.; Piñero, D.P. Spherical aberration for expanding depth of focus. J. Cataract. Refract. Surg.
**2021**, 47, 1587–1595. [Google Scholar] [CrossRef] [PubMed] - Francisco Castejón-Mochón, J.; López-Gil, N.; Benito, A.; Artal, P. Ocular wave-front aberration statistics in a normal young population. Vision Res.
**2002**, 42, 1611–1617. [Google Scholar] [CrossRef] [PubMed][Green Version] - Porter, J.; Guirao, A.; Cox, I.G.; Williams, D.R. Monochromatic aberrations of the human eye in a large population. JOSA A
**2001**, 18, 1793–1803. [Google Scholar] [CrossRef][Green Version] - Thibos, L.N.; Hong, X.; Bradley, A.; Cheng, X. Statistical variation of aberration structure and image quality in a normal population of healthy eyes. JOSA A
**2002**, 19, 2329–2348. [Google Scholar] [CrossRef] - Koretz, J.F.; Cook, C.A.; Kaufman, P.L. Aging of the human lens: Changes in lens shape upon accommodation and with accommodative loss. J. Opt. Soc. Am. A Opt. Image Sci. Vis.
**2002**, 19, 144–151. [Google Scholar] [CrossRef] - Khan, A.; Pope, J.M.; Verkicharla, P.K.; Suheimat, M.; Atchison, D.A. Change in human lens dimensions, lens refractive index distribution and ciliary body ring diameter with accommodation. Biomed. Opt. Express
**2018**, 9, 1272–1282. [Google Scholar] [CrossRef][Green Version] - Charman, W.N. The eye in focus: Accommodation and presbyopia. Clin. Exp. Optom.
**2008**, 91, 207–225. [Google Scholar] [CrossRef] - Richdale, K.; Bailey, M.D.; Sinnott, L.T.; Kao, C.Y.; Zadnik, K.; Bullimore, M.A. The Effect of Phenylephrine on the Ciliary Muscle and Accommodation. Optom. Vis. Sci. Off. Publ. Am. Acad. Optom.
**2012**, 89, 1507–1511. [Google Scholar] [CrossRef][Green Version] - Biggs, R.D.; Alpern, M.; Bennett, D.R. The effect of sympathomimetic drugs upon the amplitude of accommodation. Am. J. Ophthalmol.
**1959**, 48 Pt 2, 169–172. [Google Scholar] [CrossRef] - J Mordi, J.; Tucker, J.; Charman, W.N. Effects of 0.1% cyclopentolate or 10% phenylephrine on pupil diameter and accommodation. Ophthalmic. Physiol. Opt.
**1986**, 6, 221–227. [Google Scholar] [CrossRef] - Zetterström, C. The effect of phenylephrine on the accommodative process in man. Acta Ophthalmol. (Copenh.)
**1984**, 62, 872–878. [Google Scholar] [CrossRef] - Gimpel, G.; Doughty, M.J.; Lyle, W.M. Large sample study of the effects of phenylephrine 2.5% eyedrops on the amplitude of accommodation in man. Ophthalmic Physiol. Opt.
**1994**, 14, 123–128. [Google Scholar] [CrossRef] [PubMed] - Do, T.; Kasthurirangan, S.; Ostrin, L.; Glasser, A. The effects of phenylephrine on accommodation in humans. Optom. Vis. Sci.
**2002**, 79, 174. [Google Scholar] [CrossRef] - Leibowitz, H.W.; Owens, D.A. Night myopia and the intermediate dark focus of accommodation. J. Opt. Soc. Am.
**1975**, 65, 1121–1128. [Google Scholar] [CrossRef] - Eyeson-Annan, M.L.; Hirst, L.W.; Battistutta, D.; Green, A. Comparative pupil dilation using phenylephrine alone or in combination with tropicamide. Ophthalmology
**1998**, 105, 726–732. [Google Scholar] [CrossRef] - Ostrin, L.A.; Glasser, A. The effects of phenylephrine on pupil diameter and accommodation in rhesus monkeys. Investig. Ophthalmol. Vis. Sci.
**2004**, 45, 215–221. [Google Scholar] [CrossRef] [PubMed][Green Version] - Del Águila-Carrasco, A.J.; Kruger, P.B.; Lara, F.; López-Gil, N. Aberrations and accommodation. Clin. Exp. Optom.
**2020**, 103, 95–103. [Google Scholar] [CrossRef][Green Version] - Liang, J.; Grimm, B.; Goelz, S.; Bille, J.F. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J. Opt. Soc. Am. A Opt. Image Sci. Vis.
**1994**, 11, 1949–1957. [Google Scholar] [CrossRef] - López-Gil, N.; Fernández-Sánchez, V.; Legras, R.; Montés-Micó, R.; Lara, F.; Nguyen-Khoa, J.L. Accommodation-related changes in monochromatic aberrations of the human eye as a function of age. Investig. Ophthalmol. Vis. Sci.
**2008**, 49, 1736–1743. [Google Scholar] [CrossRef] - Montés-Micó, R.; Alió, J.L.; Muñoz, G.; Pérez-Santonja, J.J.; Charman, W.N. Postblink changes in total and corneal ocular aberrations. Ophthalmology
**2004**, 111, 758–767. [Google Scholar] [CrossRef] - Montés-Micó, R.; Alió, J.L.; Charman, W.N. Postblink changes in the ocular modulation transfer function measured by a double-pass method. Investig. Ophthalmol. Vis. Sci.
**2005**, 46, 4468–4473. [Google Scholar] [CrossRef] [PubMed] - Thibos, L.N.; Applegate, R.A.; Schwiegerling, J.T.; Webb, R. VSIA Standards Taskforce Members. Vision science and its applications. Standards for reporting the optical aberrations of eyes. J. Refract. Surg.
**2002**, 18, S652–S660. [Google Scholar] [CrossRef] [PubMed] - Rozema, J.J.; Van Dyck, D.E.; Tassignon, M.J. Clinical comparison of 6 aberrometers. Part 1: Technical specifications. J. Cataract. Refract. Surg.
**2005**, 31, 1114–1127. [Google Scholar] [CrossRef] - Mello, G.R.; Rocha, K.M.; Santhiago, M.R.; Smadja, D.; Krueger, R.R. Applications of wavefront technology. J. Cataract. Refract. Surg.
**2012**, 38, 1671–1683. [Google Scholar] [CrossRef] [PubMed] - Thibos, L.N. Wavefront Data Reporting and Terminology. J. Refract. Surg.
**2001**, 17, S578–S583. [Google Scholar] [CrossRef] - He, J.C.; Burns, S.A.; Marcos, S. Monochromatic aberrations in the accommodated human eye. Vis. Res.
**2000**, 40, 41–48. [Google Scholar] [CrossRef] - Ninomiya, S.; Fujikado, T.; Kuroda, T.; Maeda, N.; Tano, Y.; Oshika, T.; Hirohara, Y.; Mihashi, T. Changes of ocular aberration with accommodation. Am. J. Ophthalmol.
**2002**, 134, 924–926. [Google Scholar] [CrossRef] - Yang, Y.; Thompson, K.; Burns, S.A. Pupil Location under Mesopic, Photopic, and Pharmacologically Dilated Conditions. Investig. Ophthalmol. Vis. Sci.
**2002**, 43, 2508–2512. [Google Scholar] - Lundström, L.; Unsbo, P. Transformation of Zernike coefficients: Scaled, translated, and rotated wavefronts with circular and elliptical pupils. J. Opt. Soc. Am. A Opt. Image Sci. Vis.
**2007**, 24, 569–577. [Google Scholar] [CrossRef] - Sarkar, S.; Hasnat, A.M.; Bharadwaj, S.R. Revisiting the impact of phenylephrine hydrochloride on static and dynamic accommodation. Indian J. Ophthalmol.
**2012**, 60, 503–509. [Google Scholar] - Del Águila-Carrasco, A.J.; Lara, F.; Bernal-Molina, P.; Riquelme-Nicolás, R.; Marín-Franch, I.; Esteve-Taboada, J.J.; Montés-Micó, R.; Kruger, P.B.; López-Gil, N. Effect of phenylephrine on static and dynamic accommodation. J. Optom.
**2019**, 12, 30–37. [Google Scholar] [CrossRef] - Carkeet, A.; Velaedan, S.; Tan, Y.K.; Lee, D.Y.J.; Tan, D.T.H. Higher order ocular aberrations after cycloplegic and non-cycloplegic pupil dilation. J. Refract. Surg.
**2003**, 19, 316–322. [Google Scholar] [CrossRef] [PubMed] - Mordi, J.A.; Lyle, W.M.; Mousa, G.Y. Effect of Phenylephrine on Accommodation. Optom. Vis. Sci.
**1986**, 63, 294–297. [Google Scholar] [CrossRef] [PubMed] - Jankov, M.R.; Iseli, H.P.; Bueeler, M.; Schor, P.; Seiler, T.; Mrochen, M. The effect of phenylephrine and cyclopentolate on objective wavefront measurements. J. Refract. Surg.
**2006**, 22, 472–481. [Google Scholar] [CrossRef] [PubMed][Green Version] - He, L.; Applegate, R.A. Predicting crystalline lens fall caused by accommodation from changes in wavefront error. J. Cataract. Refract. Surg.
**2011**, 37, 1313–1322. [Google Scholar] [CrossRef][Green Version] - Atchison, D.A.; Collins, M.J.; Wildsoet, C.F.; Christensen, J.; Waterworth, M.D. Measurement of monochromatic ocular aberrations of human eyes as a function of accommodation by the Howland aberroscope technique. Vision Res.
**1995**, 35, 313–323. [Google Scholar] [CrossRef] [PubMed] - Radhakrishnan, H.; Charman, W.N. Age-related changes in ocular aberrations with accommodation. J. Vis.
**2007**, 7, 1–21. [Google Scholar] [CrossRef] [PubMed][Green Version] - Plainis, S.; Ginis, H.S.; Pallikaris, A. The effect of ocular aberrations on steady-state errors of accommodative response. J. Vis.
**2005**, 5, 466–477. [Google Scholar] [CrossRef] [PubMed][Green Version] - Jenkins, T.C. Aberrations of the eye and their effects on vision: 1. Spherical aberration. Br. J. Physiol. Opt.
**1963**, 20, 59–91. [Google Scholar] - Atchison, D.A. Accommodation and presbyopia. Ophthalmic. Physiol. Opt.
**1995**, 15, 255–272. [Google Scholar] [CrossRef] - Cheng, H.; Barnett, J.K.; Vilupuru, A.S.; Marsack, J.D.; Kasthurirangan, S.; Applegate, R.A.; Roorda, A. A population study on changes in wave aberrations with accommodation. J. Vis.
**2004**, 4, 3. [Google Scholar] [CrossRef] [PubMed][Green Version] - López-Gil, N.; Rucker, F.J.; Stark, L.R.; Badar, M.; Borgovan, T.; Burke, S.; Kruger, P.B. Effect of third-order aberrations on dynamic accommodation. Vis. Res.
**2007**, 47, 755–765. [Google Scholar] [CrossRef] [PubMed] - Vilupuru, A.S.; Roorda, A.; Glasser, A. Spatially variant changes in lens power during ocular accommodation in a rhesus monkey eye. J. Vis.
**2004**, 4, 299–309. [Google Scholar] [CrossRef] [PubMed][Green Version] - Roorda, A.; Glasser, A. Wave aberrations of the isolated crystalline lens. J. Vis.
**2004**, 4, 1. [Google Scholar] [CrossRef] - Koomen, M.; Tousey, R.; Scolnik, R. The spherical aberration of the eye. JOSA
**1949**, 39, 370–376. [Google Scholar] [CrossRef]

**Figure 1.**Representation of the pupil diameter in the different subjects measured, with and without the effect of PHCl. Error bars represent the standard deviation (SD). * Simple paired t-tests, statistically significant $(p-\mathrm{v}\mathrm{a}\mathrm{l}\mathrm{u}\mathrm{e}<0.05)$.

**Figure 2.**Defocus Zernike coefficients for the different target vergences, with and without phenylephrine (grey and black bars, respectively), calculated for the same 4 mm pupil diameter. Error bars represent the standard deviation (SD).

**Figure 3.**(

**a**) Zernike vertical coma coefficients for the different accommodative demands, before and after the instillation of PHCl (grey and black bars, respectively). (

**b**) Box plot of the difference in Zernike coefficients between natural conditions and after instillation of PHCl for each accommodative demand. * Denote statistically significant values (p < 0.05). Error bars represent the standard deviation (SD).

**Figure 4.**(

**a**) Horizontal coma Zernike coefficients for the different target accommodations, with and without PHCl (grey and black bars, respectively). (

**b**) Box plot of the difference in Zernike coefficients between natural conditions and after instillation of PHCl for each accommodative demand. * Denote statistically significant values (p < 0.05). Error bars represent the standard deviation (SD).

**Figure 5.**(

**a**) Primary spherical aberration Zernike coefficients for the different target accommodations, with and without PHCl (grey and black bars, respectively). (

**b**) Box plot of the difference in Zernike coefficients between natural conditions and after instillation of PHCl for each accommodative demand. * Denote statistically significant values (p < 0.05). Error bars represent the standard deviation (SD).

**Figure 6.**(

**a**) Secondary spherical aberration Zernike coefficients for the different target accommodations, with and without PHCl (grey and black, respectively). (

**b**) Box plot of the difference in Zernike coefficients between natural conditions and after instillation of PHCl for each accommodative demand. * Denote statistically significant values (p < 0.05). Error bars represent the standard deviation (SD).

**Figure 7.**Accommodative response in terms of sphere plotted for each subject. (

**a**) Pupil under natural conditions and (

**b**) pupil under the effect of PHCl, for each subject. Both of them plot for the same pupil size, 4 mm. The dashed red line expresses the expected values of accommodative response. Additionally, the dashed black line expresses the mean values for each accommodative demand.

**Table 1.**Wilcoxon test or paired t-test values obtained for Zernike coefficients ${C}_{2}^{0}$, ${C}_{3}^{-1}$, ${C}_{3}^{1}$, ${C}_{4}^{0}$ and ${C}_{6}^{0}$ for each accommodative demand between measurements carried out with and without PHCl instillation conditions.

Accommodative Demand (D) | p-Value C (2, 0) | p-Value C (3, −1) | p-Value C (3, 1) | p-Value C (4, 0) | p-Value C (6, 0) |
---|---|---|---|---|---|

0 | 1.0 | 0.13 | 0.88 | 0.22 | 0.09 |

0.5 | 0.35 | 0.33 | 0.41 | 0.45 | 0.04 * |

1.0 | 0.09 | 0.24 | 0.50 | 0.38 | 0.06 |

1.5 | 0.28 | 0.08 | 0.96 | 0.24 | 0.01 * |

2.0 | 0.15 | 0.09 | 0.35 | 0.14 | 0.02 * |

2.5 | 0.41 | 0.05 | 0.35 | 0.09 | 0.08 |

3.0 | 0.25 | 0.07 | 0.11 | 0.02 * | 0.01 * |

3.5 | 0.36 | 0.01 * | 0.16 | <0.001 * | <0.001 * |

4.0 | 0.55 | 0.02 * | 0.02§ | 0.02 * | 0.02 * |

4.5 | 0.77 | 0.02 * | 0.01§ | 0.02 * | 0.01 * |

5.0 | 0.83 | 0.01 * | 0.02§ | 0.02 * | 0.01 * |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Mechó-García, M.; Blanco-Martínez, I.; Fernandes, P.; Macedo-de-Araújo, R.J.; Faria-Ribeiro, M.; González-Méijome, J.M. Changes in Wavefront Error of the Eye for Different Accommodation Targets under the Application of Phenylephrine Hydrochloride. *Photonics* **2023**, *10*, 381.
https://doi.org/10.3390/photonics10040381

**AMA Style**

Mechó-García M, Blanco-Martínez I, Fernandes P, Macedo-de-Araújo RJ, Faria-Ribeiro M, González-Méijome JM. Changes in Wavefront Error of the Eye for Different Accommodation Targets under the Application of Phenylephrine Hydrochloride. *Photonics*. 2023; 10(4):381.
https://doi.org/10.3390/photonics10040381

**Chicago/Turabian Style**

Mechó-García, María, Iñaki Blanco-Martínez, Paulo Fernandes, Rute J. Macedo-de-Araújo, Miguel Faria-Ribeiro, and José Manuel González-Méijome. 2023. "Changes in Wavefront Error of the Eye for Different Accommodation Targets under the Application of Phenylephrine Hydrochloride" *Photonics* 10, no. 4: 381.
https://doi.org/10.3390/photonics10040381