# Transverse Electric Guided Wave Propagation in a Plane Waveguide with Kerr Nonlinearity and Perturbed Inhomogeneity in the Permittivity Function

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

## 3. Results

#### 3.1. Statement of the Problem

**Statement**

**1.**

#### 3.2. Problem ${\mathcal{P}}_{\alpha}$

**Statement**

**2.**

**Statement**

**3.**

**Theorem**

**1.**

#### 3.3. Problem $\mathcal{P}$

**Statement**

**4.**

**Statement**

**5.**

**Statement**

**6.**

**Theorem**

**2.**

#### 3.4. Numerical Results

#### 3.5. Proofs

#### 3.5.1. Proof of Statement 4

#### 3.5.2. Proof of Statement 5

#### 3.5.3. Proof of Statement 6

#### 3.5.4. Proof of Theorem 2

## 4. Discussion

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Unger, H.G. Planar Optical Waveguides and Fibres; Clarendon Press: Oxford, UK, 1977. [Google Scholar]
- Snyder, A.; Love, J. Optical Waveguide Theory; Chapman and Hall: London, UK, 1983. [Google Scholar]
- Sodha, M.S.; Ghatak, A.K. Inhomogeneous Optical Waveguides; Optical Physics and Engineering; Plenum Press: New York, NY, USA; London, UK, 1977. [Google Scholar]
- Landau, L.D.; Lifshitz, E.M.; Pitaevskii, L.P. Course of Theoretical Physics (vol.8). Electrodynamics of Continuous Media; Butterworth-Heinemann: Oxford, UK, 1993. [Google Scholar]
- Akhmediev, N.N.; Ankevich, A. Solitons, Nonlinear Pulses and Beams; Chapman and Hall: London, UK, 1997. [Google Scholar]
- Boardman, A.D.; Egan, P.; Lederer, F.; Langbein, U.; Mihalache, D. Third-Order Nonlinear Electromagnetic TE and TM Guided Waves. In Nonlinear Surface Electromagnetic Phenomena; Ponath, H.-E., Stegeman, G.I., Eds.; Elsevier Science Publisher: North-Holland, The Amsterdam; London, UK; New York, NY, USA; Tokyo, Japan, 1991. [Google Scholar]
- Boyd, R.W. Nonlinear Optics, 2nd ed.; Academic Press: New York, NY, USA; London, UK, 2003. [Google Scholar]
- Mills, D.L. Nonlinear Optics: Basic Concepts; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Zakery, A.; Elliott, S.R. Optical Nonlinearities in Chalcogenide Glasses and Their Applications; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2007; Volume 135. [Google Scholar]
- Li, C. Nonlinear Optics Principles and Applications; Shanghai Jiao Tong University Press: Shanghai, China; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Khoo, I.C. Nonlinear optics, active plasmonics and metamaterials with liquid crystals. Prog. Quantum Electron.
**2014**, 38, 77–117. [Google Scholar] [CrossRef] - Borghi, M.; Castellan, C.; Signorini, S.; Trenti, A.; Pavesi, L. Nonlinear silicon photonics. J. Opt.
**2017**, 19, 093002. [Google Scholar] [CrossRef] - Schürmann, H.W. On the theory of TE-polarized waves guided by a nonlinear three-layer structure. Z. Phys. B
**1995**, 97, 515–522. [Google Scholar] [CrossRef] - Smirnov, Y.G.; Valovik, D.V. Guided electromagnetic waves propagating in a plane dielectric waveguide with nonlinear permittivity. Phys. Rev. A
**2015**, 91, 013840. [Google Scholar] [CrossRef] - Valovik, D.V. Novel propagation regimes for TE waves guided by a waveguide filled with Kerr medium. J. Nonlinear Opt. Phys. Mater.
**2016**, 25, 1650051. [Google Scholar] [CrossRef] - Said, A.A.; Wamsley, C.; Hagan, D.J.; Stryland, E.W.V.; Reinhardt, B.A.; Roderer, P.; Dillard, A.G. Third- and fifth-order optical nonlinearities in organic materials. Chem. Phys. Lett.
**1994**, 228, 646–650. [Google Scholar] [CrossRef] - Tan, C.; Li, N.; Xu, D.; Chen, Z. Spatial focusing of surface polaritons based on cross-phase modulation. Results Phys.
**2021**, 27, 104531. [Google Scholar] [CrossRef] - Schürmann, H.W.; Smirnov, Y.G.; Shestopalov, Y.V. Propagation of TE-waves in Cylindrical Nonlinear Dielectric Waveguides. Phys. Rev. E
**2005**, 71, 016614. [Google Scholar] [CrossRef] [PubMed] - Smirnov, Y.G.; Valovik, D.V. Coupled Electromagnetic TE-TM Wave Propagation in a Layer with Kerr Nonlinearity. J. Math. Phys.
**2012**, 53, 123530. [Google Scholar] [CrossRef] - Valovik, D.V. Nonlinear multi-frequency electromagnetic wave propagation phenomena. J. Opt.
**2017**, 19, 115502. [Google Scholar] [CrossRef] - Valovik, D.V. On a nonlinear eigenvalue problem related to the theory of propagation of electromagnetic waves. Differ. Equ.
**2018**, 54, 168–179. [Google Scholar] [CrossRef] - Valovik, D.V. On spectral properties of the Sturm–Liouville operator with power nonlinearity. Monatshefte Math.
**2019**, 188, 369–385. [Google Scholar] [CrossRef] - Moskaleva, M.A.; Kurseeva, V.Y.; Valovik, D.V. Asymptotical analysis of a nonlinear Sturm–Liouville problem: Linearisable and non-linearisable solutions. Asymptot. Anal.
**2020**, 119, 39–59. [Google Scholar] - Adams, M.J. An Introduction to Optical Waveguides; John Wiley & Sons: Chichester, UK; New York, NY, USA; Brisbane, Australia; Toronto, ON, Canada, 1981. [Google Scholar]
- Marcuse, D. Theory of Dielectric Optical Waveguides, 2nd ed.; Academic Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Courant, R.; Hilbert, D. Methods of Mathematical Physics; Interscience Publishers Inc.: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Pontryagin, L.S. Ordinary Differential Equations; Pergamon Press: Oxford, UK, 1962. [Google Scholar]
- Mihalache, D.; Stegeman, G.I.; Seaton, C.T.; Wright, E.M.; Zanoni, R.; Boardman, A.D.; Twardowki, T. Exact dispersion relations for transverse magnetic polarized guided waves at a nonlinear interface. Opt. Lett.
**1987**, 12, 187–189. [Google Scholar] [CrossRef] [PubMed] - Chen, Q.; Wang, Z.H. Exact dispersion relations for TM waves guided by thin dielectrics films bounded by nonlinear media. Opt. Lett.
**1993**, 18, 260–262. [Google Scholar] [CrossRef] [PubMed] - Huang, J.H.; Chang, R.; Leung, P.T.; Tsai, D.P. Nonlinear dispersion relation for surface plasmon at a metal-Kerr medium interface. Opt. Commun.
**2009**, 282, 1412–1415. [Google Scholar] [CrossRef]

**Figure 2.**Dispersion curves of problem ${\mathcal{P}}_{\alpha}$ (blue curve) and problem ${\mathcal{P}}_{0}$ with $\beta =0$ (red curve). Solid diamonds denote the propagation constants ${\tilde{\gamma}}_{1}\approx 1.415$ (red), ${\tilde{\gamma}}_{2}\approx 0.902$ (green) of problem ${\mathcal{P}}_{0}$ with $\beta =0$ and propagation constants ${\overline{\gamma}}_{2,1}\approx 1.141$ (brown), ${\overline{\gamma}}_{2,2}\approx 3.705$ (blue) of problem ${\mathcal{P}}_{\alpha}$.

**Figure 3.**Dispersion curves of problem ${\mathcal{P}}_{\alpha}$ (blue curve) with $\epsilon =2.405$ and problem ${\mathcal{P}}_{\alpha}^{\beta}$ (green curve) with $\epsilon =2.405+0.05cos\left(x\right)$. Solid diamonds denote the propagation constants ${\overline{\gamma}}_{2,1}\approx 1.141$ (blue), ${\overline{\gamma}}_{2,2}\approx 3.705$ (orange) of problem ${\mathcal{P}}_{\alpha}$ and propagation constants ${\widehat{\gamma}}_{2,1}\approx 1.131$ (green), ${\widehat{\gamma}}_{2,2}\approx 4.197$ (purple) of problem ${\mathcal{P}}_{\alpha}^{\beta}$.

**Figure 4.**Subfigure (

**a**): the eigenfunction of problem ${\mathcal{P}}_{\alpha}^{\beta}$ (green curve) corresponding to the propagation constant denoted by the green diamond in Figure 3. Subfigure (

**b**): the eigenmodes of problems ${\mathcal{P}}_{\alpha}^{\beta}$ (purple curve) and ${\mathcal{P}}_{\alpha}$ (orange curve) corresponding to the propagation constants denoted by the purple and orange diamonds in Figure 3.

**Figure 5.**Dispersion curves of problem ${\mathcal{P}}_{\alpha}$ (blue curve) with $\epsilon =2.405$ and problem ${\mathcal{P}}_{\alpha}^{\beta}$ (green curve) with $\epsilon =2.405+0.05cos\left(10x\right)$. Solid diamonds denote propagation constants ${\overline{\gamma}}_{2,1}\approx 1.141$ (blue), ${\overline{\gamma}}_{2,2}\approx 3.705$ (orange) of problem ${\mathcal{P}}_{\alpha}$ and propagation constants ${\widehat{\gamma}}_{2,1}\approx 1.115$ (green), ${\widehat{\gamma}}_{2,2}\approx 3.656$ (purple) of problem ${\mathcal{P}}_{\alpha}^{\beta}$.

**Figure 6.**Subfigure (

**a**): the eigenmode of problem ${\mathcal{P}}_{\alpha}^{\beta}$ (green curve) corresponding to the propagation constant denoted by the green diamonds in Figure 5. Subfigure (

**b**): the eigenmode of problem ${\mathcal{P}}_{\alpha}^{\beta}$ (purple curve) corresponding to the propagation constant denoted by the purple diamonds in Figure 5.

**Figure 7.**Dispersion curves of problem ${\mathcal{P}}_{\alpha}$ (blue curve) with $\epsilon =2.405$ and problem ${\mathcal{P}}_{\alpha}^{\beta}$ (green curve) with $\epsilon =2.405+0.05cos\left(4x\right)$. Solid diamonds denote propagation constants ${\overline{\gamma}}_{2,1}\approx 1.141$ (blue), ${\overline{\gamma}}_{2,2}\approx 3.705$ (orange) of problem ${\mathcal{P}}_{\alpha}$ and propagation constants ${\widehat{\gamma}}_{2,1}\approx 1.112$ (green), ${\widehat{\gamma}}_{2,2}\approx 3.404$ (purple) of problem ${\mathcal{P}}_{\alpha}^{\beta}$.

**Figure 8.**Subfigure (

**a**): the eigenmode of problem ${\mathcal{P}}_{\alpha}^{\beta}$ (green curve) corresponding to the propagation constant denoted by the green diamond in Figure 7. Subfigure (

**b**): the eigenmode of problem ${\mathcal{P}}_{\alpha}^{\beta}$ (purple curve) and ${\mathcal{P}}_{\alpha}$ (orange curve) corresponding to the propagation constant denoted by the purple and orange diamonds in Figure 7.

**Figure 9.**Dispersion curves of problem ${\mathcal{P}}_{\alpha}$ (blue curve) with $\epsilon =2.405$ and problem ${\mathcal{P}}_{\alpha}^{\beta}$ (green curve) with $\epsilon =2.405+0.00526(-1.6{x}^{2}+8x)$. Solid diamonds denote propagation constants ${\overline{\gamma}}_{2,1}\approx 1.141$ (blue), ${\overline{\gamma}}_{2,2}\approx 3.705$ (brown), ${\overline{\gamma}}_{3,1}\approx 6.866$ (orange) of problem ${\mathcal{P}}_{\alpha}$ and propagation constants ${\widehat{\gamma}}_{2,1}\approx 1.179$ (green), ${\widehat{\gamma}}_{2,2}\approx 3.585$ (red), ${\widehat{\gamma}}_{3,1}\approx 6.493$ (purple) of problem ${\mathcal{P}}_{\alpha}^{\beta}$.

**Figure 10.**Subfigure (

**a**): the eigenfunctions of problem ${\mathcal{P}}_{\alpha}$ (brown curve) and problem ${\mathcal{P}}_{0}$ with $\beta =0$ (green curve) corresponding to the propagation constants denoted by the green and brown diamonds in Figure 2. Subfigure (

**b**): the eigenfunction corresponding to the propagation constant of problem ${\mathcal{P}}_{\alpha}$ denoted by the blue diamonds in Figure 2.

**Figure 11.**Subfigure (

**a**): the eigenmode of problem ${\mathcal{P}}_{\alpha}^{\beta}$ (red curve) corresponding to the propagation constant denoted by the red diamonds in Figure 9. Subfigure (

**b**): the eigenmodes of problems ${\mathcal{P}}_{\alpha}^{\beta}$ (purple curve) and ${\mathcal{P}}_{\alpha}$ (orange curve) corresponding to the propagation constants denoted by the purple and orange diamonds in Figure 9.

**Figure 12.**In subfigure (

**a**) $\epsilon =2.405$, in subfigure (

**b**) $\epsilon =2.405+0.05cos\left(x\right)$, in subfigure (

**c**) $\epsilon =2.405+0.05cos\left(10x\right)$, in subfigure (

**d**) $\epsilon =2.405+0.00526(-1.6{x}^{2}+8x)$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dyundyaeva, A.; Tikhov, S.; Valovik, D.
Transverse Electric Guided Wave Propagation in a Plane Waveguide with Kerr Nonlinearity and Perturbed Inhomogeneity in the Permittivity Function. *Photonics* **2023**, *10*, 371.
https://doi.org/10.3390/photonics10040371

**AMA Style**

Dyundyaeva A, Tikhov S, Valovik D.
Transverse Electric Guided Wave Propagation in a Plane Waveguide with Kerr Nonlinearity and Perturbed Inhomogeneity in the Permittivity Function. *Photonics*. 2023; 10(4):371.
https://doi.org/10.3390/photonics10040371

**Chicago/Turabian Style**

Dyundyaeva, Anna, Stanislav Tikhov, and Dmitry Valovik.
2023. "Transverse Electric Guided Wave Propagation in a Plane Waveguide with Kerr Nonlinearity and Perturbed Inhomogeneity in the Permittivity Function" *Photonics* 10, no. 4: 371.
https://doi.org/10.3390/photonics10040371