
Citation: Guo, Y.; Wang, D.; Wang, L.;

Jia, Z.; Zhao, T.; Chang, P.; Wang, Y.;

Wang, A. Key Space Enhancement of

Chaos Communication Using

Semiconductor Lasers with

Spectrum-Programmable

Optoelectronic Feedback. Photonics

2023, 10, 370. https://doi.org/

10.3390/photonics10040370

Received: 6 March 2023

Revised: 22 March 2023

Accepted: 24 March 2023

Published: 26 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Communication

Key Space Enhancement of Chaos Communication Using
Semiconductor Lasers with Spectrum-Programmable
Optoelectronic Feedback
Yuanyuan Guo 1,2, Dongsheng Wang 1,2, Longsheng Wang 1,2, Zhiwei Jia 1,2, Tong Zhao 1,2, Pengfa Chang 1,2,
Yuncai Wang 3,4 and Anbang Wang 1,2,3,4,*

1 Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education and Shanxi
Province, Taiyuan 030024, China

2 College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China
3 School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, China
4 Guangdong Provincial Key Laboratory of Photonics Information Technology, Guangzhou 510006, China
* Correspondence: wanganbang@tyut.edu.cn

Abstract: We propose a scheme for key-space-enhanced chaos secure communication using semi-
conductor lasers with spectrum-programmable optoelectronic feedback. This feedback consists of
multiple parallel optoelectronic feedback loops composed of bandpass filters and radio-frequency
amplifiers. The centre frequencies of the filters and gain coefficients of the amplifiers increase the key
space. We use 12 parallel filtered feedback loops to analyse the effects of parameter mismatch on the
synchronization quality. The simulation result indicates that the key space reaches approximately 2100

at a data rate of 10 Gbit/s, and it can be further enhanced by increasing the number of feedback loops.
These results suggest an alternative approach for security-enhanced optical chaos communication.

Keywords: chaos; semiconductor laser; key space enhancement; optoelectronic feedback; secure
communication

1. Introduction

Optical chaos communication has attracted considerable attention because of its ad-
vantages, such as a high transmission rate, long transmission distance, compatibility with
existing fibre networks, and high-level security in physical layer encryption [1–9]. In
2005, Argyris et al. implemented a 1 Gbit/s chaos communication field experiment with
semiconductor lasers in a 120 km long commercial fibre optic link in Athens [2]. In 2010,
Lavrov et al. realised chaos communication with optoelectronic oscillators in a 100 km fibre
network in Besancon at a transmission rate of 10 Gbit/s [3]. In 2018, Yi et al. demonstrated
chaos communication fibre transmission over 100 km at a bit rate of 30 Gbit/s [5]. In 2020,
Wang et al. proposed coherent optical chaos communication in which the data rate was
expected to be at least 40 Gbit/s [6]. In 2022, Wang et al. experimentally demonstrated
all-optical wideband chaos synchronization and communications based on the mutual injec-
tion of semiconductor lasers [10]. In 2023, Li et al. reported and numerically demonstrated
an optical chaos communication scheme which allow for broadband chaos generation,
high-quality chaos synchronization, and long distance [11]. In 2023, Wang et al. numeri-
cally investigated the effects of probabilistic shaping on the performance improvement of
coherent optical chaos communication and demonstrated that the decryption bit error ratio
of the 16 QAM signal decreases upon increasing the probabilistic shaping factor [12]. The
security of optical chaos communication has become important owing to the increase in the
transmission speed and distance [13].

In chaos communication, the parameters of authorised transceivers must be matched
to achieve chaos synchronization [14–16]. In addition, lasers must be selected from the same
wafer. Therefore, the synchronization of transceivers is sensitive to parameter mismatch.
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This implies that it is difficult for an eavesdropper to obtain a parameter-matching laser
and build synchronization with legitimate users. Each hardware parameter of a legitimate
laser is regarded as a physical key. The key space of the system is defined as the product of
the ratio between the entire range of each parameter and the tolerant mismatch range that
affords synchronization to decode the message [17]. A larger physical key space implies
that it is more difficult for an eavesdropper to crack the system.

A few methods have been proposed to enhance the key space of chaos secure commu-
nication. For example, Yi et al. verified that the key space can be significantly improved to
1048 by adding a frequency-dependent group delay module with high-frequency tuning
resolution in chaotic optoelectronic oscillation [18]. Wang et al. demonstrated that the
key space is enhanced by 244 compared to conventional mirror feedback using external
chirped fibre Bragg grating feedback. This is because they time delay signature is sup-
pressed, and new dimensions of the key space are introduced [17,19]. A vertical-cavity
surface-emitting laser with common phase-modulated electro-optic feedback has been
proposed by Wang et al. to eliminate the time-delay signature and enhance the dimen-
sions of the key space [20]. Gao et al. demonstrated that the key space can be enhanced
by 234 by introducing an electro-optic nonlinear transformation hardware module [21].
Wang et al. proposed a key-space-enhanced optical chaos secure communication scheme
using a pair of monolithically integrated multi-section semiconductor lasers as transceivers
and numerically demonstrated the key space reaches 248 with a data rate of 2.5 Gbit/s [22].

In this paper, we propose a scheme to enhance the key space of chaos secure commu-
nication using semiconductor lasers with spectrum-programmable optoelectronic feedback
composed of multiple parallel optoelectronic feedback loops. Each feedback loop is com-
posed of a bandpass filter (BPF) and a radio-frequency (RF) amplifier. Chaos synchroniza-
tion is achieved by driving transceivers with common amplified spontaneous emission
(ASE) noise. The effects of the centre frequency mismatch of the BPF and the gain mismatch
of the RF amplifier on synchronization are simulated. When the parallel number is 12, the
key space of the chaos secure communication system reaches 2100 at a communication rate
of 10 Gbit/s.

2. Theoretical Model

The proposed chaos communication system with an enhanced key space is shown
in Figure 1. An ASE noise module is applied as the driver, and two parameter-matched
distributed-feedback (DFB) lasers with spectrum-programmable optoelectronic feedback
are authorised to legitimate users—Alice and Bob. The drive light is divided into two
beams and injected into the DFB lasers after filtering and amplification. The output sig-
nal of the DFB lasers is detected by a photodetector and divided into two parts, which
are fed back to the bias current of the DFB lasers through optoelectronic feedback and
spectrum-programmable optoelectronic feedback. The spectrum-programmable optoelec-
tronic feedback consists of multiple parallel optoelectronic filtered feedback loops, each
of which comprises a BPF and RF amplifier. The centre frequencies of the BPFs and the
gains of the RF amplifiers can be used as additional physical keys of the system to enhance
the key space. The DFB lasers of Alice and Bob generate synchronized chaotic signals for
secure communication. The message, m(t), is encrypted on the chaos carrier emitted by
Alice through chaos masking and then decrypted by Bob by subtracting the chaos carrier.

The system is simulated using the VPItransmissionMakerTM commercial simulation
software. The time delay of the optoelectronic filtered feedback is fixed at 2.55 ns in each
feedback loop. The bias currents of the two lasers are both 30 mA, which is 1.5 times the
threshold current. In order to provide a certain initial feedback strength, the amplifier
gain (G0) in the optoelectronic feedback loop is fixed at 2 dB. The injection strength, kinj, is
defined as the ratio of the optical power of the injection to the laser output power. In the
simulation, the optical coupling strength of different devices is considered 100%. The two
lasers have the same internal parameters, which are listed in Table 1.



Photonics 2023, 10, 370 3 of 10Photonics 2023, 10, x FOR PEER REVIEW 3 of 10 
 

 

 

Figure 1. Schematic of key-space-enhanced secure optical communication using spectrum-program-

mable optoelectronic feedback. ASE: amplified spontaneous emission; OI: optical isolator; TF: tune-

able filter; EDFA: erbium-doped fibre amplifier; OC: optical coupler; VOA: variable optical attenu-

ator; PD: photodetector; BPF: bandpass filter; Amp: amplifier. 

The system is simulated using the VPItransmissionMakerTM commercial simulation 

software. The time delay of the optoelectronic filtered feedback is fixed at 2.55 ns in each 

feedback loop. The bias currents of the two lasers are both 30 mA, which is 1.5 times the 

threshold current. In order to provide a certain initial feedback strength, the amplifier gain 

(G0) in the optoelectronic feedback loop is fixed at 2 dB. The injection strength, kinj, is de-

fined as the ratio of the optical power of the injection to the laser output power. In the 

simulation, the optical coupling strength of different devices is considered 100%. The two 

lasers have the same internal parameters, which are listed in Table 1. 

Table 1. Values of parameters used in the simulation. 

 Parameters Values Units 

ASE noise 

Noise frequency of ASE 193.1 THz 

Noise bin spacing of ASE 3.0 × 1011 Hz 

Filter width of TF 100 GHz 

DFB laser 

Linewidth enhancement factor 3.0 -- 

Group index 3.7 -- 

Internal loss factor 3000 m−1 

Linear gain coefficient 3.0 × 10−20 m2 

Nonlinear gain coefficient 1.0 × 10−23 m3 

Carrier density at transparency 1.5 × 1024 m−3 

Initial carrier density 1.0 × 1024 m−3 

Linear recombination coefficient 3.0 × 108 s−1 

3. Simulation Results 

3.1. Chaos Generation and Synchronization 

We investigate the route to broadband chaos in the DFB laser with single optoelec-

tronic filtered feedback to prove the chaos generation of the proposed architecture. The 

variable strength of the filtered feedback is obtained by tuning the RF amplifier gain (G) 

in the feedback loop. Figure 2 shows the time series, power spectra, and phase portraits 

for different RF amplifier gains. The bandwidth and centre frequency of the BPF are B = 2 

GHz and f0 = 3 GHz. The laser operates in a steady state for G = 0.4 dB (Figure 2(a1–a3)). 

The time series shows only minor fluctuations, and the power spectrum almost coincides 

with the noise floor except for a slight bulge around 2 GHz, which is the characteristic 

relaxation–oscillation frequency. In addition, an extended dot is observed in the phase 

Figure 1. Schematic of key-space-enhanced secure optical communication using spectrum-
programmable optoelectronic feedback. ASE: amplified spontaneous emission; OI: optical isolator;
TF: tuneable filter; EDFA: erbium-doped fibre amplifier; OC: optical coupler; VOA: variable optical
attenuator; PD: photodetector; BPF: bandpass filter; Amp: amplifier.

Table 1. Values of parameters used in the simulation.

Parameters Values Units

ASE noise
Noise frequency of ASE 193.1 THz

Noise bin spacing of ASE 3.0 × 1011 Hz
Filter width of TF 100 GHz

DFB laser

Linewidth enhancement factor 3.0 –
Group index 3.7 –

Internal loss factor 3000 m−1

Linear gain coefficient 3.0 × 10−20 m2

Nonlinear gain coefficient 1.0 × 10−23 m3

Carrier density at transparency 1.5 × 1024 m−3

Initial carrier density 1.0 × 1024 m−3

Linear recombination coefficient 3.0 × 108 s−1

3. Simulation Results
3.1. Chaos Generation and Synchronization

We investigate the route to broadband chaos in the DFB laser with single optoelectronic
filtered feedback to prove the chaos generation of the proposed architecture. The variable
strength of the filtered feedback is obtained by tuning the RF amplifier gain (G) in the
feedback loop. Figure 2 shows the time series, power spectra, and phase portraits for
different RF amplifier gains. The bandwidth and centre frequency of the BPF are B = 2 GHz
and f 0 = 3 GHz. The laser operates in a steady state for G = 0.4 dB (Figure 2(a1–a3)). The
time series shows only minor fluctuations, and the power spectrum almost coincides with
the noise floor except for a slight bulge around 2 GHz, which is the characteristic relaxation–
oscillation frequency. In addition, an extended dot is observed in the phase portrait. A
period-one state is observed at G = 1.5 dB (Figure 2(b1–b3)). The time series shows regular
fluctuations, and the fundamental frequency is around the relaxation–oscillation frequency
and its harmonics in the corresponding power spectrum. The trajectories of the phase
portrait show clear limit cycle features. The laser enters a quasiperiodic state at G = 3.2 dB
(Figure 2(c1–c3)). The time series shows irregular fluctuations. The trajectories of the phase
portrait are dispersed within a certain range. The laser enters the chaos state at G = 5.6 dB
(Figure 2(d1–d3)). The time series shows strong fluctuations, and the corresponding power
spectrum continuously covers an extremely broad frequency range. The phase portrait
shows a widely scattered distribution over a large area.
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Figure 2. Time series, power spectrum, and corresponding phase portraits of dynamic states under
optoelectronic filtered feedback. (a1–a3) Steady state at G = 0.4 dB; (b1–b3) Regular pulse at G = 1.5 dB;
(c1–c3) Quasiperiodic state at G = 3.2 dB; (d1–d3) Chaotic pulsing at G = 5.6 dB.

Next, we investigate the synchronization characteristics of the transceiver. Figure 3a–c
illustrate the time series of the driving source and the response lasers of Alice and Bob
for an injection strength of kinj = 0.16 and an amplifier gain of G = 20 dB. The chaotic
waveforms generated by the response lasers exhibit almost the same profiles. A correlation
coefficient of 0.98 is achieved between the output chaotic signals from the two lasers,
as shown in Figure 3d, indicating high-quality synchronization. In contrast, the chaotic
waveforms output by the response lasers are evidently distinct from the temporal intensity
fluctuation of the driving source, and a correlation coefficient of 0.21 is obtained between
them, as shown in Figure 3e. Such a low correlation coefficient implies that it is difficult
for an eavesdropper to extract the private chaotic encryption signal by tapping the public
driving signal.
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Figure 4a,b show the dependence of the chaos synchronization of the response lasers on
the injection strength for different amplifier gains and filter widths. As shown in Figure 4a,
the correlation coefficient can reach to 0.98 for smaller injection strengths; this reduces
the filtered feedback strengths. As shown in Figure 4b, the filtered feedback strengths for
different filter widths are almost constant. This clearly shows that the synchronization
characteristics have similar evolution trends for different filter widths as the injection
strength increases. This implies that excellent synchronization can be obtained under
an appropriate injection strength for any amplifier gain or filter width. Figure 4c shows
the correlation coefficients for different centre frequencies of the BPF. The filter width is
B = 2 GHz, the injection strength is kinj = 0.16, and the filtered feedback strength is constant.
At centre frequencies of 1–12 GHz, the correlation coefficient is constant at approximately
0.98, with only minor fluctuations. These results show that the response lasers exhibit
similar synchronization characteristics when the filtered feedback strength is fixed, even
though the filter width or centre frequency of the BPF may be different.
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Next, we examine the synchronization tolerance to the parameter mismatch of the
response lasers. The parameters for Alice’s laser are maintained and those for Bob’s laser
are varied. Figure 5a,b show the correlation performance versus the centre frequency
detuning for different centre frequencies and filter widths; the filtered feedback strength is
constant. The synchronization between DFBa and DFBb is sensitive to the centre frequency
detuning. The mismatch tolerance to the centre frequency of the BPF is in the order of
tens of MHz, and the tolerance reduces with the centre frequency (Figure 5a). This is
because the detuning of the centre frequency result in a large variation in the filtered
feedback strength when it is close to the relaxation–oscillation frequency of the DFB laser.
Nevertheless, with the frequency increasing, the chaotic spectrum becomes flatter. Thus,
the effects of centre frequency mismatch on feedback strength are limited. However, the
tolerances for different filter widths are similar (Figure 5b). Figure 5c shows the effect
of the mismatch of the amplifier gain on the correlation for different filter widths. The
synchronization performance decreases as the mismatch increases, and a similar trend is
observed for different filter widths.
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3.2. Physical Key Space Analysis

We use multiple filtered feedback loops to significantly enhance the key space. Consid-
ering the limitations of the DFB laser output power, 12 parallel filtered feedback loops are
used in the emitter and receiver. We have verified that the filter width has a negligible effect
on chaos synchronization when the filtered feedback strength is constant. Therefore, in the
following simulation, we set the BPF width as B = 2 GHz, the amplifier gain as G = 20 dB,
and the centre frequency of the BPFs as f 0i = 1.6 + 0.2 × (i − 1) GHz (i = 1–12).

As shown in Figure 6, a data rate of 10 Gbit/s is used as the message for chaos
communication, for which the chaos synchronization coefficient is 0.98. Figure 6a–c show
the original pseudorandom bit sequence, chaotic carrier, and chaotic carrier with the
message, respectively. The message modulation amplitude is adjusted to 0.2, which is
defined as the ratio of the mean optical power of the pseudorandom bit sequence to that
of the chaotic carrier of the transmitter. Figure 6d,e show a decrypted message and the
corresponding eye diagram obtained using chaotic decryption, which is implemented by
subtracting the transmitted carrier with the message from the locally generated carrier
at the receiver. The message can be clearly distinguished, and the eye diagram is well-
opened. The bit error ratio (BER) is calculated as 5.4 × 10−4, which is below the hard-
decision forward-error correction (FEC) threshold of 3.8 × 10−3 [23]. Figure 6f shows
the effects of the synchronization coefficient on the BER of the decoded message. As the
synchronization coefficient decreases to 0.9, the BER increases to a limit of 3.8 × 10−3,
below which the decoded message can still be recovered by the FEC processing technique.
The message cannot be recovered as the synchronization coefficient decreases further.
Therefore, we adopt 0.9 as the synchronization threshold to calculate the critical mismatch
of each parameter.
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In optical chaos communication, the key space can be evaluated as follows [17]:

Ni = floor(∆pi/δpi), (1)

Nkey = η ∏m
i=1 Ni, (2)

where ∆pi is the parameter value range in which the laser can generate chaos and δpi is
the critical value of parameter mismatch between two chaotic lasers, determined by the
synchronization threshold we studied before. “Floor” means rounding down the result to
the nearest integer, Ni is the key space of one possible parameter, Nkey is the total key space
of all possible parameters, and 0 < η ≤ 1, η = 1 means that all parameters are independent
or there is only one parameter.

Figures 7 and 8 show the variation in the correlation coefficient with the mismatch of
the centre frequency of each BPF and amplifier gain. As shown in Figure 7a–l, we carefully
analyse the detuning of the filter centre frequency in each filtered feedback loop, and it
can be seen that the chaos synchronization characteristic gradually deteriorates with the
expansion of the detuning range. According to Figure 6f, we use 0.9 as the synchronization
threshold to calculate the critical mismatch value for each centre frequency. The maximum
critical mismatch value is 26 MHz, as shown in Figure 7c. The minimum critical mismatch
value is 10 MHz, as shown in Figure 7i. We then systematically analyse the effect of
amplifier gain mismatch in each filtered feedback loop on the chaos synchronization, as
shown in Figure 8a–l. We can clearly see that the synchronization coefficient is sensitive to
the detuning of the amplifier gain, with minimum and maximum critical mismatch values
of 0.4 dB and 1.1 dB, respectively, as shown in Figure 8b,e,l. Based on the above analysis,
we can conclude that the centre frequency of the BPFs and the gain of the amplifiers can
be used as additional key parameters. We calculate the key space by considering the
centre frequency with a maximal tuning range of 13 GHz for each BPF within the spectral
bandwidth of the chaotic carrier. The maximal tuning range of each amplifier gain was
20 dB. Therefore, according to the Equations (1) and (2), a total key space enhancement(

Nkey

)
of approximately 2100 is expected from the use of 12 parallel optoelectronic filtered

feedback loops.
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4. Discussion

Key space enhancement is significantly pursued for high-level security communication.
In this paper, we propose and simulate a scheme of key space enhanced chaotic secure
communication based on spectrum-programmable optoelectronic feedback. From Figures 7
and 8, we can conclude that the synchronization coefficients are sensitive to the detuning
of centre frequencies of the filters and the amplifier gains in the feedback loop. Thus, the
centre frequencies of the filters and the gains of the RF amplifiers can be used as additional
physical keys of the system to enhance the key space. The simulation results suggest
that the proposed scheme can reach a huge key space. In principle, with the increase
in the parallel number, the key space will be further enhanced. A tuneable BPF with a
frequency response range of 2–18 GHz, a bandwidth of 4 GHz (ADMV8818, ADI) and a
variable-gain RF amplifier with a gain range of 18–36 dB (ADL5246, ADI) can be applied to
the optoelectronic filtered feedback loop. With the development of integrated circuits, a
multichannel and programmable BPF and amplifier can be implemented in a chaos secure
communication system. We believe that the proposed scheme can provide a new approach
for improving the security of high-speed chaos communication.

5. Conclusions

We numerically demonstrate chaos secure communication with an enhanced key
space using semiconductor lasers with spectrum-programmable optoelectronic feedback.
Two parameter-matched semiconductor lasers are injected with ASE noise to generate
synchronized chaos for secure communication. BPFs with variable centre frequencies and
RF amplifiers with variable gains in the feedback loop are used to extend the key space
dimensions. The key space is increased to 2100 at a communication rate of 10 Gbit/s using
12 filtered feedback loops, and it can be further enhanced by increasing the parallel number.
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