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Abstract: The effect of the Goos-Hanchen (GH) angular shift for a visible light beam under the
excitation of surface plasmon resonance (SPR) in a metal subwavelength grating has been investigated.
Extremely large angular GH shifts have been demonstrated for a subwavelength grating with an
optimal depth. The high sensitivity of the beam shape transformation and the GH shift to a change
in the angle of incidence near the SPR has been shown by rigorous electromagnetic simulation and
demonstrated experimentally. The focusing of the reflected beam near the subwavelength grating
surface has been demonstrated.
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1. Introduction

The beam reflected off an interface experiences spatial and angular shifts depending
on its polarization and profile. The spatial displacements constitute the well-known Goos-
Hänchen (GH) shift in the plane of incidence [1,2]. In [3], the first observation of the GH
shift of a light beam incident on a bare metal surface was reported. The physical origin of
the lateral GH shift lies in the angular dispersion of the Fresnel reflection coefficients. The
phase changes of plane waves with different wavenumbers combine together to generate
the GH shift. Usually, the GH shift is of the order of the wavelength. Detecting such a small
GH shift is not an easy task, so significant increase is necessary for practical applications.
Various methods to enhance the shifts were considered. The displacement of the order of
the beam width was shown for multilayered structures in [2]. Significant enhancement of
the GH shift is obtained by the excitation of surface plasmon waves on metal surfaces [4–6]
and Bloch surface electromagnetic waves in photonic crystals [7]. Different materials and
structures were considered to enhance the GH effect. The enhancement has been shown
using weakly absorbing slabs [8], gradient meta-surfaces [9], subwavelength gratings [10],
graphene [11] and a coherent medium [12]. In [13], beam shifts or corrections with respect
to geometrical optics caused by the wave effects in a graded-index optical fiber were
investigated. An angular shift of a beam at an air–glass interface was experimentally
demonstrated in [14]. A noticeable increase in angular displacement can be observed
for a tightly focused beam reflected by a dielectric interface near the Brewster angle [15].
The existence of large positive and negative GH shifts in photonic crystal mirrors was
demonstrated in [16]. In [17], the negative GH shift on a two-dimensional photonic crystal
with an effective negative refractive index was investigated by simulation and experiment.

Recently, the composite GH shifts have been investigated and experimentally ob-
served at the air–Au interface [18]. The composite GH shift of a Gaussian optical beam
reflected at a glass–air interface in the visible and near-infrared regimes was experimen-
tally investigated [19]. The combined effect of the GH shift and the angular deviations
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generated by the transmission through the incoming and outgoing interfaces of the tri-
angular prism was also analyzed [20]. The spatial and angular GH and Imbert-Fedorov
(IF) shifts of p-polarized light are significantly enhanced around the resonant angle of SPR.
The enhanced temperature-dependent composite GH and IF shifts were employed for
temperature sensing [21].

Large lateral displacements of beams incident upon a diffractive structure under
resonance conditions can also be observed [5]. Large GH effects are also expected for
dielectric gratings [4]. The GH angular shifts of several hundred microradians reinforced
by the excitation of the SPR in a dielectric grating on a gold surface were demonstrated
in [22]. However, the effects of the incident beam width and subwavelength grating height
on the plasmon enhanced GH shifts have not yet been studied.

In this paper, we investigate the GH shift when the surface plasmon resonance is
excited in a subwavelength nickel grating with a period Λ = 400 nm (Figure 1). The
effects of angular shift and beam shape change on the reflected beam near the surface
plasmon resonance condition are demonstrated experimentally and confirmed by rigorous
electromagnetic simulations. A significant increase in the angular GH shift is achieved
at an optimal grating depth h = 80 nm and a resonance angle of incidence θi = 33.53◦,
corresponding to the optimal condition for the coupling of incident light with a surface
plasmon. A significant increase in the angular shift with a decrease in the width of the
incident beam is shown.
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Figure 1. Image of grating (a) and reflection of a Gaussian beam by a metallic grating (b).

2. Surface Plasmon Resonance in Subwavelength Grating

A rigorous electromagnetic theory based on the C-method is used for the calcula-
tions [23]. Note that an s-wave does not excite surface plasmon waves, so we consider the
GH shift only for a p-polarized incident wave.
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The angle of incidence θi, corresponding to the plasmon resonance, is determined
by [10,24,25]:

sinθi + m
λ

Λ
= ±

√
εr

εr + 1
, (1)

where θi is the angle of incidence, λ is the wavelength, m is an integer, Λ is the grating
period and εr, is the real part of the dielectric constant of a grating.

Figure 2 presents the diffraction efficiencies of Ni gratings with a period Λ = 400 nm
depending on the angle of incidence for different grating depths.
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Figure 2. Calculated diffraction efficiencies of the zero-order depending on the angle of incidence 
for the nickel grating with a period Λ = 400 nm and different depths h = 50, 70, 80, 90, 100 nm at a 
wavelength of radiation 𝜆 = 632.8 nm with p-polarization. 

It can be seen that the Wood and Rayleigh anomalies [26] occur at the corresponding 
incidence angles. The minimum zero reflection is achieved when the grating depth h be-
comes hopt = 80 nm. This indicates that there is an effective coupling to the plasmon wave. 
As the grating depth decreases or increases relative to the optimal depth, the value of the 
minimum reflection coefficient increases. Note that the optimal depth depends on the 
grating material. It was shown in [10] that the optimal depth for the silver grating is h = 
20 nm. The optimal grating depth, similar to the optimal thickness of the metal layer ob-
served in [6], corresponds to the excitation of the surface plasmon where the resonant 
absorption is just balanced by radiation damping and internal damping. The minimum in 
the reflectance is due to destructive interference between the leakage radiation and the 
reflected part of the excitation beam. The absorption and radiative losses determine the 
width of the SPR: Г = Г௔௕௦ + Г௥௔ௗ. The absorption losses are defined by the material dis-
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It can be seen that the Wood and Rayleigh anomalies [26] occur at the corresponding
incidence angles. The minimum zero reflection is achieved when the grating depth h
becomes hopt = 80 nm. This indicates that there is an effective coupling to the plasmon
wave. As the grating depth decreases or increases relative to the optimal depth, the value
of the minimum reflection coefficient increases. Note that the optimal depth depends on
the grating material. It was shown in [10] that the optimal depth for the silver grating is
h = 20 nm. The optimal grating depth, similar to the optimal thickness of the metal layer
observed in [6], corresponds to the excitation of the surface plasmon where the resonant
absorption is just balanced by radiation damping and internal damping. The minimum
in the reflectance is due to destructive interference between the leakage radiation and
the reflected part of the excitation beam. The absorption and radiative losses determine
the width of the SPR: Γ = Γabs + Γrad. The absorption losses are defined by the material
dispersion Γabs = Im(kSP), while the radiative losses Γrad depend on the grating profile
and increase with an increase in depth h [27]. It can be shown that the minimum reflection
is achieved if the radiation loss is equal to the damping due to absorption [27]. This
corresponds to the optimal coupling of the incident beam to the plasmon.

The absorption losses are defined by the imaginary part of the SP wave vector:

Γabs = Im(kSP) = Im
(

k0

√
ε

ε + 1

)
≈ 0.24 µm−1,

where ε = −10.1 + i14.731 is the dielectric constant of nickel.
The radiation damping can be defined as Γrad = 1/lp ≈ 0.3 µm−1, where lp is the

plasmon path length. It follows from the calculations that the losses of the plasmons in a
nickel grating with a period Λ = 400 nm and a depth h = 80 nm are equal to α = 3055 cm−1.
For a depth of h = 30 nm, plasmon losses are equal to 1500 cm−1 [10].
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The minimum reflection is defined as Rmin =
(

Γabs − Γrad
Γabs + Γrad

)2
≈ 0.01.

In Figure 3 the diffraction efficiencies of the Ni gratings depending on the angle of
incidence for different radii w0 of the incident beam are presented.
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Figure 3. Calculated diffraction efficiencies of the zero-order depending on the angle of incidence
for the nickel grating with a period Λ = 400 nm and depth h = 80 nm at a wavelength of radiation
λ = 632.8 nm with p-polarization and different beam radii w0 = 2.83 µm (black line), w0 = 4.24 µm
(green line), w0 = 7.07 µm (blue line), w0 = 14.14 µm (red line).

The influence of the incident beam width on the reflectivity is significant for the
incidence angles at which plasmon resonance occurs. For highly focused beams, the
effect of plasmon resonance is significantly reduced because of the fact that most of the
angular components of the incident beam spectrum are not phase-matched with the surface
plasmon modes. It was shown in [2] that the incident beam width should be greater than
the propagation range of the surface plasmon mode in order to efficiently transfer energy
to the plasmon field. The characteristic lengths lp are determined by the losses of plasmons.
In our case lp ≈ 1/α = 3.27 µm. This indicates that the beam width w should be greater
than 3.27 µm. Indeed, with a beam width of w0 = 7 µm or more (Figure 3), almost all
the incident power is absorbed by the grating, i.e., the incident energy is converted into
surface plasmons.

In Figure 4a, the results of calculations and measurements of diffraction efficiency of
the zero order of the nickel grating depending on the angle of incidence of the radiation
with p-polarization are presented. It is seen that the effect of plasmon resonance occurs at
the incidence angle of ~33◦ (Figure 4a). At a relief depth of h = 80 nm and incidence angle of
θi = 33.53◦, almost all incident energy is absorbed by the grating (Figure 4a). Note that this
depth corresponds to the plane wave minimum reflection at the resonance incidence angle.

It can be seen that zero reflection (Wood anomaly) is not achieved and the Rayleigh
anomaly is less pronounced in measurements due to the finite angular convergence of the
incident Gaussian beam.

In Figure 4b, the results of the calculation and measurements of diffraction efficiency
of the zero order of the nickel grating with a period Λ = 400 nm and depth h = 40 nm
depending on the angle of incidence of the radiation are presented. As can be seen, unlike
a grating with a depth of h = 80 nm (Figure 4a), the reflectivity is significant even at a
resonant incidence angle. This means that there is no effective transfer of incident energy
to surface plasmons at a grating depth of h = 40 nm.
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Figure 4. Calculated (solid lines: red—plane wave, black—Gauss beam with FWHM = 32 µm) and
measured diffraction efficiencies of the zero-order depending on the incidence angle for the nickel
grating with a period Λ = 400 nm and depths h = 80 nm (a) and h = 40 nm (b) at a wavelength of
radiation λ = 632.8 nm with p-polarization.

Goos-Hanchen Shift

In Figure 5, the calculated intensity profiles of the reflected beam at a grating surface
are presented under the surface resonance condition. While the negative lateral shift of the
order of the beam radius occurs (Figure 5a), there is no angular shift (Figure 5b). Besides,
the beam focusing in the reflection from the grating is also observed. It can be seen that the
divergence angle of the reflected beam under the SPR condition almost two times larger
than that of the incident beam ∆θi ≈ λ/πw0 ≈ 0.43

◦
(Figure 5b). Increase in the beam

divergence angle is due to the beam reshaping at the grating surface.
Note that the effect of near-field beam focusing by a flat dielectric subwavelength

grating was also demonstrated in [28].
In Figure 6 the angular intensity profiles of the reflected beam are presented for

different values of the incident angle. It can be seen that the minimum intensity value in
the dip corresponds to the incidence resonant angle because of the absorption of the field
components with kx corresponding to the SPR (Figure 6c). The transition between positive
and negative angular shifts is observed when the angle of incidence deviates from the
resonant one. When moving away from the resonant angle of incidence, only one reflected
beam remains (Figure 6f). This indicates that, because of the existing shape of the reflection
function (Figure 2), the components with higher spatial frequencies will mainly be reflected.
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Figure 5. Normalized intensity profiles as function of the transverse coordinate (a) and reflection
angle (b). Black lines—incident beam; red lines—reflected beams. Incident beam FWHM = 26.64 µm;
θi = 33.53

◦
; z = 0.
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Figure 7 shows the spatial intensity profiles depending on the transverse x coordinate
for different incidence angles at a distance of z = 11 cm from the grating surface.
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Figure 7. Calculated spatial intensity profiles of the reflected beams. z = 11 cm; incident beam
FWHM = 26.64 µm. (a) θi = 33.43

◦
; (b) θi = 33.47

◦
; (c) θi = 33.53

◦
; (d) θi = 33.59

◦
; (e) θi = 33.63

◦
;

(f) θi = 33.73
◦
.

The appearance of two peaks around the incidence resonant angle is due to the
presence of a dip in the reflectivity curve (Figure 2). While the central part of the dip with
a minimum reflection coefficient leads to the disappearance of the reflected light of the
incident Gaussian beam, the left and right sides of the dip with a higher reflectivity lead to
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the creation of two peaks. Two equal peaks appear when the angle of incidence is equal to
the resonance angle.

Angular GH shift and reshaping of the reflected beam is due to intensity and phase
redistribution caused by the SPR. For a Gaussian beam with a certain width in kx, the
absorption on the plasmon depends on the wavevector kx or angle θ. Since the distribution
over kx is multiplied by reflection coefficient with a minimum at the center of the resonance
(Figure 2), the result is a distribution with two peaks.

The angular spectrum components of a Gaussian beam incident at a plasmon resonance
angle θp is located in the region

θp − λ/πw0 < θ < θp + λ/πw0. (2)

This means that the incident beam wave vectors at a resonance condition are located
in the region

kp − 2/w0 < kx < kp + 2/w0, (3)

where kp = k0sinθp.
Note that the angular distance between two peaks is determined by the value λ/πw0,

i.e., the narrower the beam, the greater the distance between the peaks.
At a resonant angle of incidence of a wide beam (an angular spectrum range is

narrower than the dip width), the splitting of the reflected beam is not observed (Figure 8a).
However, there is a spatial negative displacement of the beam (Figure 8b). It follows from
the wave-vector matching condition (1) that the plasmon mode is excited in -1 diffraction
order of the incident beam. This indicates that, under resonance conditions, the plasmon
wave moves on the grating in a negative direction [10]. Accordingly, the part of the incident
beam energy is shifted backwards. The plasmon wave, in turn, is in resonance with the
wave reflected in the zero order and begins to radiate into this wave (to pump energy into
the reflected wave), but since the radiation does not occur instantly and the plasmon wave
has a noticeable path length, the maximum of the re-emitted wave is shifted along the
longitudinal coordinate x in the direction of the plasmon wave propagation.
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Figure 8. Reflected intensity profiles as function of the reflection angle (a) and transverse coordi-
nate (b). Incident beam with FWHM = 66.7 µm; θi = 33.53

◦
; z = 0.

In Figure 9, the calculated angular GH shifts depending on the angle of incidence for
different beam widths are presented. The negative shifts can be observed for the incidence
angles that are smaller than the critical one and the positive shifts for the angles that are
greater than the critical one. It can be seen that a significant increase in the GH shift occurs
near the critical angle corresponding to the Wood anomaly. The visible negative shifts
can be observed near the Rayleigh anomaly for the focused beams. It follows that the
higher angular shifts occur for the beams with a smaller width near the surface plasmon
resonance.
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Figure 9. Calculated GH shifts (dots) as function of the incident angle: (a,c,e)—angular shifts; 
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Figure 10 shows the GH shifts depending on the angle of incidence for the grating 
depth that differs from the optimal one. It follows that the values of the angular GH shifts 
decrease significantly if the grating depth is not optimal for the effective coupling of the 
incident wave to the SP wave. In contrast to the case of the optimal depth h = 80 nm (Figure 

Figure 9. Calculated GH shifts (dots) as function of the incident angle: (a,c,e)—angular shifts;
(b,d,f)—lateral GH shifts at z = 11 cm. h = 80 nm; FWHM = 20 µm (a,b); FWHM = 26.64 µm (c,d);
FWHM = 32 µm (e,f). The calculated dots are connected by the dashed line.

Figure 10 shows the GH shifts depending on the angle of incidence for the grating
depth that differs from the optimal one. It follows that the values of the angular GH shifts
decrease significantly if the grating depth is not optimal for the effective coupling of the
incident wave to the SP wave. In contrast to the case of the optimal depth h = 80 nm
(Figure 9c,d), the GH shifts decrease by about 10 times. This indicates a significant role of
SP resonance in the enhancement of the GH shift.
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shift at z = 11 cm. h = 40 nm; FWHM = 26.64 µm.

3. Measurement of the Angular GH Shift

In Figure 11 the experimental setup consisting of the He-Ne laser, half-wave plate,
focusing lens, subwavelength grating and Thorlabs CCD camera beam profiler is presented.
The measurements show that no GH shift for an s-polarized beam, and the effect of the
reflected beam shape changing.
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Figure 11. Experimental setup. λ/2—half-wave plate, L—lens, G—grating.

The adjustment of all these devices and optical elements and the choice of the distances
between them were carried out in accordance with the simulation results. The change in
the reflected beam radius with distance z is determined by the expression:

w(z) = w0

√√√√1 +

(
λz

πw2
0

)2

, (4)

where w0 is the radius of the laser beam where the intensity is 1/e2.
The radius of the beam w(z) is related to the full width at half maximum (FWHM)

of the intensity distribution according to: FWHM(z) =
√

2ln2·w(z). For the He-Ne laser
beam with an initial waist of D = 0.75 mm, a wavelength λ = 632.8 nm and a focusing lens
with a focal length of f = 50 mm, we have a focusing spot with a radius of 27 µm:

w0 = 0.64
λ

D
f = 0.64

0.63
750

50·103 ∼ 27 µm

This value corresponds to the FWHM = 32 µm. In Figure 12, the incident beam
intensity profile at a lens focal plane is presented.
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Note, that the measurements include both spatial and angular shifts. While the
contribution of the angular GH shift increases linearly as the beam propagates in accordance
with ∆x = z· tan(δθ) ≈ z·δθ, the lateral GH shift D is constant with the propagation distance
z (Figure 13).

Our measurements were carried out at the distances where the spatial shift is much
smaller than the angular displacement, i.e., D � ∆x. Indeed, when spatial shifts are only
of the order of a few tens of micrometers, the displacements caused by angular shift are of
the order of a millimeter at a distance of 10 cm.

It is of interest to evaluate the effect of defocusing on the GH shift when a slight
discrepancy between the focusing plane and the grating surface appears because of an
inaccurate choice of the distance between the source and the grating surface. It follows from
the simulation and measurements that the mismatch of the focusing plane with the grating
surface of less than 1 mm does not have a noticeable effect on the GH shift. It is known that
there is no significant change in the width and curvature of the wavefront within the depth
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of focus. Indeed, the focusing depth of a Gaussian beam is determined by the Rayleigh
distance or Rayleigh range, which, in our case, is equal to ZR = πw2

0/λ ≈ 3.6 mm.
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Figure 13. Reflection of an incident beam at a diffraction grating.

The GH shifts are determined by comparing the positions of the peaks of the reflected
beams with s- and p-polarizations. Note that the reflection angle of the s-polarized beam is
equal to the incidence angle, while the p-polarized beam deviates from the Fresnel angle of
reflection.

In Figure 14, the measured intensity profiles for different angles of incidence are
presented at the distance z = 11 cm from the grating surface.
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Figure 14. Measured intensity profiles of the reflected beams from the Ni grating with a period
of Λ = 400 nm and depth of h = 80 nm at a distance z = 11 cm. (a) θi = 33.47

◦
; (b) θi = 33.53

◦
;

(c) θi = 33.58
◦
; (d) θi = 33.73

◦
.
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It follows from the measurements that splitting into two beams separated by an
angular shift occurs for the focused beam incident at a SPR angle (Figure 14c). The high
sensitivity of the GH angular shift to the light beam incidence angle near the surface
plasmon resonance is demonstrated. It is seen that the reshaping of the beam profile from
the Gaussian one or splitting it into two beams takes place when the incident angle is close
to the plasmon resonance condition. The beam width and grating depth are the parameters
that significantly affect the reflected beam profile. With the precise resonance, two equal
peaks in the angular intensity distribution are observed (Figure 14b). This indicates that
the subwavelength grating can work as a beam splitter. The transition between the positive
and negative shifts is observed by the variation of the angle of incidence. The deviation
of the incidence angle in one direction or another from the resonant angle leads to the
appearance of asymmetry in the intensity distribution. There are visible changes in the
reflected beam shape when the incidence angle changes even by 1 angular minute.

In Figure 15 the calculated spatial intensity profiles depending on the transverse x
coordinate for different incidence angles at the distance z = 11 cm from the grating surface
are presented.
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of Λ = 400 nm and depth of h = 80 nm at a distance z = 11 cm. (a) θi = 33.47
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;

(c) θi = 33.58
◦
; (d) θi = 33.73

◦
.

It follows from the numerical calculations that the beam profiles and GH shifts for
various incidence angles are in good agreement with the experiment. It can also be seen
that the calculated widths of the reflected beams are equal to the measured values. A
significant change in the beam shape occurs when the beam is incident under resonance



Photonics 2023, 10, 180 15 of 19

condition. However, the Gaussian shape persists after the reflection of the incident beam
from the grating surface outside the region θp − λ/πw0 < θ < θp + λ/πw0. In Figure 16,
the measured intensity profiles for various angles of incidence that are located outside the
region θp − λ/πw0 < θ < θp + λ/πw0, at the distance z = 11 cm from the grating surface
are presented.

 

 

 

 

Figure 16. Measured intensity profiles of the reflected beams from the Ni grating with the period
Λ = 400 nm and the depth h = 80 nm at the distance z = 11 cm. (a,b) θi = 32.00

◦
, ∆x = −78 µm;

(c,d) θi = 32.17
◦
, ∆x = −115 µm; (e,f) θi = 32.50

◦
, ∆x = −181 µm. Left column—p-polarization; right

column—s-polarization.

In Table 1 the theoretical and experimental results are presented for different incident
angles.
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Table 1. Angular GH shifts at different incidence angles. h = 80 nm, FWHM = 32 µm.

Incidence angle, deg 32.00 33.00 33.43 33.71 33.73 34.00 35.00
ΘGH, deg
µrad
theory

−0.043
−753

−0.12
−2100

−0.214
−3745

0.212
3710

0.202
3535

0.152
2664

0.0686
1200

ΘGH, deg
µrad
experiment

−0.0405
−709

−0.11
−1910

−0.198
−3464

0.224
3927

0.201
3509

0.161
2809

0.064
1118

GH, µm; z = 11 cm theory −82 −230 −410 408 389 293 132
GH, µm; z = 11 cm
experiment −78 −210 −381 432 386 309 123

In the experiment, an angular shift of 0.30 degrees (0.5 × 10−2 rad) was demonstrated
for a nickel grating under SPR, which is confirmed by modeling. Note that the increase
in the angular shift is almost 100 times compared to the known results obtained for the
diffraction grating [22]. Such an increase in the angular deviation is achieved by the
appropriate adjustment of the grating depth to achieve the optimal SP coupling condition.
A visible transformation of the reflected beam shape is observed when the angle of incidence
changes by a small amount. Even 1 angular minute (3 × 10−4 rad) change in the incidence
angle causes a noticeable reshaping of the reflected beam profile.

It follows that the measured angular GH shifts are in excellent agreement with the
simulation results.

4. Discussion

Thus, the effect of angular GH shift for a visible light beam under the excitation
of surface plasmon resonance (SPR) in a metal subwavelength grating is investigated
using rigorous electromagnetic calculations and direct measurements. The SPR enhanced
negative and positive angular GH shifts are demonstrated for the reflected beam from the
grating with optimal depth. The high sensitivity of the GH shift and beam reshaping to the
angle of incidence of the focused light beam near SPR is experimentally demonstrated.

It can be seen that the simulation results are in good agreement with the measurements.
The numerical simulation with a Gaussian beam demonstrates the effects of the GH shift
and beam reshaping observed in the experiment. The presence of negligible differences
between the simulated and experimentally measured GH shifts can be due to the deviations
of the grating profile from the sinusoidal one and due to surface roughness on the metal
grating. In [29], the effect of the surface roughness on the of a metal grating for SPR sensors
was demonstrated. It was shown in [30] that the SPR sensors based on a trapezoidal grating
have great resistance to changes in grating parameters and relatively high performance.

Currently, there are various results of measurements of angular GH shifts of a Gaussian
optical beam reflected at the air–glass interface near the Brewster angle [14], at the glass–air
interface [19], at the air–Au interface [18], at the prism–Au interface in the Kretschmann
configuration [31] and in a grating structure [22]. Angular shifts of 60 µrad were observed
in [18] for a beam waist of 169 µm at a critical angle of incidence. In [14], it was found
that the measured angular deviation ranges from 10 to 104 µrad. Angular GH shifts up to
5 × 103 µrad were observed at the prism-Au interface when the incident beam was tightly
focused to a 5 µm beam waist [31]. Angular GH shifts of the order of several hundred
micrometers were demonstrated for a focused beam using a simple gold (Au) film on a
substrate to excite surface plasmons [22]. Here we present the first results of observing the
angular GH shifts of the light beam incident on a metal subwavelength grating.

Although the physical aspects of the GH shifts are well described in many publications,
the effect of the beam width and grating depth on the GH shift near the surface plasmon
resonance in subwavelength gratings has not yet been studied.

We found that the values of the spatial shift and angular deviation in the incidence
plane depend on the parameters of the subwavelength grating (period and depth), as well
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as on the incident beam width. It is evident that both the spatial displacement of the beam
and its angular deviation from the Fresnel reflection angle are present in the measurements.
However, the displacement of the beam center on the profilometer screen mainly due to
the effect of angular deviation.

Future research can be related to the consideration of the GH shifts of vortex beams [32]
and the influence of the spatial coherence on the GH shift [33]. Of particular interest is the
consideration of structured vortex beams with an orbital angular momentum [34–36] and
the effect of polarization on the GH shift [37,38].

5. Conclusions

In summary, the angular GH shift near SPR in subwavelength grating is investigated
using rigorous electromagnetic calculations and direct measurements. The extremely
large negative and positive angular GH shifts enhanced by surface plasmon resonance
are demonstrated for the reflected beam from the grating with optimal depth. It is shown
that the reflected beam splits into two angularly separated beams with large negative and
positive angular shifts. The angular distance between the intensity peaks increases with
decreasing width of the incident beam. There is no beam splitting effect for the angles of
incidence beyond the surface plasmon region. The high sensitivity of the Goos-Hanchen
shift and beam reshaping to the light beam incidence angle near the surface plasmon
resonance is demonstrated. This indicates that a tunable GH shift and a change in the
reflected beam shape can be observed by the variation of the angle of incidence near the
surface plasmon resonance in subwavelength gratings with optimal depth.

The results can be useful in the development of various sensors [31,39–42] and optical
switches, as well as in angular metrology and in enhancing the sensitivity of measurements
in gravitational wave detection [43].
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