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Abstract: As with the decreasing feature size prompted by Moore’s law and the continuous technolog-
ical advancements in the semiconductor industry, the distortion of the projection lens is an important
factor that affects the overlay. In this paper, we propose a wavefront-measurement-based method
to detect the projection lens distortion in the lithographic system. By normalizing the coordinates
of the Shack–Hartmann system with the image displacements represented in the Z2 and Z3 terms
of Zernike coefficients, the offsets between the actual image points and the ideal image points can
be determined. By offset collection at an array of 7 × 7 field points to establish an overdetermined
system of equations, the proposed method can simultaneously detect the distortions of translation,
magnification, rotation, decentering distortion, thin prism distortion, and third-order radial distortion.
This distortion measurement method is highly flexible for distortion measurement with portable
and compactly integrated sensors, enabling the real-time and cost-efficient measurement of wave
aberration and distortion. For proof-of-concept experiments, a projection lens with a numerical
aperture (NA) of 0.58 for i-line (365 nm) is used for experimental testing. The results reveal that
the repeatability accuracy of distortion detection is 51 nm and the 72 h long-term reproducibility is
143 nm.

Keywords: distortion; lithography; projection lens; wavefront measurement

1. Introduction

Over the past few decades, the complexity and density of integrated circuits (IC)
have been increasing with Moore’s law and thus the on-chip feature size keeps shrinking.
To ensure the accurate transfer of the mask pattern onto the wafer with tolerable errors,
the image distortion detection of photolithographic projection lenses is imperative. The
distortion represents the deviation of the actual position away from the ideal position at
different points in the image plane. Such image distortions are mainly caused by stage
errors and the lens magnification and aberration errors of the lithographic system.

Current methods of distortion detection for typical lithographic projection lenses
include exposure measurement, aerial image measurement, and wavefront measurement.
First, Litel proposed a self-referencing method to measure the distortion of the projection
lens in 2003, in which the Box-in-Box scheme was used in exposure measurement to reduce
the repeatability accuracy to less than 1 nm [1]. Moreover, commercial lithography compa-
nies GCA, ASML, and Canon have all conducted in-depth research on this method [2–4].
The exposure method is the most widely used and mature route that has high accuracy but
low cost-efficiency depending on the time-consuming overlay process, including iterative
ultraviolet (UV) light exposure, photoresist development, and etching.

Secondly, aerial image measurement aims to detect the projected images that are
“floating in air” but cannot be visually observed directly. The aerial image distortion can be
retrieved by scanning the stage across the image plane using one pair of conjugated marks
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on the stage and the mask. In such a manner, the light intensity field that represents the
convolution of two conjugated marks can be recorded to calculate the offset distributions
through optical-to-electrical signal conversion and scanning data fitting to obtain the final
distortion parameters. Both Nikon and ASML have adopted this technique in different
manners, in which Nikon performs slit scans along the x and y axes to obtain an aerial
image [5], whereas ASML acquires an aerial image using a transmission image sensor (TIS)
for the lateral scanning of alignment marks on the wafer plane [6]. The method of aerial
image measurement can be performed online and process-free with high stability, and this
not only makes it difficult to process data from many sampling points, but also means that
the detection speed is dependent on the costly high-speed stage movement.

Finally, the wavefront measurement method essentially encodes the image distortions
into wavefront deformations after the mask and projection lens. The offset of the actual
image point with regard to the ideal image point can be decoded by wavefront measurement
to ultimately fit the as-required distortion parameters. As typical examples, Sandia National
Laboratory developed a point diffractometer-based method for distortion detection in
2001 [7], and ASML proposed a shear interference-based method for distortion detection in
2003 [8] and cooperated with Zeiss to study the limitations of the third-order distortion,
and they proposed an improved method to predict the etching error and control the high-
order distortion [9,10]. The wavefront measurement method detects both distortions and
aberrations simultaneously, in a low cost and exposure-free process that also depends on
the positioning and measurement accuracy of the moving stage.

The Shack–Hartmann wavefront sensor, commonly used for aberration detection [11–13]
and alignment [14,15] in adaptive optics, is readily adopted to retrieve the wavefront
deformation by sequentially scanning an array of marks on the mask through the projection
lens. Finally, the lateral offset between actual positions and ideal positions can be calculated
by decoding the wavefront aberration of the projection lens. The cost of wavefront detection
is lower than that of an interferometer.

In this paper, we propose a scheme for projection lens distortion detection via the inte-
gration of a Shack–Hartmann wavefront sensor. To characterize the distortion components,
including translation, rotation, magnification, decentering distortion, thin prism distortion,
and third-order radial distortion, the first two Zernike coefficients are detected by the
integrated Shack–Hartmann sensor and superimposed with the coordinates of the moving
stage. For experimental testing at a set of 49 field points in the image plane, the offsets
between the actual image points and the ideal image points were detected by establishing
a system of overdetermined equations. The experiments were conducted with a 365 nm
projection lens with a numerical aperture (NA) of 0.58. The distortion of 7 × 7 field points
in the ideal position of the image plane and the actual position are scanned by the stage
bearing the Shack–Hartmann sensor; the distortion detection model can give the distortion
coefficients of the lens, and we adjust the distortion of the experimental lens’ x-axis and
y-axis from 2634.61 nm and 3005.19 nm to 177.12 nm and 218.85 nm through dynamic
mirror adjustment. The repeatability accuracy of distortion detection was measured to be
51 nm, with the short-term and long-term reproducibility of 142 nm and 143 nm. Compared
with the above measurement method, our proposed method and model not only provide a
solution for distortion but also for decentering and thin prism distortion parameters, which
can be used to guide the optical design to make further corrections to the projection lens
system. These two parameters can help us to evaluate the performance of the lens inside
the projection lens and to adjust the lens inside the projection lens so that the distortion can
be reduced. This method is flexible, the sensor is small and portable, it can detect wave
aberration and distortion in real time, and it is inexpensive.

The remainder of this paper is organized as follows: the Section 2 defines each compo-
nent of distortion with adequate modeling; the ‘Method’ section describes the principles
and experimental system for distortion detection by integrating the Shack–Hartmann sen-
sor; the ‘Empirical Study’ section introduces the mask design and sampling strategy with
the involved parameters of specifications. Finally, the ‘Results and Discussion’ section



Photonics 2023, 10, 168 3 of 14

describes and analyzes the calculated experimental results, and the ‘Conclusions’ section
highlights the main contributions and potential for future work.

2. Model

Distortion is a key indicator of the quality of a projection lens system in photolithog-
raphy. A variety of factors influence distortion, including the illumination system, mask
design, projection lens, working environment, stage, and measurement tools and methods.

The notations and coefficients used in this study are listed in Table 1.

Table 1. Definitions of some notations and coefficients used in this study.

Notations and Coefficients Definitions

dx, dy distortion offsets along the x-axis and y-axis of the image plane

x, y coordinates of the image plane

Tx, Ty translations along the x-direction and y-direction

θx, θy rotations with regard to the x-axis and y-axis

Mx, My magnifications along x-axis and y-axis

Bx, By bow coefficients along x-axis and y-axis

Txx, Tyx trapezoid distortion along the x-axis

Tyy, Txy trapezoid distortion along the y-axis

Wx, Wy wedge distortion along x-axis and y-axis

p11 the first-order decentering distortion coefficient

p12 the second-order decentering distortion coefficient

q11, q12 thin prism distortion coefficient along the x-axis and y-axis

D3x, D3y the third-order radial distortion coefficient along x-axis and y-axis

r radial deviation of origin point

rx, ry residuals along x-axis and y-axis

Intrinsically, distortion can be modeled by a variety of parameters, including transla-
tion, rotation, and expansion [16], i.e.,

dx = Tx − θxy + Mxx
dy = Ty + θyx + Myy

(1)

Specifically, for the stepper system [17], more parameters, including translation, rota-
tion, magnification, lens trapezoidal distortion, and third-order radial distortion, are used
to model the distortions of the Zeiss’ lens, namely,

dx = Tx − θxy + Mxx + Txxx2 + Tyxxy + D3xxr2

dy = Ty + θyx + Myy + Txyxy + Tyyy2 + D3yyr2 (2)

Further, Perloff et al. proposed a model to perform a superposed error analysis on a 1:1
projection aligner and a 10:1 wafer stepper [18], considering not only translation, rotation,
and magnification, but also lens distortion and the effect of stage parameters, as follows:

dx = Tx − θxy + Mxx + Bxy2

dy = Ty + θyx + Myy + Byx2 (3)
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Then, based on the above model, and the assistance of grating alignment technol-
ogy [19–21] through a lens, [22] extended the radial distortion term of the model to the fifth
order and took into account the effect of both inter-field and intra-field errors as follows:

dx = Tx − θxy + Mxx + Txxx2 + Tyxxy + Wxy2 + D3xxr2 + D5xxr4 + rx
dy = Ty + θyx + Myy + Txyxy + Tyyy2 + Wyx2 + D3yyr2 + D5yyr4 + ry

(4)

In practice, [23] considered the magnification and orthogonality on the x-axis and
y-axis during the stepping process. Ref. [24] studied the relationship between sampling and
global alignment repeatability, and studied the data through different sampling methods to
find the importance of a data sample with central symmetry and good sampling coverage.
A two-stage sampling strategy is proposed to effectively estimate and compensate for the
distortion by using a small number of samples [25]. Further, Chien et al. also proposed
a UNISON decision analysis procedure and developed a distortion model for step and
scan distortion, in which an optimal sampling strategy was involved for measuring and
distortion compensation [26]. To fill the gap between the existing theoretical model and
the actual data, the sampling strategy based on the empirical data of the wafer factory
was discussed [27]. The weighted least square method is used to describe the distortion
detection more accurately and compared with the least square method under the same
conditions [28]. A distortion solution model with 20 parameters is proposed to further
reduce the calculation residual [29].

Overall, the parameters and sampling strategies for various schemes of distortion
detection have been intensively studied in the above models, but little attention has been
paid to decentering distortion and thin prism distortion in projection systems, and the
physical meaning of some parameters is not clear.

2.1. Decentering Distortion

The decentering error induced in the process of optical mounting is not axisymmetric
and is primarily responsible for decentering distortion. Both decentering and thin prism
distortion cause radial and tangential distortions. The decentering distortion is expressed
as follows [30]:

δρd = 3
(

j1ρ2 + j2ρ4 + · · ·+ jnρ2n) sin(ϕ − ϕ0)
δtd =

(
j1ρ2 + j2ρ4 + · · ·+ jnρ2n) cos(ϕ − ϕ0)

(5)

where δρd, δtd denote the amount of decentering distortion along the radial and tangential
directions, j1, j2 . . . jn denote the decentering distortion coefficients, ρ is the polar radius, ϕ
is the polar angle in the polar coordinate system, and ϕ0 is the polar angle for the maximum
tangential distortion. In the Cartesian coordinate system, the decentering distortion is
expressed as

δxd = p11xy + p12
(
3x2 + y2)+ · · ·+

(
pn1xy + pn2

(
3x2 + y2))ρ2n−2

δyd = p11
(
x2 + 3y2)+ p12xy + · · ·+

(
pn1
(
x2 + 3y2)+ pn2xy

)
ρ2n−2 (6)

where δxd, δyd denote the amount of decentering distortion along the x- and y-directions,
and p11, p12 . . . pn1, pn2 denote the decentering distortion coefficients.

2.2. Thin Prism Distortion

The thin prism distortion is caused by the tilt error in the mounting process of the
optical element or detector, and its actual effect is similar to that of a thin prism. The thin
prism distortion is expressed as follows [31]:

δρd =
(
i1ρ2 + i2ρ4 + · · ·+ inρ2n) sin(ϕ − ϕ0)

δtd =
(
i1ρ2 + i2ρ4 + · · ·+ inρ2n) cos(ϕ − ϕ0)

(7)

where δρd, δtd denote the amount of thin prism distortion along the radial and tangential
directions, i1, i2 . . . in are the thin prism distortion coefficients, ϕ is the polar angle in the
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polar coordinate system, and ϕ0 is the polar angle for the maximum tangential distortion.
In the Cartesian coordinate system, the thin prism distortion is expressed as

δxp = q11ρ2 + q21ρ4 + · · ·+ qn1ρ2n

δyp = q12ρ2 + q22ρ4 + · · ·+ qn2ρ2n (8)

where δxp, δyp denote the amount of thin prism distortion along the x- and y-directions,
and q12, q21, q22 . . . qn1, qn2 are the thin prism distortion coefficients.

2.3. The Proposed Distortion Model

Based on all the aforementioned models, we intend to propose a distortion detection
model to incorporate all components of translation, rotation, magnification, decentering
distortion, thin prism distortion, and third-order radial distortion together, as shown in
Figure 1. For light propagation through the projection lens, the actual image points deviate
from their ideal positions in the image plane along the x- and y-directions due to all error
components of translation, rotation, magnification, decentering distortion, thin prism
distortion, and third-order radial distortion. Further, systematic distortion errors due to
mask manufacturing errors and the wafer process also cause image point deviations.

Photonics 2023, 10, x FOR PEER REVIEW 6 of 16 
 

 

 
Figure 1. Different error components that cause distortions. (a) Translation. (b) Rotation. (c) Magni-
fication. (d) Decentering distortion. (e) Thin prism distortion. (f) Third-order radial distortion. 

Therefore, by integrating all offsets between the ideal image points and actual image 
positions caused by different error components, the final overall distortion can be mod-
eled as 

( )
( )

2 2 2 2
11 12 11 3

2 2 2 2
11 12 12 3y

3

3
x x x x x

y y y y

dx T y M x p xy p x y q r D xr r

dy T x M y p x y p xy q r D yr r

θ

θ

= − + + + + + + +

= + + + + + + + +
 (9)

Further, the components that cause various types of distortion errors are also de-
picted in vector displacement maps, as shown in Figure 2. 

3. Methods 
To detect the overall distortions, the Shack–Hartmann wavefront detector, composed 

of a micro lens array and a charge-coupled device (CCD), is adopted to measure the aber-
rated wavefront first in this work. As shown in Figure 3, the array of micro lenses with 
equal focal length act as sub-apertures with the same size to divide the wavefront to be 
detected into an array of discrete sub-wavefronts. Each sub-aperture or sub-wavefront 
corresponds to a pixel of CCD located at the focal plane, with the micro lens array and the 
CCD image plane fixed in position. After light propagation through the micro lens array, 
the incident wavefront is spatially divided and collected by such sub-apertures to form an 
array of dots in its focal plane, as shown in Figure 3. By scanning the imaging plane with 
the Shack–Hartmann sensor, the actual image point positions of multiple field points are 
found, and the distortion of all the actual image points in the x- and y-directions in the 
coordinate system of the Shack–Hartmann sensor is compared with the coordinates of the 
stage to obtain the distortion of all the actual image points in the x- and y-directions from 
the ideal image point positions. The distortion of all the field points in the x- and y-direc-
tions are substituted into Equation (4) to obtain the distortion parameters. 

 

Figure 1. Different error components that cause distortions. (a) Translation. (b) Rota-
tion. (c) Magnification. (d) Decentering distortion. (e) Thin prism distortion. (f) Third-order
radial distortion.

Therefore, by integrating all offsets between the ideal image points and actual im-
age positions caused by different error components, the final overall distortion can be
modeled as

dx = Tx − θxy + Mxx + p11xy + p12
(
3x2 + y2)+ q11r2 + D3xxr2 + rx

dy = Ty + θyx + Myy + p11
(

x2 + 3y2)+ p12xy + q12r2 + D3yyr2 + ry
(9)

Further, the components that cause various types of distortion errors are also depicted
in vector displacement maps, as shown in Figure 2.
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3. Methods

To detect the overall distortions, the Shack–Hartmann wavefront detector, composed
of a micro lens array and a charge-coupled device (CCD), is adopted to measure the
aberrated wavefront first in this work. As shown in Figure 3, the array of micro lenses
with equal focal length act as sub-apertures with the same size to divide the wavefront to
be detected into an array of discrete sub-wavefronts. Each sub-aperture or sub-wavefront
corresponds to a pixel of CCD located at the focal plane, with the micro lens array and the
CCD image plane fixed in position. After light propagation through the micro lens array,
the incident wavefront is spatially divided and collected by such sub-apertures to form
an array of dots in its focal plane, as shown in Figure 3. By scanning the imaging plane
with the Shack–Hartmann sensor, the actual image point positions of multiple field points
are found, and the distortion of all the actual image points in the x- and y-directions in
the coordinate system of the Shack–Hartmann sensor is compared with the coordinates of
the stage to obtain the distortion of all the actual image points in the x- and y-directions
from the ideal image point positions. The distortion of all the field points in the x- and
y-directions are substituted into Equation (4) to obtain the distortion parameters.

When the ideal plane wave is incident on the micro lens array, an equally spaced
array of spots appears on the CCD surface, with each spot located in the center of each
pixel. When an actual wavefront with aberration is incident on the micro lens array, the
center of mass or the spot of each sub-pixel array deviates from the centroid. By measuring
the deviation of each spot for each sub-wavefront, the coordinates of the center of mass
and the average slope of each sub-wavefront for each sub-aperture can be found and the
overall wavefront can be reconstructed. The reconstructed wavefront can be represented
by Zernike polynomials as
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where Gxm , Gym are the x and y slopes of the spot for the mth sub-aperture, Zxn , Zyn are the
average slopes of the aberrations represented by the nth Zernike polynomial in the x- and
y-directions at this sub-aperture, an is the coefficient of the nth Zernike polynomial, m is
the number of sub-apertures, and n is the order of the Zernike polynomial.

Thereafter, deviations of each spot along the x- and y-directions can be calculated from
the 2nd and 3rd terms of the Zernike polynomial, i.e., the coefficients of the Z2 and Z3
terms that can be obtained from Equation (10),

∆sxi = f × a2
R

∆syi = f × a3
R

(11)

where ∆sxi , ∆syi are the offset of the ith field point from its ideal focal point along the x-
and y-directions, f is the focal length of the collimating lens of the Shack–Hartmann sensor,
and R is the radius of the unit circle detected by the CCD.

The final offset between the actual image position and the ideal image position is
obtained by calibrating the x and y offset measured by the Shack–Hartmann sensor to the
global coordinates determined by the interferometer, i.e.,

∆xi = Xi − ∆sxi

∆yi = Yi − ∆syi

(12)

where Xi and Yi denote the ideal image positions of the ith field point in the image plane.
In total, the offsets of 49 points are calculated and introduced to establish the model of
overdetermined equations. Finally, the distortion parameters are fitted by using the least
squares method.
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For our experiment, as shown in Figure 4, a Shack–Hartmann sensor integrated
system is established for the distortion detection of a typical projection lens. A 365 nm
wavelength LED light source is used for illumination. As mentioned above, the Z2 and Z3
coefficients are obtained and converted into offsets along the x- and y-directions, and finally
normalized to the interferometer’s global coordinates. The data of an array of 49 field
points or positions were obtained by point-by-point Shack–Hartmann scanning to build the
final computational model, which can be solved by using a least square fitting procedure.
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4. Empirical Study

For empirical study using the distortion detection method, the number of sampling
points determines the accuracy of the calculated parameters, i.e., more sampling points
lead to higher computational accuracy but a simultaneously larger cost concerning the
storage space and sampling time. The mask size chosen for the experiment is 6 inches and
it is divided into 11 × 11 grids, as shown in Figure 5. Each grid’s size is 10 mm × 10 mm
and the yellow area with a size of 4.5 µm × 4.5 µm is located in the center for incident light
transmission. For a reasonable trade-off between the experimental time required to scan the
entire mask field and the accuracy of distortion detection, an array of 7 × 7 sampling points
is sufficient for the model resolution. Herein, the edge of the field points is included because
the distortion is related to the whole field. At each field point, scanning data for distortion
measurement are obtained 25 times to filter out the noise and coarse errors for a time period
of 7 min. The wavelength used for distortion measurement in the experiments is 365 nm,
and the numerical apertures (NA) were 0.58. An environmental control system is also
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installed to keep the temperature at 300 K and the humidity at 56%. The Shack–Hartmann
sensor has a focal length of 5.15 mm and a CCD radius of 3.2 mm.
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Details of some experimental parameters are shown in Table 2; the whole mask
field size is 110 mm × 110 mm. The effective field of the wafer is 22 mm × 22 mm
by 5 × demagnification of the projection lens, in which 7 × 7 positions are sampled by
dynamic scanning of the full field. The CCD camera model is a Basler aca1920-40GM,
and the pixel size is 5.86 µm. The center point is defined as the origin or zero point, and
the sampling interval is unequally spaced. The number of sampled field points for the
validation stage prior to the experiment can be reduced to 5 × 5, but we must include
the edge field points to effectively reduce the time cost and improve the efficiency. The
experiment also proves that it has little impact on the calculation results, and we can
effectively save 50% of the sampling time.

Table 2. The main specifications of the experiment.

Parameter Specification

Wavelength 365 nm

Illuminator LED

Numerical aperture (NA) 0.58

Field size (wafer) 22 mm × 22 mm

Lens magnification 5×

Temperature
Global temperature stability 300 ± 0.1 K@8 h

Local temperature stability 300 ± 0.01 K@4 h

Humidity 56%

CCD pixel size 5.86 µm
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5. Results and Discussion

The vector diagram intuitively indicates the quality of the data. For example, the
distribution of the vector diagram can determine whether a specific type of error contributes
in a relatively large proportion to the overall field error. This is extremely important for us
to analyze the components of the error source in the experiment, so we can make certain
adjustments to achieve reasonably good results. The purpose of our proposed model to
detect these parameters is to adjust the objective distance, projection movable lens, and
mechanical mounting position to reduce the distortion error. As shown in Figure 6a, the
distortion vector map before adjustment can be also depicted. The distortion errors caused
by translation, rotation, magnification, decentering distortion, thin prism distortion, and
third-order radial distortion can be corrected gradually for the entire system. Figure 6b
gives the distortion vector map after adjustment.
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177.12 nm and 218.85 nm along the x-axis and y-axis, respectively.

As a result, the overall distortion offsets were measured by our Hartmann-based
scheme according to Equations (10) and (11). Then, by resolving the distortion model as
indicated in Equation (9), all distortion components of translation, rotation, magnification,
decentering distortion, thin prism distortion, third-order radial distortion, distortion, and
their repeatability (standard deviation) were obtained before and after adjusting the ob-
jective distance, projection movable lens z-distance, x–z angle, y–z angle, and mechanical
installation inclination depicted in Table 3. The repeatability of the distortion error due to
the detected parameters not only indicates the image quality of the objective lens but also
guides the distortion calibration. For example, for a large rotation error, the angle between
the mask and the scanning direction can be adjusted. For large thin prism distortion, the
objective lens tilt angle for correction can be adjusted.

The short-term (2 h) and long-term (72 h) reproducibility for the 7 × 7 field points
are calculated by this computational model and depicted in Figure 7. The reproducibility
vector is scaled in the figure to denote the number of standard deviations of distortions
correspondingly, with the maximum value of 142 nm for the short-term reproducibility
and 143 nm for the long-term reproducibility, indicating that the system is quite stable.
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Table 3. Repeatability of distortion data and distortion measurement before and after adjustment.

Parameter Unit
Before Adjustment After Adjustment Repeatability (σ)

x y x y x y

T nm 3.35 −23.03 10.27 5.21 12.70 28.75

M nm/cm −35.44 −34.62 1.23 0.47 1.4 2.95

θ µrad −69.82 −133.18 0.15 0.21 2.06 2.70

p11 nm/cm2 30.04 37.56 18.45 23.67 3.19 3.83

p12 nm/cm2 27.77 96.87 0.89 0.73 2.46 4.21

q nm/cm2 106.15 55.90 1.15 0.43 4.45 4.99

D3 nm/cm3 1229.48 1218.80 1.26 0.62 4.97 7.44

d nm 2634.61 3005.19 177.12 218.85 27.63 51.08
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The repeatability accuracy of the interferometer for global coordinate calibrations, as
indicated in Equation (12), i.e., the degree of consistency between successive measurements
for the same field point under the same conditions, is estimated in terms of standard
deviation. The measuring system of the interferometer will have angle error, which is
mainly affected by the machine assembly and environmental variables. Figure 8a shows
the angle error of 49 field points in the three-dimensional direction, which is close to
2 urad. Figure 8b gives the repeatability accuracy of interferometer calibrations for all
7 × 7 sampling points along the x-direction and y-direction, where the maximum deviation
of 34 nm is found at the 39th field point.

For the whole system, there are many factors that affect the distortion error. Figure 9
shows a fishbone diagram of the factors that affect the distortion error. Some factors
originate from the subsystems of the illuminator, mask, projection lens, environment,
stage, measurement tool, and metrology. Such factors might be coupled to affect the offset
between the actual image point and the ideal image point. Among them, some factors are
systematic errors, such as abbe error, cosine error, tilt error, rotation error, etc., which can
be corrected and adjusted. Some component errors, such as uniformity error and flatness,
cannot be corrected, because these errors are self-contained by the components themselves.
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In short, our scheme of distortion detection with the integration of a Shack–Hartmann
sensor can detect all the decomposed components of distortion errors, including translation,
rotation, magnification, decentering distortion, thin prism distortion, and third-order radial
distortion. The distortion of 7 × 7 field points in the ideal position of the image plane
and the actual position are scanned by the stage bearing the Shack–Hartmann sensor; the
distortion detection model can give the distortion coefficients of the lens, and we adjust the
distortion of the experimental lens’ x-axis and y-axis from 2634.61 nm and 3005.19 nm to
177.12 nm and 218.85 nm through dynamic mirror adjustment. The repeatability accuracy
of distortion detection was measured to be 51 nm, with the short-term and long-term
reproducibility of 142 nm and 143 nm.

6. Conclusions

This study presents a projection lens distortion detection scheme based on Shack–
Hartmann wavefront measurement, from which translation, rotation, magnification, decen-
tering distortion, thin prism distortion, and third-order radial distortion can be detected.
The system to be detected is a 5× projection lens with NA of 0.58 illuminated by an LED
source with a wavelength of 365 nm. The actual image point formed in the image plane is
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detected by the Shack–Hartmann sensor under the conditions of an ambient temperature
of 300 K and humidity of 56%. The coordinates of the actual image point are recorded by
the interferometer to detect the global position of the scanning stage for the 7 × 7 field
points. Finally, the system of overdetermined equations is established and the parameters
are resolved by using the least squares method. The experimental results reveal that the
repeatability accuracy of distortion detection is 51 nm and the short-term and long-term
reproducibility are 142 nm and 143 nm, respectively, with the distortion error of 177.12 nm
and 218.85 nm along the x-axis and y-axis. This method is highly flexible for distortion
measurement with portable and compactly integrated sensors, enabling the real-time and
cost-efficient measurement of wave aberration and distortion.

Finally, the accuracy of the distortion detection scheme can be further improved
by increasing the number of field points or improving the performance of experimental
systems such as the stage (positioning, scanning, etc.), measurement tool (interferometer,
sensors, etc.), and environmental control (temperature, humidity, pressure, etc.).
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