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Abstract: Silicon photonics is a revolutionary technology in the integrated photonics field which
has experienced rapid development over the past several decades. High-quality III-V semiconduc-
tor components on Si platforms have shown their great potential to realize on-chip light-emitting
sources for Si photonics with low-cost and high-density integration. In this review, we will focus
on semiconductor optical amplifiers (SOAs), which have received considerable interest in diverse
photonic applications. SOAs have demonstrated high performance in various on-chip optical ap-
plications through different integration technologies on Si substrates. Moreover, SOAs are also
considered as promising candidates for future light sources in the wavelength tunable laser, which
is one of the key suitable components in coherent optical devices. Understanding the development
and trends of heterogeneous integration Silicon/III-V SOA will help researchers to come up with
effective strategies to combat the emerging challenges in this family of devices, progressing towards
next-generation applications.
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1. Introduction

With the increase in global data traffic, the electrical interconnections are encountering
a huge barrier to satisfying the immense demand for high-speed, low-cost transmission
technology in data centers and numerous other emerging applications [1]. In order to over-
come the above problems, the idea of using photonic integrated circuits (PICs) to integrate
semiconductor laser diodes, optical modulators, amplifiers, multiplexers, waveguides,
photodetectors, etc., on a single silicon chip has emerged. Utilizing complementary metal
oxide semiconductor (CMOS) manufacturing and packaging technologies, silicon-based
devices have the potential for high-volume and low-cost fabrication [2–4]. However, silicon
materials have one obvious flaw in optoelectronics attributed to the indirect bandgap
structure, as shown in Figure 1 [5]. Hence, the silicon light source is one of the hurdles
holding back large-scale optical integration on a silicon platform.

Despite these challenges, scientists have completed a lot of work to obtain light sources
on Si substrates over the past few decades. Many approaches to light emission and am-
plification on silicon substrates have been demonstrated, including Raman lasers [6–8]
and Ge-alloy lasers [9–11], showing that group IV optoelectronic devices integrated on Si
platforms are possible. However, Raman lasers still require an off-chip light source, and
the efficiency of electrically pumping group IV lasers is too low for practical applications
compared with group III-V materials [12]. With the persistent efforts of researchers, mul-
tiple optical devices have been designed and prepared on silicon substrates through the
heterogeneous integration of silicon/III-V. Scientists have realized the functions of light
emission, transmission and reception, and finally achieved the photoelectric integration
silicon. Combing the best of what silicon and III-V platforms can offer, heterogeneous
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integration methods provide many kinds of high-performance passive and active optical
devices on a single chip [13–15].
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Figure 1. Energy band diagrams and major carrier transition processes in InP (Left) and silicon
crystals (Right). Reprinted with permission from Ref. [5]. Copyright 2010 Nature Publishing Group.

Among all of the optical devices integrated on silicon substrates, SOAs are one of
the most promising candidates. Silicon-based SOAs with high gain and saturation output
power are an essential element in future large-scale silicon PICs. SOAs can compensate
for the excess power penalties caused by large numbers of passive components and keep
the power of the signal stable, through increasing the output power of each component.
Furthermore, SOAs can be used in various optical applications by exploiting their nonlinear
properties such as wavelength conversions [16,17] and optical logic design [18,19]. In addi-
tion, SOAs can integrate with other devices on the same wafer to improve the performance
of the entire photonics system, such as external cavity tunable semiconductor lasers [20–22].
Hence, the research on the heterogeneous integration of SOAs on silicon substrates is of
great significance.

In this review, we aim to present the manufacture and applications of heterogeneously
integrated SOAs on silicon substrates. We will start by reviewing several approaches to
integrating III-V SOAs on silicon in Section 2, including wafer bonding, flip-chip inte-
gration, transfer-printing and direct epitaxial growth. Section 3 will review an external
cavity tunable semiconductor laser where SOAs are used as light resources or feedback
components. In the last section, we draw conclusions regarding the current challenges and
provide an outlook for the future development of heterogeneously integrated SOAs on
silicon substrates.

2. Hybrid Integration of III-V SOAs on Si Substrates

Approaches for realizing the heterogeneous integration of III-V SOAs on Si sub-
strates can be divided into the following four types: flip-chip integration [23,24], wafer
bonding [25,26], transfer-printing [27–29] and direct epitaxial growth [30,31]. Flip-chip inte-
gration, with the merit of optimizing III-V materials and silicon substrates independently, is
considered as the mainstream commercial solution. This method can assemble III-V materi-
als on silicon substrates directly. However, it is not suitable for low-cost manufacturing and
dense integration because of its expensive packaging and strict alignment. Benefiting from
low-loss evanescent optical coupling, wafer bonding is appropriate for low-cost fabrication.
This method transfers III-V material to the silicon-on-insulator (SOI) platform and has the
merit of bonding different epitaxial materials onto one single Si substrate [4]. Utilizing
the soft poly-dimethyl-siloxane (PDMS) stamps, transfer-printing technology can transfer
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the III-V components to silicon substrates. However, this technology is still maturing
and is mainly limited to academic research, and so will be difficult to achieve industrial-
level production in a short period of time. In addition, transfer-printing technologies also
face problems including transfer yield, large-scale transfer and alignment issues, which
could result in poor bonding quality. Direct epitaxial growth technology can grow III-V
quantum-dot (QD) gain materials on silicon substrates. The lattice constant mismatch
between III-V materials and silicon has largely been reduced through the development
of material growth technologies. Furthermore, SOAs manufactured through this method
exhibit excellent performance including high saturation output power, high-temperature
stability and fast gain response. However, this technology still has a long way to go to
achieve industrial-level production. The critical parameters of hybrid integration SOAs are
shown in Table 1.

Table 1. Brief survey of silicon-based SOAs.

Integration
Technology

Unsat. Gain
(dB)

Output
Power
(dBm)

Current
(mA)

WPE
(%)

Length
(mm) References

Peak Gain
Wavelength

(nm)

Wafer bonding 13 11 200 5.25 1.36 [32] 1575

Wafer bonding - 11 - 12.1 0.4 [33] 1540

Wafer bonding 20 17 100 - 0.7 [26] 1284

Wafer bonding 27 17.24 300 - 1.45 [25] 1575

Wafer bonding 10 13 110 - - [34] 1549

Flip-chip 10 10 150 - 0.75 [35] 1550

Flip-chip 23 - 100 - 0.8 [24] 1550

Transfer-printing 23 9.6 140 - 1.35 [27] 1548

Transfer-printing 17 11.8 160 - 1.35 [27] 1548

Transfer-printing 14 9 - - - [28] 1570

Direct epitaxial growth 34.1 24.1 - 19.7 - [36] 1320

Direct epitaxial growth 39 23 750 14.8 5 [36] 1315

2.1. Wafer Bonding Technology

The first hybrid III-V/Si SOA formulated through wafer bonding was reported by Park
from UCSB [32]. Most of the optical mode is confined to the Si waveguide and transferred
to the gain region which consists of a quantum well (QW) through evanescent coupling, as
shown in Figure 2a. Furthermore, in order to decrease the reflection, they designed the Si
waveguide at an angle of 7◦ from the normal of the output facet. The hybrid SOA has a
maximum gain of 13 dB, as well as a saturation output power of 11 dBm. Figure 2b shows
the cross-sectional image of the fabricated SOA.

Manufacturing III-V/Si SOAs through the oxygen plasma-assisted method is a typical
approach. The entire process flow is shown in Figure 2c. In order to obtain clean surfaces,
HF and NH4OH solutions are utilized to remove the impurity in III-V and Si materials. The
bonded sample is annealed at a temperature of 300 ◦C and a pressure of 1.5 MPa for 12–18 h
to achieve strong covalent bonds. This process can be divided into Equations (1) and (2).

Si−OH + M−OH → Si−O−M + H2O(g) (1)

Si + 2H2O→ SiO2 + 2H2(g) (2)

where M represents a high-electronegativity metal (such as group III and IV).
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Figure 2. (a) Wafer bonding structure cross section; (b) SEM image. Adapted from an open access
source, Ref. [37]; (c) schematic of the O2 plasma-assisted low-temperature III-V to Si bonding process
flow. Reprinted with permission from Ref. [38]. Copyright 2010 WILEY-VCH Verlag GmbH & Co.
KGaA, Weinheim, Germany.

The effective use of divinylsiloxane-bis-benzocyclobutene (DVS-BCB) bonding to
realize hybrid SOAs was reported by Ghent University [39], as shown in Figure 3a. In
order to reduce the power consumption, they designed a structure with high confinement
in the III-V region. Furthermore, they optimized the thickness of the bonding layer down
to 40 nm to reduce the influence caused by heat accumulations. Their device realized an
on-chip gain of 13 dB with a drive current of 40 mA at room temperature. In order to obtain
a higher confinement factor in the active region, Kaspar et al. [40] reported a hybrid III-V/Si
on-chip SOA fabricated through BCB bonding in 2014. The optical mode evanescently
coupled III-V and Si through a taper structure. They designed the Si waveguide at an angle
of 10◦ from the normal of the output facet. Their device demonstrated 10 dB maximum
fiber-to-fiber gain and 28 ± 2 dB maximum internal gain.

Decreasing the optical coupling loss is also an effective way to improve the perfor-
mance of SOAs. Cheung et al. [33] from UCD reported a hybrid SOA with high wall-plug
efficiency (WPG), as shown in Figure 3b. In order to make sure the bonding surface clean,
they designed vertical outgassing channels (VOCs) to remove byproducts generated in
the bonding processes. They experimentally obtained a 400 µm-long flared SOA which
provided 12.1% wall-plug efficiency (WPE) with output power > 10 mW, as well as a
400 µm-long straight SOA which provided 7.3% WPE with output power < 10 mW.
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Figure 3. (a) Three-dimensional view and schematics of the hybrid SOA designed by Keyvaninia
from UCSB. Adapted from an open access source, Ref. [41]; (b) cross-section of the SOA waveguide
designed by Cheung. Adapted from an open access source, Ref. [33]; (c) cross section and top view of
SOA designed by Kasper. Adapted from an open access source, Ref. [25]; (d) 3D schematic view of
the III-V/Si integrated tunable laser-SOA. Adapted from an open access source, Ref. [34].

Kasper et al. [25] from Ghent University reduced the confinement in the active region
to manufacture a hybrid SOA with high saturation output power, as shown in Figure 3c. In
order to decrease the interaction between the side wall and the guide mode, they designed
the III-V gain region to be 0.5 µm wider than the p-InP mesa. Their devices demonstrated
27 dB small signal gain and 17.24 dBm saturation power. In 2021, Ramirez et al. [34] from
Paraiso III-V Laboratory reported the co-integration of the III-V/Si laser-SOA through
wafer bonding technology, as shown in Figure 3d. The compact SOA demonstrated 13 dBm
on-chip output power and 10 dB net gain with an injected current of 110 mA.

Benefiting from the low-loss evanescent optical coupling, wafer bonding technology
can realize easier and low-cost mass manufacturing. However, for direct bonding, the
creation of byproducts during the wafer bonding process is still an intractable problem
which affects the performance of optical devices. It is important to overcome this problem
to obtain a high-quality bonding layer through optimizing the size and distribution of
VOCs. For indirect bonding such as DVS-BCB bonding, due to the low thermal conductivity
of the bonding layer, heat accumulations are difficult to dissipate. One possible solution
is connecting the bonding layer with the heat-sink structure through metal contacts. In
addition, reducing the thickness of bonding layer to sub-100 nm is also an effective strategy
to overcome substantial heat accumulation.

2.2. Transfer-Printing Technology

The first controlled and massively parallel transfer of micron-scale materials from
source wafers to target substrates was reported by Rogers and his co-workers from the
University of Illinois in 2004 [42,43]. This technology uses PDMS rubber as a carrier to
transfer marked molds. PDMS rubber is soft and elastic, and it can handle fragile materials
without damage, as shown in Figure 4. By changing the adhesion force between the transfer
target and the carrier through controlling the temperature, the substrate and the transfer
target could achieve the purpose of picking and printing [44].
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substrate; (d) slowly peel back stamp and print objects onto the receiver. Reprinted with permission
from Ref. [43]. Copyright © 2005, Nature Publishing Group.

The large refractive index differences between III-V materials and silicon have caused
problems for the integration of hybrid SOAs on a silicon chip. Beeck et al. [28,45] from Ghent
University reported an approach to solve this refractive index mismatch problem through
using an intermediate layer of hydrogenated amorphous silicon, as shown in Figure 5. First,
they used low-pressure chemical vapor deposition (LPCVD) to deposit SiO2 on silicon
substrates. Subsequently, they employed plasma-enhanced chemical vapor deposition
(PECVD) technology to deposit a thin SiO2 layer and hydrogenated amorphous silicon on
Si3N4 platforms. The position of the micro-transfer printing is defined in the hydrogenated
amorphous silicon layer. In this process, the Si3N4 layer is protected by the SiO2 layer in
the etching process and then the Si3N4 layer is patterned by electron beam lithography
(EBL) technology. Finally, the III-V gain region can be integrated on waveguides through
transfer printing technologies. Their hybrid SOA devices demonstrated 8 mW saturation
power and 14 dB gain with the input current of 120 mA. Furthermore, their approach may
be suitable for other low-refractive-index platforms such as lithium niobate.
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In 2020, Haq et al. [27] reported the preparation of dense arrays of hybrid SOAs
fabricated by transfer-printing, as shown in Figure 6. The length of the SOAs was 1.35 mm
and the width was 40 µm. Dense III-V SOA arrays were manufactured on InP wafers,
which could be transfer-printed on the target SOI photonic circuit in a massively parallel
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manner. Furthermore, this method had great flexibility in integrating different epitaxial
layers onto the same silicon platform without changing the casting process flow. Their
devices demonstrated a small signal gain of 23 dB and a saturation power of 9.2 mW with
140 mA input current and 17 dB small signal gain and 15 mW saturation power with
160 mA input current.
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Transfer-printing technology can integrate different III-V devices on a single silicon
substrate. Furthermore, it can realize high density integration and direct integration
of waveguide-in/waveguide-out devices such as SOA. This technology for the hybrid
integration of III-V/silicon photonics devices can enable the creation of more complex and
powerful chip-scale photonic systems.

2.3. Flip-Chip Integration Technology

Flip-chip technology is defined as a chip attached to the pads of a substrate or an-
other chip with various interconnecting materials and methods [46], as shown in Figure 7.
This technology was introduced in the early 1960s. Presently, its applications have been
extended to face-to-back, chip-to-chip and face-to-face [47]. Owing to the better integra-
tion flexibility and better heat conduction between III-V materials and silicon substrates,
flip-chip integration is more suitable for applications at high temperatures. Using these
advantages, Tanaka et al. [23] from Fujitsu developed an SOA with high output power and
WPE through flip-chip integration technology, as shown in Figure 8a. In order to achieve
low-loss optical coupling, it is of vital importance to match the mode field between the
SOA and the waveguides. They compensated for the influence of the welding position
by introducing a constant welding offset. The distribution of horizontal misalignment is
plotted in Figure 8b. They optimized the height relationship between the SOA and waveg-
uides by controlling the thickness of each layer on chips. The vertical misalignment results are
shown in Figure 8c. The alignment error is ±0.9 µm, and the measured value is within 1 dB.
Finally, their SOA devices demonstrated 11.7 dBm output power with a threshold current of
9.4 mA and a WPE of 7.6 at 20 ◦C, as shown in Figure 8d. Furthermore, benefiting from the
high heat conductance, the output power can maintain over 10 dBm at 60 ◦C.
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Figure 8. (a) Schematic of structure of the SOA interface; (b) distribution of horizontal misalignment
and coupling tolerance; (c) difference in waveguide heights and vertical coupling tolerance; (d) on-
chip gain current characteristics of reflective SOA. Adapted from an open access source, Ref. [23].

By utilizing passive alignment through the marks on both chips, Matsumoto et al. [24]
manufactured hybrid III-V/silicon SOAs with small coupling loss. They realized a gain of
10 dB with the transmission loss of 0.2 dB, and the coupling loss was less than 3 dB. After
the technological improvement and new array design, they reported the demonstration
of a lossless Si switch which was realized by an SOA array through flip-chip integration
within than less than ±1 µm alignment accuracy. The SOA exhibited a linear gain of 15 dB
and a coupling loss of 7.7 dB, including a 5.1 dB alignment loss and a 2.6 dB coupling
loss between the Si waveguide and III-V region [24]. Figure 9a is a schematic diagram
of the hybrid integrated InP-SOA matrix switch; for inline amplification, both input and
output waveguides of these SOAs are coupled to Si waveguides, as shown in Figure 9b. An
isotropic mode field with a diameter of about 3 µm was obtained at the interface between
the SOA and optical platform. Figure 9c shows the relationship between the calculated
mode field diameter and the tapered tip width, and the test result is shown in Figure 9d.
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Further optimization of the waveguide groove depth to reduce the loss in the vertical
direction is expected to increase the maximum gain of the SOA chip to 23 dB.
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Inset shows tested ASE spectrum around 1521 nm. Adapted from an open access source, Ref. [24].

To date, flip-chip technology is the current mainstream commercial solution of realiz-
ing on-chip SOA integration, and it has the advantages of high light-emitting efficiency and
quality. Although scientists have improved the alignment accuracy effectively and have
obtained optical devices with high performance, the high cost of alignment to couple the
light leads to this technology not being not suitable for low-cost mass manufacturing and
dense integration. Optimizing the integration technology to reduce the alignment difficulty
or exploring novel designs to decrease the influence of the misalignment could make it
possible to mitigate the above problems of flip-chip integration technology.

2.4. Direct Epitaxial Growth Technology

Growing single-crystal thin films on crystal-oriented wafers has become a critical
technique to improve modern photonic devices on a variety of inorganic substrates [48–50].
Epitaxy is a process by which a thin layer of one crystal is deposited in an ordered fashion
onto a substrate crystal. Generally, homogeneous epitaxial growth manufactures single-
crystal epitaxial layers with a high quality through replicating the crystal structure of the
substrate. In contrast, heteroepitaxial epitaxial growth is usually limited by the lattice
mismatch between the substrate and the epitaxial layer [51]. Hence, III-V/Si hybrid
integration would suffer from a high density of defects [52].

In order to reduce the influence of the above problems, scientists have developed
various epitaxial growth methods such as domain-matched epitaxy [53–55] and epitaxial
lateral overgrowth [56–58] and introduced several new types of buffer layers such as low-
temperature buffer layer [59–61], lattice-engineered buffer layer [62,63], and metamorphic
buffer layer [64,65]. These novel methods allow a wide variety of compound semicon-
ductors to grow on lattice mismatched substrates. However, owing to unavoidable buffer
layers and extra optical loss generated in the mismatching areas, it is difficult to achieve
highly efficient light coupling between the III/V and silicon regions [4]. With the increasing
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demand for heterogeneous material integration, various techniques have been exploited,
including epitaxial lift-off (ELO), mechanical peeling, laser peeling, and two-dimensional
material auxiliary layer transfer (2DLT), as shown in Figure 10.
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Copyright 2019, the author(s), under exclusive license to Springer Nature Limited, Berlin, Germany.

Owing to their unique characteristics, QDs are considered as promising candidates
for creating high-performance optical devices [66,67]. QDs as gain material in SOAs have
many advantages, such as a low confinement factor, low internal loss, low threshold current
density and fast carrier dynamics [68]. The fast gain response makes it suitable to amplify
high-speed signals without pattern effects [69]; the low threshold current density, internal
loss, and confinement factor contribute to low-noise-figure operation [70,71].

In 2019, Liu et al. [36] from the University of California reported a hybrid integrated
SOA working in O-band on a silicon substrate using the direct epitaxial growth technique
for the first time, as shown in Figure 11a,b. They employed a tapered gain region design to
enhance the saturation output power.

Figure 11c shows the relationship between the on-chip input power and gain at
different temperatures. The peak gain of 39 dB was obtained at 20 ◦C, and the peak gain
values at 70 ◦C, 60 ◦C and 40 ◦C were 23.4, 25.8 and 34.1 dB, respectively. The relationship
between on-chip output power and input power is shown in Figure 11d. It can be seen that
their device can provide >20 dBm output power under all temperature conditions with the
input power is 0 dBm. A 19.7% WPE value could be obtained with a 2.3 mW input power
at 40 ◦C. The NF values varied from 6.6 to 9.1 dB in the low-input-power range for all
conditions. Their work has a wide range of potential applications in high-gain, high-output
power and high-temperature devices.

Yan et al. [72] from Cornell reported the growth and integration of niobium nitride
(NbN)-based superconductors with the wide-bandgap family of semiconductors (SiC, GaN
and AlGaN) through molecular beam epitaxy (MBE) technology. They observed in the
transistor’s output characteristics a negative differential resistance, which could be used in
amplifiers. Their work provides a novel direction for the manufacture of hybrid III-V/Si
on-chip SOAs.
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3. The Application of Silicon-Based SOAs

Photonic integration brings a promise of significant cost, power and space advantages
in present optical data transmission applications. Over the past decade, effective and low-
cost silicon-based wafers have been considered as promising candidates to accommodate
multiplicate optically functional materials such as Group IV and III-V materials [1]. Silicon
photonics has the advantages of low propagation loss and high integration density. On
the other hand, III-V materials with high gain values can be flexibly used in bandgap engi-
neering by changing the composition to realize high-performance light sources [73]. The
performance of optical devices is further improved by implementing a variety of devices
on a single chip using heterogeneous technology, where all optical connections are on-chip
without external alignment. In this section, we will introduce an external cavity tunable
semiconductor laser where an SOA is used as a light resource or a feedback component.

Wavelength tunable semiconductor lasers have a wide range of important applications,
such as fiber-optic communications [74,75], optical sensing [61,76] and atomic clocks [77–79].
They are also considered as an optical power/signal supplying source, which is one
of the most fundamental elements in optical wavelength division multiplexing (WDM)
communication systems [80–83]. Under certain conditions, optical feedback can enhance,
prolong or suppress the relaxation oscillation in the transient output, and improve the
linewidth quality of the laser.

In 2015, using an SOA as the light source, Srinivasan et al. [21] from the University
of California designed a silicon-based tunable laser with micro-rings as the feedback
component, as shown in Figure 12a. In order to realize the function of tuning wavelength,
they designed individual heaters on each ring to control the feedback resonance wavelength.
Furthermore, they also optimized the size of rings to avoid thermal cross talk. Their
devices demonstrated 160 kHz linewidth and over 11.8 dBm output power. The side mode
suppression ratio (SMSR) was over 40 dB in the whole tuning range of 29 nm.



Photonics 2023, 10, 161 12 of 17

Photonics 2023, 10, x FOR PEER REVIEW 12 of 17 
 

 

devices demonstrated 160 kHz linewidth and over 11.8 dBm output power. The side mode 

suppression ratio (SMSR) was over 40 dB in the whole tuning range of 29 nm. 

 

Figure 12. Structure of wavelength tunable laser designed: (a) by Srinivasan. Adapted from an open 

access source, Ref. [21]; (b) by Komljenovic. Adapted from an open access source, Ref. [84]; (c) by 

Zia. Adapted from an open access source, Ref. [22].  

In the same year, Komljenovic et al. [20] from the University of California realized an 

tunable laser on low-loss silicon waveguide platforms with micro-ring resonators as the 

feedback component, as shown in Figure 12b. The gain section is the light source and SOA 

provides the external cavity feedback. Their result demonstrated tuning in excess of 54 

nm in the O-band and a significant reduction in linewidth in the laser owing to the feed-

back from the external cavity. The linewidth is <100 kHz in the whole tuning range and 

the minimal value is around 50 kHz. Recently, Zia et al.[22] from Tampere University 

reported the first flip-chip integration of a GaSb SOA on silicon photonic circuits. The 

integrated hybrid laser is shown in Figure 12c, and it comprises a reflective SOA (RSOA) 

coupled with a DBR grating which can be tuned to the feedback through heaters. In par-

ticular, they exploited 3 µm-thick SOI waveguide technology which has the advantage of 

easily achieving low coupling loss between GaSb and silicon waveguides without the use 

of spot size converters (SSCs). The on-chip hybrid laser demonstrated an output power of 

7.8 dBm at room temperature. The peak wavelength could be tuned between 1983 nm and 

1990 nm and the SMSR changed from 32 dB to 37 dB in the whole tuning range. Their 

result opens up attractive prospects for the development of PICs in a broad spectral range 

extending to 3 µm. 

SOAs can also be used in various optical applications by exploiting their nonlinear 

properties such as wavelength conversion. A silicon-based SOA-Mach–Zehnder interfer-

ometer (MZI) wavelength converter was reported by Mitsubishi Electric Corporation in 

2015 [85]. With the feedback control, they demonstrated a dynamic range of >8 dB for TE 

and TM polarized input signals non-return-to-zero (NRZ) modulated at 43 Gb/s. In 2016, 

Zhejiang University reported 12.5 Gb/s all-optical wavelength conversion (AOWC) for 

wavelength up- and down conversion based on hybrid III-V/silicon SOAs. Furthermore, 

their results demonstrated that with the power consumption of the SOA being <250 mW, 

the converter could realize 6 pJ/bit energy consumption at 40 Gb/s. The hybrid integration 

method involves DVS-BCB bonding [86], as shown in Figure 13. 
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Adapted from an open access source, Ref. [22].

In the same year, Komljenovic et al. [20] from the University of California realized an
tunable laser on low-loss silicon waveguide platforms with micro-ring resonators as the
feedback component, as shown in Figure 12b. The gain section is the light source and SOA
provides the external cavity feedback. Their result demonstrated tuning in excess of 54 nm
in the O-band and a significant reduction in linewidth in the laser owing to the feedback
from the external cavity. The linewidth is <100 kHz in the whole tuning range and the
minimal value is around 50 kHz. Recently, Zia et al. [22] from Tampere University reported
the first flip-chip integration of a GaSb SOA on silicon photonic circuits. The integrated
hybrid laser is shown in Figure 12c, and it comprises a reflective SOA (RSOA) coupled
with a DBR grating which can be tuned to the feedback through heaters. In particular,
they exploited 3 µm-thick SOI waveguide technology which has the advantage of easily
achieving low coupling loss between GaSb and silicon waveguides without the use of spot
size converters (SSCs). The on-chip hybrid laser demonstrated an output power of 7.8 dBm
at room temperature. The peak wavelength could be tuned between 1983 nm and 1990 nm
and the SMSR changed from 32 dB to 37 dB in the whole tuning range. Their result opens
up attractive prospects for the development of PICs in a broad spectral range extending
to 3 µm.

SOAs can also be used in various optical applications by exploiting their nonlinear
properties such as wavelength conversion. A silicon-based SOA-Mach–Zehnder interfer-
ometer (MZI) wavelength converter was reported by Mitsubishi Electric Corporation in
2015 [85]. With the feedback control, they demonstrated a dynamic range of >8 dB for TE
and TM polarized input signals non-return-to-zero (NRZ) modulated at 43 Gb/s. In 2016,
Zhejiang University reported 12.5 Gb/s all-optical wavelength conversion (AOWC) for
wavelength up- and down conversion based on hybrid III-V/silicon SOAs. Furthermore,
their results demonstrated that with the power consumption of the SOA being <250 mW,
the converter could realize 6 pJ/bit energy consumption at 40 Gb/s. The hybrid integration
method involves DVS-BCB bonding [86], as shown in Figure 13.
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4. Conclusions and Outlook

In the 1950s, the invention of lasers triggered a technological revolution. III-V semi-
conductors were subsequently implemented in diode lasers, and scientists began research
on SOAs a few years later. SOAs can compensate for the excess power penalties caused
by large numbers of passive components and keep the power of the signal stable, through
increasing the output power of each component. Silicon photonics has improved rapidly
over the past three decades, owing to the need for more complex, higher-function, and
lower-cost photonics-integrated circuits. Although several SOAs have been developed
on InP platforms and hybrid III-V/silicon-based platforms, achieving high gain and high
output power is still a major challenge.

In terms of the previous work, we reviewed four types of technologies applied in
hybrid integration SOA, including wafer bonding, flip-chip integration, micro-transfer
printing and direct epitaxial growth. These technologies have been extensively explored
and optimized according to the needs of different optical devices. Flip-chip technology is
the current mainstream commercial solution, but the precise alignment to couple the light
can lead to high packaging costs, and so it is not suitable for low-cost mass manufacturing.
Benefiting from low-loss evanescent optical coupling, wafer bonding technologies are
suitable for low-cost manufacturing, but the byproducts produced in the bonding pro-
cess still represent an intractable challenge. Transfer-printing and direct epitaxial growth
technologies have been demonstrated to have good performance in heterogeneous inte-
gration, especially QD SOAs integrated through the latter method, which have shown a
gain of up to 39 dB. However, these two technologies still have a long way to go to achieve
industrialization. Hence, it is of vital importance for scientists to explore new heteroge-
neous integration approaches and design new structures. For example, for wafer bonding
technology, the byproducts generated in the bonding process affect the surface roughness.
Therefore, it is important to optimize the size and distribution of VOCs to achieve a high-
quality bonding layer. Furthermore, the heat dissipation is another intractable problem,
especially in DVS-BCB bondings. One possible solution is connecting the bonding layer
with the heat-sink structure through metal contacts. In addition, reducing the thickness
of the bonding layer to sub-100 nm is also an effective strategy to overcome substantial
heat accumulation.

SOAs can be integrated with other devices on the same wafer to improve the perfor-
mance of the whole photonics system, such as external cavity tunable semiconductor lasers,
which also represent an important research direction of on-chip SOAs. Therefore, SOAs
are considered as promising candidates for future light sources in coherent optical devices.
There is still room for on-chip SOAs to improve the properties of silicon-integrated optical
circuits by modifying the heterogeneous integration technology. The next generation of
SOAs may realize high-density integration with high net gain, low coupling loss and low
noise figures.
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