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Abstract: Fourier transform holography (FTH) is a lensless imaging technique where the wave
scattered by an object is superimposed with the wave scattered by a reference source positioned
in the same plane. The distribution of the object is then reconstructed by simply calculating the
Fourier transform of the recorded hologram. In this study, we outline the basic principles of FTH and
provide an overview of the different types of references and the associated reconstruction algorithms.
Current applications of FTH with different waves (light, electron, and X-ray) are presented, and their
relationships with other coherent imaging techniques are discussed.
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1. Introduction
1.1. Phase Problem

Holography was proposed as a lensless imaging technique by Dennis Gabor in 1947
in an attempt to solve the problem of limited resolution in electron microscopes due to lens
aberrations [1–3]. Holography is an elegant solution to the so-called phase problem, which
exists in coherent imaging and can be described as follows. A probing wave propagates
through a sample and reaches a distant detector. Since detectors can only record intensity,
information about the phase distribution of the wave is lost. However, this missing phase
distribution is crucial because it contains information about the scattering events that have
taken place inside the sample. Therefore, in order to reconstruct the sample distribution,
the phases missing in the detector plane must be recovered. This constitutes the phase
problem. Holography solves the phase problem by adding a reference wave with a known
distribution to the unknown object wave. The contrast of the resulting interference pattern
(the hologram) is proportional to the difference between the phases of the object and
the reference waves. Thus, by knowing the phase distribution of the reference wave,
it is possible for the phase distribution of the object wave, and subsequently the object
distribution, to be reconstructed from the hologram.

Another example of a solution to the phase problem is coherent diffraction imaging
(CDI). CDI is a high-resolution imaging technique that is similar to a diffraction experiment
on crystals but involves imaging a single, isolated object rather than a crystal. In CDI,
diffracted (or scattered) waves are recorded in the far field. The resulting diffraction pattern
is invariant to the lateral shifts of the sample, which allows for the preservation of high-
order diffraction signal. The missing phases are typically recovered by applying numerical
iterative methods [4–9]. The following requirements must be met in a CDI experiment: the
object under study must be isolated, and the size of the reconstructed field of view must
exceed the size of the object at least twice in each direction (the oversampling condition) [9].
CDI offers the possibility of recording high-resolution information, and the associated
resolution is only limited by the size of the detector.
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1.2. Fourier Transform Holography (FTH)

Since the invention of holography, its principle has found numerous applications
and can be summarised as follows: any complex-valued object signal can be stored as an
intensity distribution by adding a known reference signal and recording the intensity of
the resulting interference pattern. In conventional holography, a reference wave is added
to a complex-valued object wave in real space. In Fourier transform holography (FTH),
a reference wave is added to the complex-valued spectrum of an object wave in Fourier
space. Both approaches allow the complete distribution of a complex-valued object signal
to be captured.

The principle of FTH was first outlined by Winthrop and Worthington in 1965 [10] as
a solution to the phase problem in X-ray imaging. In the same year, Stroke demonstrated
the first FTH experiment using laser light [11]. In the simplest form of FTH, a reference
wave is created in Fourier space as a wave originating from a point-like source in real space,
the object and point-like reference are positioned in the same plane [10–12]. The wave
diffracted by the object interferes with the reference wave in the far field, and the resulting
interference pattern forms the Fourier transform (FT) hologram. The FTH combines the
key advantages of two other lensless imaging techniques: holography [2,3] and coherent
diffraction imaging (CDI) [5]. In a similar way to holography, the added reference wave
solves the phase problem. In a similar way to CDI, the scattered (or diffracted) waves are
recorded in the far field, which allows for the acquisition of high-resolution information.
The advantage of FTH is that reconstruction can be obtained in one step, by calculating the
FT of the recorded hologram.

This paper is organised as follows. In the second section, the basic principles of FTH
are outlined. In the third section, typical experimental arrangements and references for
FTH are overviewed and compared. In the fourth section, a review of FTH performed with
different waves (light, electron, and X-ray) is provided. In the fifth section, an overview of
FTH applications is presented. In the sixth section, relationships between FTH and other
coherent imaging techniques are considered. In the last section, the current challenges and
perspectives of using FTH are discussed.

2. Principles of FTH

Holography is an interferometry-based technique. An object distribution is not imaged
directly but reconstructed from an interference pattern formed by the superposition of the
wave scattered by the object and a reference wave. In FTH, the reference wave is created by
the diffraction on a reference feature (named as “reference” further in the text) which is
added to the same plane as that of the studied object. Throughout this text, we will refer
to the arrangement of the object and the reference altogether as the “sample.” The typical
scheme for recording an FT hologram is shown in Figure 1a. FTH has two distinct features:
(1) an FT hologram is acquired in the far field, and (2) a reference wave is formed by the
diffraction on a reference which is positioned in the same plane as the object under study
(Figure 1b). The presence of the reference wave ensures that the phase distribution of the
wave diffracted by an unknown object wave is captured, which solves the phase problem
and simplifies the reconstruction procedure. The reference wave should cover the entire
detector area, as illustrated in Figure 1c,d. In the simplest form of FTH, which uses a single
point-like reference, the object reconstruction is obtained in one step, by calculating the FT
of the recorded hologram, as shown in Figure 1e and explained in the next sub-sections.
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Figure 1. Principle of Fourier transform holography (FTH) with point-like reference. (a) Scheme for 
Fourier hologram acquisition. (b) Sample distribution: object and reference aperture. D is the extent 
(diameter) of the object, and L is the distance between the object and the reference. (c) Diffraction 
pattern of the reference alone. (d) Diffraction pattern of the object and the reference together—Fou-
rier transform hologram. (e) Sample distribution (amplitude) reconstructed by calculating the Fou-
rier transform of the Fourier transform hologram, exhibiting two centro-symmetric reconstructions 
at the reference position. 
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Figure 1. Principle of Fourier transform holography (FTH) with point-like reference. (a) Scheme for
Fourier hologram acquisition. (b) Sample distribution: object and reference aperture. D is the extent
(diameter) of the object, and L is the distance between the object and the reference. (c) Diffraction
pattern of the reference alone. (d) Diffraction pattern of the object and the reference together—Fourier
transform hologram. (e) Sample distribution (amplitude) reconstructed by calculating the Fourier
transform of the Fourier transform hologram, exhibiting two centro-symmetric reconstructions at the
reference position.

2.1. Hologram Formation

When the sample is illuminated by a plane wave, the wave behind the sample (the
exit wave) is given by the transmission function of the sample: u(x, y) = t(x, y). In an FTH
arrangement, the exit wave can be represented as a sum of two terms:

u(x, y) = uo(x, y) + ur(x, y), (1)

where uo(x, y) is the object wave term, ur(x, y) is the reference wave term, and
→
r = (x, y)

is the coordinate in the sample plane. The diffracted wavefront in the far field is given by
the Huygens–Fresnel integral transform:

U(
→
R) = − i

λ

x
u(
→
r )

exp
(

ik
∣∣∣∣→r −→R∣∣∣∣)∣∣∣∣→r −→R∣∣∣∣ dσ, (2)

where
→
R = (X, Y, Z) is the coordinate in the far field, k is the wavenumber k = 2π

λ , λ is the
wavelength, and the integration is performed over the sample plane. The integration in all
integrals in this manuscript is performed over a finite area in the sample (or detector) plane.
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Equation (2) can be written in Cartesian coordinates. Using the Taylor series expansion:∣∣∣∣→r −→R∣∣∣∣ ≈ Z +
(X− x)2 + (Y− y)2

2Z
,

Equation (2) can be re-written as:

U(X, Y) ≈ − i
λZ

exp
(

2πi
λ

Z
)

exp
[

2πi
λZ

(
X2 + Y2

)]x
u(x, y) exp

[
−2πi

λZ
(xX + yY)

]
dxdy,

and the hologram intensity distribution is given by:

IH(X, Y) ∝
∣∣∣∣x u(x, y) exp

[
−2πi

λZ
(xX + yY)

]
dxdy

∣∣∣∣2 = |FT[u(x, y)]|2. (3)

Equation (2) can be written in Fourier or K-coordinates, as:

U(
→
R) = − i

λ

∫
u(
→
r )

exp
(

ik
∣∣∣∣→r −→R∣∣∣∣)∣∣∣∣→r −→R∣∣∣∣ d

→
r ≈ − i

λR

∫
u(
→
r ) exp(ikR) exp

(
−i
→
K
→
r
)

d
→
r ,

where the following approximation was used:
∣∣∣∣→r −→R∣∣∣∣ ≈ R−

→
r
→
R

R , and
→
K was introduced as:

→
K = k

→
R
R

=
2π

λ

(
X
R

,
Y
R

,
Z
R

)
where R =

√
X2 + Y2 + Z2. At Z2 � X2 +Y2 the vector components can be approximated

as
→
K ≈ 2π

λ

(
X
Z , Y

Z , 1
)

. This gives:

U(Kx, Ky) ≈ −
i

λR
exp(ikR)

∫
u(x, y) exp

[
−i
(
xKx + yKy

)]
dxdy

and:
IH(Kx, Ky) ∝

∣∣∣x u(x, y) exp
[
−i
(
xKx + yKy

)]
dxdy

∣∣∣2 = |FT[u(x, y)]|2. (4)

Thus, in Cartesian or Fourier coordinates, the intensity distribution in the far field
is given by the squared amplitude of the FT of the exit wave. Cartesian coordinates are
conventionally used in light-optical experiments, whereas Fourier domain coordinates are
typically used in X-ray imaging.

2.2. Reconstruction of the Sample Distribution from the Hologram

The object distribution can be reconstructed from its FT hologram by simply calcu-
lating the inverse FT (IFT) or FT of the hologram. This can be explained as follows. The
autocorrelation of u(x, y) by definition is given by:

u(x, y) ◦ u(x, y) =
x

u∗(µ, η) u(µ + x, η + y)dµdη, (5)

where ◦ denotes correlation. The FT of the autocorrelation is calculated as:

FT[u(x, y) ◦ u(x, y)] =
x x

u∗(µ, η) u(µ + x, η + y) exp[−2πi(xv + yw)]dµdηdxdy, (6)
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which can be re-written in thenew coordinates, µ + x = x′ and η + y = y′, or x = x′ − µ
and y = y′ − η, as:

FT[u(x, y) ◦ u(x, y)] =s
u∗(µ, η) exp[2πi(µv + ηw)]dµdη

s
u(x′, y′) exp[−2πi(x′v + y′w)]dx′dy′ =

{FT[u(x, y)]}∗FT[u(x, y)] = |FT[u(x, y)]|2 = IH,
(7)

where we used the expressions given by Equations (3) or (4). A similar result is known from
signal theory: the Wiener–Chintchin theorem states that the FT of a signal’s autocorrelation
function gives the signal’s spectral power [13,14].

From Equation (7), it follows that the IFT of the intensity distribution (hologram) gives
the autocorrelation of the exit wave:

IFT(IH) =
x

u∗(µ, η) u(µ + x, η + y)dµdη = u(x, y) ◦ u(x, y). (8)

In the simplest form of FTH, the reference ur(x, y) is a tiny hole or a point-like scatterer,
which can be mathematically described as a δ-function. The exit wave behind the sample
can be written as:

u(x, y) = uo(x, y) + δ(x− x0, y− y0), (9)

where (x0, y0) is the position of the point-like reference. The IFT of the FT hologram gives
the autocorrelation of the exit wave (or transmission function):

u(x, y) ◦ u(x, y) = δ(x, y) + uo(x, y) ◦ uo(x, y) + uo(x + x0, y + y0) + uo
∗(−x + x0,−y + y0). (10)

Here, the first term describes a sharp intensity peak at the centre. The second term
describes the autocorrelation of the object distribution, which is also located in the centre
and is about twice the size of the object. The third term describes the object distribution
centred at the (−x0,−y0) coordinate. The fourth term describes the complex-conjugated
centro-symmetrically flipped object distribution centred at the (x0, y0) coordinate, as shown in
Figure 1e. When FT is used instead of IFT, the reconstructed distribution is centro-symmetrically
flipped: u(−x,−y) ◦ u(−x,−y) ∝ uo(−x + x0,−y + y0) + uo

∗(x + x0, y + y0). Here, the
third term describes the centro-symmetrically flipped reconstructed object distribution at the
(x0, y0) coordinate, and the fourth term describes the reconstructed complex-conjugated object
distribution at the (−x0,−y0) coordinate. Thus, in principle, the object distribution can be
reconstructed by calculating either the FT or IFT of its FT hologram.

In the simplest form of FTH with a single point-like reference, a single Fourier trans-
form (FT or IFT) of the hologram is sufficient to obtain the reconstruction. More complicated
references and the related reconstruction algorithms are discussed below.

2.3. Optimal Parameters
2.3.1. Distance between the Object and the Reference

The optimal distance between the object and the reference follows from Equation (10).
To avoid an overlap of the reconstructed-object and object autocorrelation distributions,
the object and reference must be separated by a distance L that should be at least 1.5 times
larger than the extent of the object D (Figure 1b):

L > 1.5D. (11)

Most FTH arrangements follow this rule. Even for FTH, where the object reconstruc-
tion is obtained using iterative methods, the initial reconstruction obtained by a single IFT
should exhibit the object and the centred autocorrelation distributions as being spatially
separated, which is achieved by setting the parameters according to Equation (11).
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2.3.2. The Reconstructed Field of View

The reconstructed field of view must be large enough to include all the reconstructed
distributions (the object’s autocorrelation and the two sidebands as shown in Figure 1e).
This is achieved by setting the parameters of the experimental setup as follows. The
relationship between the diffraction pattern parameters and the reconstructed field of view
follows from the expression for IFT that is employed for reconstruction:

urec(x, y) =
x

IH(X, Y) exp
[

2πi
λZ

(Xx + Yy)
]

dXdY (12)

which in digital form is expressed via fast FT (FFT) as:

urec(m, n) =
N−1

∑
p,q=0

IH(p, q) exp
[

2πi
N

(pm + qn)
]

(13)

where the coordinates (x, y) are digitised as x → ∆xm, y→ ∆yn, the coordinates (X, Y) are
digitised as X → ∆X p, Y → ∆Yq, ∆x = ∆y is the pixel size in the sample plane, ∆X = ∆Y
is the pixel size in the detector plane, and m, n, p, q = 0 . . . N − 1 are the pixel numbers.
Through comparing Equations (12) and (13), one obtains the condition:

1
λZ

∆X∆x =
1
N

(14)

and the reconstructed field of view:

s0 = N∆x =
λZ
∆X

. (15)

The reconstructed field of view should be large enough to entail the four distributions
reconstructed from an FT hologram, and, therefore, must be larger than s0 > 4D. This leads
to the following relationship between the parameters of a setup for FTH:

λZ
∆X

> 4D. (16)

In K-coordinates, the expression for IFT that is employed for reconstruction is given by:

urec(x, y) =
x

IH
(
Kx, Ky

)
exp

[
i
(
Kxx + Kyy

)]
dKxdKy, (17)

where the FFT given by Equation (13) leads to the following equation:

∆K∆x =
2π

N
, (18)

which gives the reconstructed field of view:

s0 = N∆x =
2π

∆K
(19)

and the relationship between the parameters of a setup for FTH:

2π

∆K
> 4D. (20)
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2.3.3. The Detector Parameters

The size of the detector determines the numerical aperture of the setup and therefore
defines the theoretical limit of the resolution of the reconstructed object distribution as
R = λ/2NA, where NA is the numerical aperture of the setup. The same resolution can
also be obtained as the pixel size in the sample plane from Equation (14): ∆x = λZ

N∆X
= λZ

S
for Cartesian coordinates and from Equation (18): ∆x = 2π

N∆K
for K-coordinates. Here, the

“detector size”, given by S× S, is not the physical size of the detector but its effective size,
that is, the area where hologram intensity is high enough to be detected.

The detector’s pixel size provides the extent of the reconstructed field of view in
the sample plane, as given by Equations (15) and (19) for Cartesian coordinates and K-
coordinates, respectively.

Like diffraction patterns, FT holograms exhibit a large range of intensity values with high
intensity values in their centres and lower intensity values towards their edges. Moreover,
the signal at the edges of an FT hologram defines the resolution of the reconstructed object.
In order to accurately capture all the intensity values from the centre to the edges of an FT
hologram, detectors with high dynamic range (16 bits or higher) are preferred [9]. Low-cost
cameras can also be employed by acquiring a set of images at different exposures and then
recombining them into one high-dynamic-range image, as demonstrated in [15,16].

2.3.4. Reference Size and Resolution

The size of the reference defines the resolution of the reconstructed object and therefore
should be sufficiently small. Shortly after the invention of FTH, the effect of reference size
was studied, and it was shown that resolution was inversely proportional to reference
size [17]. On the other hand, the size of the reference should be sufficiently large to ensure
that the object and reference waves exhibit comparable intensity values. The size of the
reference is scaled with the wavelength. Some values of references sizes are provided in
the sections where specific reference types are discussed in detail. In addition, the shape
of the reference also plays a role. The zeros in the Fourier spectrum of a reference lead
to missing information in the FT hologram, which in turn leads to a reduced quality of
the reconstructed object. Thus, finding a perfectreference in terms of size and shape is
both theoretically and experimentally challenging. There is an ongoing search for optimal
references, and some of the proposed and demonstrated references are discussed in the
next sections.

3. Types of References

An overview of the most typical references for FTH is shown in Figure 2. The simplest
reference is a point-like reference (Figure 2a). A disadvantage of using a single point-like
reference is that it provides a relatively weak reference wave when compared to the object
wave. To solve this problem, various references have been proposed (Figure 2b–f), which
will be discussed in the following sub-sections. Some of the references (for example, single
point-like reference, multiple point-like references, and an object inside a squared-aperture
support) allow for easy reconstruction by applying a single IFT (or FT) to the recorded
hologram. Other references (for example, extended references, uniformly redundant array
(URA) references, and arbitrary references) allow the intensities of object and reference
waves to be equalised but require a more complicated data analysis, as discussed in detail
below. In X-ray imaging—the main field for FTH applications—the simplest form of
FTH, with a single point-like reference, remains the best choice for the simplicity of both
nanofabrication and data analysis.



Photonics 2023, 10, 153 8 of 28

Photonics 2023, 10, x FOR PEER REVIEW 8 of 27 
 

 

theoretically and experimentally challenging. There is an ongoing search for optimal ref-
erences, and some of the proposed and demonstrated references are discussed in the next 
sections. 

3. Types of References 
An overview of the most typical references for FTH is shown in Figure 2. The simplest 

reference is a point-like reference (Figure 2a). A disadvantage of using a single point-like 
reference is that it provides a relatively weak reference wave when compared to the object 
wave. To solve this problem, various references have been proposed (Figure 2b–f), which 
will be discussed in the following sub-sections. Some of the references (for example, single 
point-like reference, multiple point-like references, and an object inside a squared-aper-
ture support) allow for easy reconstruction by applying a single IFT (or FT) to the recorded 
hologram. Other references (for example, extended references, uniformly redundant array 
(URA) references, and arbitrary references) allow the intensities of object and reference 
waves to be equalised but require a more complicated data analysis, as discussed in detail 
below. In X-ray imaging—the main field for FTH applications—the simplest form of FTH, 
with a single point-like reference, remains the best choice for the simplicity of both 
nanofabrication and data analysis. 

 
Figure 2. Overview of the different types of references for Fourier transform holography: (a) single 
point-like reference, (b) multiple point-like references, (c) object inside a squared-aperture support, 
(d) extended reference, (e) uniformly redundant array (URA) reference, and (f) arbitrary reference. 
The sizes and positions of the references are not to scale for purposes of presentation. 

3.1. Point-like References 
3.1.1. Single Point-like Reference 

In the simplest form of FTH, the reference wave originates from a point-like refer-
ence, which in practice can be a small aperture or a point-like scatterer (Figure 2a). A single 
point-like reference allows for the easiest reconstruction procedure, which requires 
simply calculating the IFT of the hologram. The first experimental light-optical FTH em-
ployed a single point-like reference, as shown in Figure 3 [11,12]. In these light-optical 
experiments, both the object and the reference were created as apertures in an opaque 
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also shown that a tiny particle that was unintentionally present in the object plane could 
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Figure 2. Overview of the different types of references for Fourier transform holography: (a) single
point-like reference, (b) multiple point-like references, (c) object inside a squared-aperture support,
(d) extended reference, (e) uniformly redundant array (URA) reference, and (f) arbitrary reference.
The sizes and positions of the references are not to scale for purposes of presentation.

3.1. Point-like References
3.1.1. Single Point-like Reference

In the simplest form of FTH, the reference wave originates from a point-like reference,
which in practice can be a small aperture or a point-like scatterer (Figure 2a). A single
point-like reference allows for the easiest reconstruction procedure, which requires simply
calculating the IFT of the hologram. The first experimental light-optical FTH employed a
single point-like reference, as shown in Figure 3 [11,12]. In these light-optical experiments,
both the object and the reference were created as apertures in an opaque material. Using a
small aperture as the reference is a more typical choice. However, it was also shown that a
tiny particle that was unintentionally present in the object plane could serve as a reference
and produce an FT hologram [16].

Besides being used in light-optical FTH [11,12,16–19], single point-like references are
also widely used in X-ray FTH [20–37]. The optimal diameter of the reference aperture is
in scale with the wavelength. For light-optical FTH, the diameter of the aperture can be a
few tens of microns, ranging from 10 µm [18] to 500 µm [12]. In X-ray FTH, the aperture’s
diameter is a few microns, for example 1.5 µm in [22] These tiny apertures are typically
produced using focused-ion-beam technology.

The apertures for X-ray FTH are fabricated as holes in a thick material and therefore
they exhibit a three-dimensional (3D) shape. The diffraction of plane waves from circular
apertures of finite thickness was previously investigated in [38,39], where the authors
reported that 3D-tube-like apertures did not exhibit a classical Airy pattern that is produced
by an aperture in infinitely thin, opaque material. The effect of the 3D shape of reference
apertures was recently studied by Malm et al. [37]. The authors investigated a 3D aperture
with a profile consisting of a tunnel and a funnel, and they recorded the diffraction patterns
in two different orientations of the aperture: one with the large (funnel) towards the illumi-
nating beam, and the other one with the small (tunnel) opening towards the illuminating
beam. The authors measured a stronger scattering at higher diffraction angles in the case
when the beam entered from the funnel side (larger opening). A strong reference signal,
particularly at high scattering angles, leads to a higher signal-to-noise ratio in the recorded
hologram, which, in turn, results in better resolution of the reconstructed objects [37].
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used instead of a single point-like reference [40–73], as illustrated in Figure 2b. Each point-
like reference gives rise to two reconstructed object distributions located at centro-sym-
metrical positions, as shown in Figure 4. When using multiple point-like references, the 
position of each point-like reference is selected in such a way that there is no other centro-
symmetrical point-like reference (note a five-fold symmetry in the arrangement of the 
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Figure 3. The first experimental realisation of Fourier transform holography (FTH) by Stroke in 1965.
(a) Schematics of the light-optical experiment and (b) reconstruction of the sample. The recording
and reconstruction were performed using a 632.8 Å laser light. Pn are the points of the object, θ is
the incident angle, ΣPn and ΣR are the two spherical wavefronts, z is the optical axis, and ξ and x
are the axes in the object and hologram planes, respectively. Reprinted from G. W. Stroke, “Lensless
Fourier-transform method for optical holography”, Applied Physics Letters 6 (10), 201–203 (1965) [11],
with the permission of AIP Publishing.

3.1.2. Multiple Point-like References

To increase the intensity of a reference wave, multiple point-like references can be
used instead of a single point-like reference [40–73], as illustrated in Figure 2b. Each
point-like reference gives rise to two reconstructed object distributions located at centro-
symmetrical positions, as shown in Figure 4. When using multiple point-like references,
the position of each point-like reference is selected in such a way that there is no other
centro-symmetrical point-like reference (note a five-fold symmetry in the arrangement of
the point-like references shown in Figure 4). Each point-like reference reconstructs the
entire sample distribution, including the other point-like references, which can lead to an
unwanted superposition of the reconstructed object distributions. The object reconstructed
from each reference has its resolution defined by the size of that reference.
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Figure 4. Fourier transform holography with multiple references. (a) Scanning electron micrograph
(SEM) of the sample. (b) Diffraction pattern acquired with coherent soft X-rays (λ = 1.58 nm, E = 780
eV). Enlargement shows details of the interference pattern characteristics for the five reference sources.
(c) The reconstruction obtained by calculating the Fourier transform of the recorded hologram shown
in (b). Reprinted from W. F. Schlotter, R. Rick, K. Chen, A. Scherz, J. Stohr, J. Luning, S. Eisebitt, C.
Gunther, W. Eberhardt, O. Hellwig, I. McNulty, “Multiple reference Fourier transform holography with
soft x rays”, Applied Physics Letters 89 (16), 163112 (2006) [40], with the permission of AIP Publishing.
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3.2. Extended References
3.2.1. References in the Form of Geometrical Shapes

In 2007, Podorov et al. suggested placing the object into a uniformly illuminated
rectangular aperture with dimensions at least two times larger than those of the object [74],
as illustrated in Figures 2c and 5a–c. For this sample arrangement, the reconstruction is
obtained by calculating the IFT of the product IH(Kx, Ky)KxKy:

urec(x, y) = IFT
[
IH(Kx, Ky)KxKy

]
. (21)
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Figure 5. Fourier transform holography with an object placed inside a squared-aperture support.
(a) Object distribution. (b) Distribution of the sample, where the object is placed inside a squared-
aperture support that is at least twice as large as the object. (c) Diffraction pattern (Fourier transform
hologram) of the sample shown in (b). (d) Reconstructed distribution.

The obtained reconstructed distribution exhibits eight reconstructed objects, six of
which are well separated, as shown in Figure 5d. The original paper by Podorov et al. [74]
provided only simulations, and a light-optical experiment was performed later that showed
that the quality of the obtained reconstruction was relatively poor when compared with
the reconstruction obtained from Gabor-type hologram of the same object [75], as shown in
Figure 18. Podorov et al.’s idea to use a well-defined geometrical support as a reference
triggered a new direction of using various geometrical shapes with sharp edges as reference.

Holography with extended reference by autocorrelation linear differential operation
(HERALDO) combines all types of FTH that are realised with references in the form of
geometrical shapes with sharp edges (lines, triangles, parallelograms, etc.), as shown in
Figure 2d. This concept, with simulations, was proposed by Guizar-Sicairos et al. in
2007 [76] and optical experiments were performed by Guizar-Sicairos et al. in 2008 [77].
The experimental results are shown in Figure 6. The reconstruction of a HERALDO-
type FT hologram requires computation of the directional derivatives of the exit-wave
autocorrelation. Because this autocorrelation is calculated as the IFT of the measured
hologram, the directional derivatives are calculated by computing the IFT of the product of
the measured hologram and the corresponding polynomial [77]:

urec(x, y) = IFT
[
IH(Kx, Ky)p

(
Kx, Ky

)]
, (22)

where p
(
Kx, Ky

)
describes a polynomial function. HERALDO has been demonstrated with

visible light [77,78] and X-rays [79–89]. A combination of HERALDO and an iterative phase
retrieval was demonstrated in [78].

The resolution of an object reconstructed from FT holograms with extended reference
is defined by the parameters of the reference, for example, by the slit width in the case of a
slit reference. Boutu et al. compared reconstructions that were obtained from FT holograms
that employed round-, slit-, and square-shaped apertures as references and showed that the
best quality and highest resolution reconstructed objects were obtained using a slit-aperture
reference [86].
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Figure 6. Holography with extended reference by autocorrelation linear differential operation
(HERALDO) light-optical experimental results; photograph of the “cameraman” was printed on
a slide. (a) Amplitude distribution of the sample: object with a thin-slit reference. (b) Measured
intensity pattern (Fourier transform hologram). (c) Reconstruction obtained by calculating the inverse
Fourier transform of the product i2πKy IH(Kx, Ky) and (d) the magnified region of (c) showing the
upper reconstruction. Adapted with permission from M. Guizar-Sicairos and J. R. Fienup, “Direct
image reconstruction from a Fourier intensity pattern using HERALDO”, Optics Letters 33 (22),
2668–2670 (2008) [77], © The Optical Society.

3.2.2. Uniformly Redundant Array (URA) Reference

Uniformly redundant array (URA) is a patterned optical element with flat power
spectrum [90]. Using a URA as a reference in FTH (Figure 2e) allows for the preservation of
all frequencies in the object spectrum, and therefore, in the reconstructed object distribution.
In FTH with a URA reference [91–93], the FT of the hologram gives a central intensity
distribution and two sideband distributions, the latter being a cross-correlation of the object
and URA distributions, as shown in Figure 7. One sideband is selected by multiplying
the entire obtained distribution with a binary mask, which sets the values outside the
selected region to zero, as shown in Figure 7. The final reconstruction is then obtained by
applying a delta-Hadamard transform [94] to the selected region. The initial resolution of
the reconstructed object is given by the resolution of the URA, and it can be enhanced by
applying iterative phase retrieval methods [95,96].
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approach to reconstruct a cluster of gold particles using another cluster of gold particles 
as a reference [98], and showed that the reconstruction obtained by applying a Wiener 
filter exhibits a poor quality. This poor quality, however, can be greatly improved by ap-
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Figure 7. Fourier transform holography with uniformly redundant array (URA). (a) Experimental
arrangement and the steps of the reconstruction procedure. (b) Scanning electron micrograph (SEM)
of the sample, exhibiting the structure of the URA; scalebar is 2 µm. Reproduced from S. Marchesini,
S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty, H. N. Chapman, M. Frank, S. P. Hau-Riege,
A. Szoke, C. W. Cui, D. A. Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu,
M. M. Seibert, “Massively parallel X-ray holography”, Nature Photonics 2 (9), 560–563 (2008) [91],
with permission from Springer Nature.

3.2.3. Arbitrary Extended Reference
3.2.3.1. Reconstruction by Deconvolution

FTH can be realised with an arbitrarily shaped extended reference (Figure 2f). Ac-
cording to Equations (3) and (4), the hologram intensity distribution contains the FT of the
object wave: IH = |FT(u)|2 = |FT(ur + uo)|2 = |Ur + U0|2 ∝ U∗r U0, where Ur = FT(ur)
and Uo = FT(uo). Howells et al. suggested that if a reference function ur or its Fourier
spectrum Ur is known, the object function uo can be reconstructed through a deconvolution
of the hologram IH with Ur by using a Wiener filter [97]:

uo = IFT

(
IH

Ur

|Ur|2 + Φ

)
, (23)

where Φ is the ratio of noise power to signal power and is usually treated as a constant,
which is added to avoid having to divide by zero. He et al. employed this deconvolution
approach to reconstruct a cluster of gold particles using another cluster of gold particles as
a reference [98], and showed that the reconstruction obtained by applying a Wiener filter
exhibits a poor quality. This poor quality, however, can be greatly improved by applying a
few iterations, as shown in Figure 8.
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Figure 8. Fourier transform holography with arbitrary references. (a) Reconstruction of a cluster
of gold balls from soft X-ray transmission diffraction patterns using deconvolution and a Wiener
filter; one fast Fourier transform (FFT) was used. Constant Φ = 100 in Equation (23) produced the
best results. (b) Scanning electron microscopy image of the same cluster (upper one), the reference
(lower one), and their relative positions. (c) Reconstruction obtained by using an iterative algorithm
to reduce the effect of missing data due to a beam stop, 10 times FFT used. The diameter of each gold
ball is about 50 nm. Reprinted from H. He, U. Weierstall, J. C. H. Spence, M. Howells, H. A. Padmore,
S. Marchesini, H. N.Chapman, “Use of extended and prepared reference objects in experimental
Fourier transform X-ray holography”, Applied Physics Letters 85 (13), 2454–2456 (2004) [98], with the
permission of AIP Publishing.

3.2.3.2. Reconstruction via System of Linear Equations

The presence of a known reference allows us to reformulate the reconstruction problem
into a set of linear equations [92,99], as follows. The exit wave is given by Equation (1), and
the IFT of the FT hologram by:

a(x, y) = ao(x, y) + ar(x, y) + co,r(x, y), (24)

where ao(x, y) is the autocorrelation of the object wavefront, ar(x, y) is the autocorrelation
of the reference wavefront, and co,r(x, y) are the cross-correlations between the object and
reference waves. When the object is finite, there are large regions of the autocorrelation
function a(x, y) where ao(x, y) = 0. In these regions, Equation (24) can be reformulated as:

a(x, y)− ar(x, y) = co,r(x, y) = Muo(x, y), (25)

where the matrix M consists of the values of ur(x, y). Because both ar(x, y) and M are
known, Equation (25) represents a system of linear equations for uo(x, y) which can be
solved with an iterative linear retrieval using Fourier transforms (ILRUFT) [99]. An example
of a reconstruction in which the reference was chosen in the shape of a ‘cartoon cloud’ [92]
is shown in Figure 9.
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Figure 9. Holography with arbitrary references. (a) The scanning electron microscopy (SEM) image
of the sample. (b) The corresponding diffraction pattern with central shaded areas indicating regions
that have been set to zero for the reconstruction. (c) The reference function estimated from the SEM
image along with the assumed object area indicated by the white rectangle. (d) The object intensity
reconstructed with the iterative linear retrieval using Fourier transforms (ILRUFT) method. The
scale bars in (a), (c), and (d) are 500 nm and the scale bar in (b) is 0.1 µm−1. Reproduced from
A. V. Martin, A. J. D’Alfonso, F. Wang, R. Bean, F. Capotondi, R. A. Kirian, E. Pedersoli, L. Raimondi,
F. Stellato, C. H. Yoon, H. N. Chapman, “X-ray holography with a customizable reference”, Nature
Communications 5, 4661 (2014) [92], with permission from Springer Nature.

4. FTH with Different Types of Waves
4.1. Light

The first experimental demonstration of FTH was performed using a light-optical setup
[11,12], and since then several studies have reported FTH with light [16–19,75,77,78,100–107].
However, FTH is not a popular choice for coherent imaging with light. FTH has no
significant advantages over conventional optical imaging because of the availability of
good-quality optical elements. Additionally, unlike conventional imaging with lenses, FTH
requires a special sample arrangement and a careful setting of experimental conditions
such as matching intensities between the object and reference waves. Yet, light-optical FTH
is a top pick for testing novel or advanced forms of FTH [18,19,75,77], and for performing
educational experiments [16], an example is shown in Figure 10. The sizes of objects imaged
using light-optical FTH do not exceed a few millimetres. Typically, a laser beam with a
diameter of 1–2 mm and a Gaussian intensity profile is expanded by using a pinhole and
collimating lens system to create an illuminating beam with a larger diameter [16]. In order
to minimise the size of the optical setup for FTH, a lens is typically placed after the sample
to perform FT instead of a detector being placed in the far field, as shown in Figure 10 (lens
C2). The detector should be placed behind the lens at the exact focal length of the lens.
The focal length of the lens f defines the size of the reconstructed sample area, as given by
Equation (15): s0 = λ f

∆X
.

An interesting application of light-optical FTH is coloured 3D imaging [101], shown
in Figure 11. In this scheme, red, green, and blue lasers were employed to record the FTH
holograms of a 3D object. Like in off-axis holography arrangement, the laser beam here
was split into two beams: the object and reference beams, where the reference beam is
being expanded, as shown in Figure 11. To satisfy the requirements of FTH, the distance
between the object and the CCD was set to be equal to that between the reference-point
source and the CCD. For each wavelength, a monochromatic digital FT hologram was
recorded. Then, the three corresponding reconstructed images were numerically treated
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to become the same size. One of the advantages of FTH is that it allows for the precise
superposition of reconstructed images onto one coloured 3D reconstruction.
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the hologram recorded with (a) λ1 = 632.8 nm, (b) λ2 = 532 nm, and (c) λ3 = 473 nm. (d) Fused colour 
reconstructed object. (e) Part magnification of (d). (f) Photograph of the coloured object used in the 
experiment.  Adapted from J. L. Zhao, H. Z. Jiang, J. L. Di, “Recording and reconstruction of a color 
holographic image by using digital lensless Fourier transform holography”, Optics Express 16 (4), 
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4.2. Electrons 
Only a few studies have demonstrated FTH using electrons. One of the reasons for 

this is that state-of-the art aberration-corrected TEMs provide atomic-resolution images 
of samples. The other reason is that off-axis holography is a conventional choice for phase 

Figure 10. Fourier transform holography using light in an optical laboratory. (a) The detector part
of the experimental setup. The collector lens C2 is placed downstream from the sample S. The
charge-coupled device (CCD) detector D is placed at the back focal plane of the lens. The incident
beam is focused on the CCD and the far-field diffraction pattern is formed in the CCD plane. (b) The
recorded Fourier transform hologram, sampled with 489 × 508 pixels at a pixel size of 9.6 × 7.5 µm2.
(c) The autocorrelation of the sample distribution—an insect wing and a small additional scatterer
(the presence of the small scatterer was not intentional), obtained using the Fourier transform of the
hologram. The scalebar is 1 mm. Reproduced from P. Thibault, I. C. Rankenburg, “Optical diffraction
microscopy in a teaching laboratory”, American Journal of Physics 75 (9), 827–832 (2007) [16], with
the permission of the American Association of Physics Teachers.

Photonics 2023, 10, x FOR PEER REVIEW 15 of 27 
 

 

 
Figure 10. Fourier transform holography using light in an optical laboratory. (a) The detector part 
of the experimental setup. The collector lens C2 is placed downstream from the sample S. The 
charge-coupled device (CCD) detector D is placed at the back focal plane of the lens. The incident 
beam is focused on the CCD and the far-field diffraction pattern is formed in the CCD plane. (b) 
The recorded Fourier transform hologram, sampled with 489 × 508 pixels at a pixel size of 9.6 × 7.5 
µm2. (c) The autocorrelation of the sample distribution—an insect wing and a small additional scat-
terer (the presence of the small scatterer was not intentional), obtained using the Fourier transform 
of the hologram. The scalebar is 1 mm.  Reproduced from P. Thibault, I. C. Rankenburg, “Optical 
diffraction microscopy in a teaching laboratory”, American Journal of Physics 75 (9), 827 – 832 (2007) 
[16], with the permission of the American Association of Physics Teachers. 

An interesting application of light-optical FTH is coloured 3D imaging [101], shown 
in Figure 11. In this scheme, red, green, and blue lasers were employed to record the FTH 
holograms of a 3D object. Like in off-axis holography arrangement, the laser beam here 
was split into two beams: the object and reference beams, where the reference beam is 
being expanded, as shown in Figure 11. To satisfy the requirements of FTH, the distance 
between the object and the CCD was set to be equal to that between the reference-point 
source and the CCD. For each wavelength, a monochromatic digital FT hologram was 
recorded. Then, the three corresponding reconstructed images were numerically treated 
to become the same size. One of the advantages of FTH is that it allows for the precise 
superposition of reconstructed images onto one coloured 3D reconstruction. 

 
Figure 11. Three-dimensional coloured Fourier transform holography using light. Left: experi-
mental scheme. M—mirror; BE—beam-expander; and BS—beam-splitter. Right: reconstructions of 
the hologram recorded with (a) λ1 = 632.8 nm, (b) λ2 = 532 nm, and (c) λ3 = 473 nm. (d) Fused colour 
reconstructed object. (e) Part magnification of (d). (f) Photograph of the coloured object used in the 
experiment.  Adapted from J. L. Zhao, H. Z. Jiang, J. L. Di, “Recording and reconstruction of a color 
holographic image by using digital lensless Fourier transform holography”, Optics Express 16 (4), 
2514 – 2519 (2008) [101], © 2008 Optica Publishing Group. 

4.2. Electrons 
Only a few studies have demonstrated FTH using electrons. One of the reasons for 

this is that state-of-the art aberration-corrected TEMs provide atomic-resolution images 
of samples. The other reason is that off-axis holography is a conventional choice for phase 

Figure 11. Three-dimensional coloured Fourier transform holography using light. Left: experimental
scheme. M—mirror; BE—beam-expander; and BS—beam-splitter. Right: reconstructions of the
hologram recorded with (a) λ1 = 632.8 nm, (b) λ2 = 532 nm, and (c) λ3 = 473 nm. (d) Fused colour
reconstructed object. (e) Part magnification of (d). (f) Photograph of the coloured object used in the
experiment. Adapted from J. L. Zhao, H. Z. Jiang, J. L. Di, “Recording and reconstruction of a color
holographic image by using digital lensless Fourier transform holography”, Optics Express 16 (4),
2514–2519 (2008) [101], © 2008 Optica Publishing Group.

4.2. Electrons

Only a few studies have demonstrated FTH using electrons. One of the reasons for
this is that state-of-the art aberration-corrected TEMs provide atomic-resolution images of
samples. The other reason is that off-axis holography is a conventional choice for phase
imaging with electrons [108,109]. Recently, Harada et al. employed an FTH-based imaging
scheme for visualising phase vortices in an electron beam [110,111], shown in Figure 12.
The object was a binary phase-shifting pattern in the form of a fork, shown in Figure 12b.
Such a fork-like pattern is a hologram created by the interference of a wave with a phase
vortex and a plane reference wave;he wave with the phase vortex is reconstructed when the
hologramis illuminated with the plane reference wave [112]. In the experiments of Harada
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et al., the fork-like pattern occupied only a small, central part of the sample area [110,111],
shown in Figure 12c. When illuminated by a convergent electron beam, the part of the
incident wave that did not interact with the object converged into a bright spot that served
as the reference. The part of the incident wave that interacted with the object was scattered
and created the first and higher order diffraction patterns, which served as objects. Thus, in
this arrangement, the focal plane played the same role as the sample plane in conventional
FTH. The hologram was then recorded in the far field (Figure 12d). Reconstructions were
obtained by selecting a region in the hologram and calculating its FT [111].
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for extreme ultraviolet (XUV) waves [34,43,60,64–67,70,71,82,93,131]. As a lensless imag-
ing technique, FTH is most often performed with X-rays where a lack of high quality op-
tical elements prevents conventional focused imaging. For X-rays, a decoupling of the ref-
erence size and reference wave intensity can be achieved using a specially designed zone 
plate with a central opening to allow the central part of the beam to go unchanged and 
illuminate the object with a plane wave. The rest of the zone plate focuses the non-central 
part of the incident beam into a spot in the sample plane that serves as a reference [20], as 
sketched in Figure 13. A slightly different approach was proposed by Geilhufe et al., who 
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(FZP). This allows for the separation of the positions of reference source and object along 
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Figure 12. Imaging phase vortices in an electron beam using Fourier transform holography.
(a) Experimental arrangement. (b) Fork-shaped pattern (grating) in a 150-nm-thick Si3N4 mem-
brane with an intensity transmittance of about 44%. (c) Fork-shaped grating and the irradiation area
of about 10 times the grating size for this electron holography. (d) Defocused small-angle electron
diffraction (SmAED) pattern as exhibiting electron holograms of the fork-shaped grating. Four
holograms on both sides of the optical axis are recorded in a single interferogram. The upper-left
inset is the FT of the defocused SmAED pattern and the lower-right inset represents the enlarged
interference pattern inside the ring-shaped spot of the right-hand side. (e,f) are the amplitude and
phase distributions, respectively, of the vortex beams reconstructed from the first-order SmAED
ring-shaped spots. Adapted from K. Harada, K. Shimada, Y. A. Ono, “Electron holography for vortex
beams”, Applied Physics Express 13 (3), 032003 (2020), doi: 10.35848/1882-0786/ab7059 [111].

4.3. X-rays and Extreme Ultraviolet

FTH with X-rays and extreme ultraviolet waves are discussed here in one section
because of their somewhat overlapping wavelengths ranges: 0.1–10 nm for soft X-rays
[20,22–33,35–37,40–42,47,49–51,54–59,61–63,68,69,72,73,79,80,83–86,88,89,91–93,97,98,113–128],
less than 0.1 nm for hard X-rays [21,44,46,54,129,130], and 10–124 nm for extreme ultraviolet
(XUV) waves [34,43,60,64–67,70,71,82,93,131]. As a lensless imaging technique, FTH is most
often performed with X-rays where a lack of high quality optical elements prevents conven-
tional focused imaging. For X-rays, a decoupling of the reference size and reference wave
intensity can be achieved using a specially designed zone plate with a central opening
to allow the central part of the beam to go unchanged and illuminate the object with a
plane wave. The rest of the zone plate focuses the non-central part of the incident beam
into a spot in the sample plane that serves as a reference [20], as sketched in Figure 13.
A slightly different approach was proposed by Geilhufe et al., who showed that one can
employ a mask containing both an object and Fresnel zone plate (FZP). This allows for the
separation of the positions of reference source and object along the z-axis [121]. Recently,
Pratch et al. demonstrated that a specially designed digital optical element (DOE) could
simultaneously create object illumination and reference wave [127]. The following review
papers are referred to for further reading about X-ray FTH [132–137].
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Magnetic domains are often imaged by using mainly circular dichroism (XMCD) 
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lography and it is widely employed for imaging magnetic structures 
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Figure 13. Fourier transform holography with soft X-rays. A coherent X-ray beam illuminates the
zone plate (shown in profile). The undeviated wave illuminates the specimen, and the focused
wave serves as a reference source. A charge-coupled device (CCD) detector records the interference
between the specimen and reference waves. The X-rays that are not scattered by the specimen are
blocked by the beam stop to prevent the saturation of the CCD. From I. McNulty, J. Kirz, C. Jacobsen,
E. H. Anderson, M. R. Howells, D. P. Kern, “High-resolution imaging by Fourier-transform X-ray
holography”, Science 256 (5059), 1009–1012 (1992) [20]; Reprinted with permission from AAAS.

FTH is often performed using compact table-top sources [138] of coherent soft X-ray
or XUV sources [34,36,47,62,64,70,71,79,82,86,131]. The object and reference arrangement
of FTH performed using a table-top source is identical to that of FTH using synchrotron or
free electron laser (FEL) source. The first demonstration of FTH using a table-top source
was reported by Sandberg et al. in 2009, they performed FTH with multiple poin-tlike
references and achieved a resolution of 53 nm using X-rays with wavelengths of 29 nm [47].
FTH using a table-top XUV laser with a 46.9 nm wavelength was first demonstrated by
Malm et al. in 2013 [82].

5. X-ray FTH Applications
5.1. Imaging of Magnetic Domains—Spectro-Holography

Random magnetic domains in Co–Pt multilayer film were first imaged using soft X-ray
FTH by Eisebitt et al. in 2004 [22], shown in Figure 14. In the reconstructed images, the
amplitude contrast was given by X-ray magnetic circular dichroism (XMCD), which is a prop-
erty of the materials that allows them to absorb X-rays to different extents based on whether
the photon’s helicity and the sample magnetisation are parallel or anti-parallel. Magnetic
domains are often imaged by using mainly circular dichroism (XMCD) [29,61,64,83], and
less often by using linear dichroism (XMLD) [27,59,63]. Because this imaging technique
combines spectroscopy and holography, it is often named as spectro-holography and it is
widely employed for imaging magnetic structures [22,24,27,29,30,33,48,51–54,56,59–61,63–
67,69,72,73,81,83–85,88,89,93,115,118,122,123,125,128,129,139,140]. In particular, spectro-
holography has been used to study such effects as the magnetisation distribution in ma-
terials that host topological phases such as skyrmions [88,89], as well as the nucleation,
annihilation, and dynamics of skyrmions [69,72,73,122,128].



Photonics 2023, 10, 153 18 of 28Photonics 2023, 10, x FOR PEER REVIEW 18 of 27 
 

 

 
Figure 14. Fourier transform holography of a random magnetic domain structure in a Co–Pt multi-
layer film using soft X-rays (λ = 1.59 nm, E = 778 eV). (a) Scheme of the experimental setup. Mono-
chromatised and circular polarised X-rays are illuminating the mask–sample structure after spatial 
coherence filtering. The object and reference beam are defined by the mask, and the resulting holo-
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inset shows a scanning transmission X-ray microscopy (STXM) image of the magnetic structure il-
luminated through the sample aperture. The field of view is 1.5 µm. (b) Hologram recorded with 
right circular polarisation X-rays. Intensity is represented in a logarithmic grey scale. (c) Two-di-
mensional fast Fourier transformation of the hologram in (b). (d) Zoomed-in image, obtained by 
subtracting the Fourier transformations of opposite-helicity holograms, showing the magnetisation 
map of the sample; the diameter of the shown area is 1.5 µm.  Reproduced from S. Eisebitt, J. Lün-
ing, W. F. Schlotter, M. Lorgen, O. Hellwig, W. Eberhardt, J. Stohr, “Lensless imaging of magnetic 
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pendent images with a variable time delay over the entire femtosecond regime [117]. 
Guenther et al. used two illuminating beams, and each beam illuminated the sample and 
a different set of point-like references. By calculating the FT of the recorded hologram, the 
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time when the corresponding reference was illuminated, the time of the object acquisition 
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tion using a pump-probe FTH by (or via) an optical standing wave with a temporal reso-
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Figure 14. Fourier transform holography of a random magnetic domain structure in a Co–Pt mul-
tilayer film using soft X-rays (λ = 1.59 nm, E = 778 eV). (a) Scheme of the experimental setup.
Monochromatised and circular polarised X-rays are illuminating the mask–sample structure after
spatial coherence filtering. The object and reference beam are defined by the mask, and the resulting
hologram is recorded on a CCD detector. The lower inset shows the geometry and a scanning electron
microscopy (SEM) image of the sample structure. The scale bar in the SEM image is 2.0 µm. The top
inset shows a scanning transmission X-ray microscopy (STXM) image of the magnetic structure illu-
minated through the sample aperture. The field of view is 1.5 µm. (b) Hologram recorded with right
circular polarisation X-rays. Intensity is represented in a logarithmic grey scale. (c) Two-dimensional
fast Fourier transformation of the hologram in (b). (d) Zoomed-in image, obtained by subtracting the
Fourier transformations of opposite-helicity holograms, showing the magnetisation map of the sam-
ple; the diameter of the shown area is 1.5 µm. Reproduced from S. Eisebitt, J. Lüning, W. F. Schlotter,
M. Lorgen, O. Hellwig, W. Eberhardt, J. Stohr, “Lensless imaging of magnetic nanostructures by X-ray
spectro-holography”, Nature 432 (7019), 885–888 (2004) [22], with permission from Springer Nature.

5.2. Time-Resolved Imaging

Both FELs and high-harmonic generation (HHG) sources produce coherent femtosec-
ond X-ray pulses suitable for imaging with femtosecond temporal and nanometre spatial
resolutions [28,33,43,71,117,119,125]. Although successive X-ray pulses in the femtosecond
regime could be realised, the recording of femtosecond-delayed images still constitutes
a challenge. As a step towards achieving a molecular movie, in 2011, Guenther et al.
demonstrated a holographic imaging approach capable of recording two fully independent
images with a variable time delay over the entire femtosecond regime [117]. Guenther
et al. used two illuminating beams, and each beam illuminated the sample and a different
set of point-like references. By calculating the FT of the recorded hologram, the object
distributions were reconstructed at the position of the references. By knowing the time
when the corresponding reference was illuminated, the time of the object acquisition was
determined [117]. In 2014, Schmising et al. imaged the magnetisation dynamics within the
magnetic domain of a Co–Pd layer, following the creation of a localised excitation using a
pump-probe FTH by (or via) an optical standing wave with a temporal resolution of 100 fs
and a spatial resolution of sub-100 nm [33]. In 2021, Zayko et al. stroboscopically traced
the local magnetisation dynamics and localised spin structures in Co–Pd multilayers with
sub-wavelength spatial resolutions of 16 nm and 40 fs temporal resolutions using a table-top
high-harmonic generation setup (with a wavelength of 21 nm) [125], as shown in Figure 15.
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Figure 15. Ultrafast high-harmonic nanoscopy. (a) A magnetic sample (Co–Pd multilayers) is excited
with a femtosecond laser pulse and probed with a circularly polarised high-harmonic pulse (with a
wavelength of 21 nm) over a variable time delay. A quantitative real-space image is reconstructed
from the diffraction pattern of the high-harmonic beam for each time delay between the pump and
probe pulses. (b) The ratio of images obtained from opposite high-harmonic generation helicities
provides a map of the magnetic contrast isolated from nonmagnetic contributions, i.e., femtosecond
snapshot of the spin structures at a given time delay between pump and probe pulses. (c) Plot
of the spatially averaged, normalised magnetisation within the field of view as a function of time
delay. Adapted from S. Zayko, O. Kfir, M. Heigl, M. Lohmann, M. Sivis, M. Albrecht, M. C. Ropers,
“Ultrafast high-harmonic nanoscopy of magnetization dynamics”, Nature Communications 12 (1),
6337 (2021) [125].

5.3. Biological Imaging

Soft X-ray FTH has been applied for imaging biological objects such as diatoms
[25,26,31,35,50] and mimiviruses [68]. Gorkhover et al. imaged individual mimivirus
particles (450 nm in diameter) by using Xe clusters (30–120 nm in diameter) as references;
the mimivirus particles and Xe clusters were shot onto the X-ray beam from two separate
jets [68], as shown in Figure 16. Due to the relatively large wavelengths of soft X-rays, the
resolution achieved in the reconstruction of FT holograms was in the order of a few tens
of nanometre.



Photonics 2023, 10, 153 20 of 28

Photonics 2023, 10, x FOR PEER REVIEW 19 of 27 
 

 

 
Figure 15. Ultrafast high-harmonic nanoscopy. (a) A magnetic sample (Co–Pd multilayers) is excited 
with a femtosecond laser pulse and probed with a circularly polarised high-harmonic pulse (with a 
wavelength of 21 nm) over a variable time delay. A quantitative real-space image is reconstructed 
from the diffraction pattern of the high-harmonic beam for each time delay between the pump and 
probe pulses. (b) The ratio of images obtained from opposite high-harmonic generation helicities 
provides a map of the magnetic contrast isolated from nonmagnetic contributions, i.e., femtosecond 
snapshot of the spin structures at a given time delay between pump and probe pulses. (c) Plot of the 
spatially averaged, normalised magnetisation within the field of view as a function of time delay.  
Adapted from S. Zayko, O. Kfir, M. Heigl, M. Lohmann, M. Sivis, M. Albrecht, M. C. Ropers, “Ul-
trafast high-harmonic nanoscopy of magnetization dynamics”, Nature Communications 12 (1), 6337 
(2021) [125]. 

5.3. Biological Imaging 
Soft X-ray FTH has been applied for imaging biological objects such as diatoms 

[25,26,31,35,50] and mimiviruses [68]. Gorkhover et al. imaged individual mimivirus par-
ticles (450 nm in diameter) by using Xe clusters (30–120 nm in diameter) as references; the 
mimivirus particles and Xe clusters were shot onto the X-ray beam from two separate jets 
[68], as shown in Figure 16. Due to the relatively large wavelengths of soft X-rays, the 
resolution achieved in the reconstruction of FT holograms was in the order of a few tens 
of nanometre. 

 

Figure 16. Femtosecond X-ray Fourier holography imaging of free-flying nanoparticles. The recon-
struction of the mimivirus from the hologram is shown in the bottom right corner. Reproduced from
T. Gorkhover, A. Ulmer, K. Ferguson, M. Bucher, F. Maia, J. Bielecki, T. Ekeberg, M. F. Hantke, B. J.
Daurer, C. Nettelblad, J. Andreasson, A. Barty, P. Bruza, S. Carron, D. Hasse, J. Krzywinski, D. S. D.
Larsson, A. Morgan, K. Muhlig, M. Muller, K. Okamoto, A. Pietrini, D. Rupp, M. Sauppe, G. van der
Schot, M. Seibert, J. A. Sellberg, M. Svenda, M. Swiggers, N. Timneanu, D. Westphal, G. Williams,
A. Zani, H. N. Chapman, G. Faigel, T. Moller, J. Hajdu, and C. Bostedt, “Femtosecond X-ray Fourier
holography imaging of free-flying nanoparticles”, Nature Photonics 12 (3), 150–155 (2018) [68], with
permission from Springer Nature.

5.4. Three-Dimensional Imaging

Since FTH is a holographic technique, it provides access to 3D information in a single
intensity measurement. The complex-valued exit wave distribution reconstructed from
an FT hologram can be propagated using numerical algorithms [141] to obtain focused
images of a sample [32,50,131]. However, wavefront propagation is only possible when the
complex-valued exit wave is reconstructed using non-iterative algorithms, that is, via single
FT. When an iterative method is applied, the resulting reconstruction is the object’s (or
sample’s) projection and not the complex-valued exit wave. The possibility of restoring 3D
information from a single FT hologram was investigated by Monserud et al. in 2014 [131].
The authors used an XUV table-top source (λ = 46.9 nm) and acquired FT holograms
of three swaying pillars with a very short exposure time of 1.2 ns, which allowed them
to capture the dynamic bending of the pillars. The three pillars were refocused during
reconstruction and their 3D bending was visualised. Similar studies were reported by
Geilhufe et al., who imaged a static nanofabricated structure with four equidistant height
levels using soft X-rays (λ = 3.1 nm, E = 400 eV) and obtained a 3D reconstruction in the
z-range of 9 µm [32] (Figure 17).
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Figure 17. Extracting 3D information from a single X-ray Fourier transform hologram. (a,b) Scanning
electron microscopy image of the test sample made from 3D platinum structures. The side view of the
sample (a) shows the structured ramp which extends above the object hole. The ramp is deposited
with a 45◦ inclination on a gold mask. The small pinhole seen on the upper left represents the
reference source, whereas the large circular aperture seen at the bottom right constitutes the object’s
aperture. The top view (b) shows different platinum structures deposited on a Si3N4 membrane at
the bottom of the object aperture. (c) Real part of the reconstructed object wave field corresponding to
different longitudinal displacements from the substrate. The reconstruction on the left corresponds to
the mask plane. The reconstructions shown in the middle and on the right are obtained by numerical
propagation of the reconstructed wave field upstream by 6 µm and 9 µm, respectively. Focused
features are indicated by the black arrows. Adapted from J. Geilhufe, C. Tieg, B. Pfau, C. M. Gunther,
E. Guehrs, S. Schaffert, and S. Eisebitt, “Extracting depth information of 3-dimensional structures from
a single-view X-ray Fourier-transform hologram”, Optics Express 22 (21), 24959 – 24969 (2014) [32],
© 2014 Optica Publishing Group.

6. FTH and Other Coherent Imaging Techniques

FTH arrangement is similar to an in-line or Gabor-type holography, as shown in
Figure 18. In Gabor-type holography [2,3], an object is placed into a divergent wavefront
and a hologram is formed by interference between the diffracted and non-diffracted waves.
A serious drawback of Gabor holography is the so-called twin image, which always shows
up in the reconstruction as being superimposed onto the reconstructed object distribution [3];
however, this problem can be solved by applying iterative methods [142,143]. A comparison
between reconstructions obtained from experimental light-optical FTH and Gabor-type
holograms was performed by Podorov et al. [75], as shown in Figure 18.

FTH has been performed in combination with scanning to increase the field of view [35,51],
with tomography to obtain 3D-object reconstruction [31,144], and with ptychography to
provide accurate information of the positions of the probing beam [35]. The separation
of the optical elements for a reference and for an object-supporting mask provides new
possibilities for arbitrarily shift or rotation of the imaged object. An example of such an
arrangement, which enables scanning FTH, is shown in Figure 19.
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Figure 19. Schematic diagram of the X-ray holographic microscopy setup, consisting of a holog-
raphy mask support, a movable object (sample) support, and a charge coupled device (CCD) detec-
tor. The membrane with the optical elements (mask), i.e., the object and reference holes, is fixed in 

Figure 18. Comparison between reconstructions obtained from experimental light optical Fourier
transform (FT) and Gabor-type holograms. (a) Direct optical image of the object (an Australian gnat
placed on a rectangular based pyramid) obtained using a He–Ne laser source. (b) Arrangement for
Fourier transform holography (FTH). (c) Magnitude of the reconstructed distribution obtained from
the FT hologram. (d) Arrangement for Gabor in-line holography. (e) Image of the object reconstructed
from the Gabor in-line hologram. Scale bar in (a,e) is 200 µm. Reprinted from S. G. Podorov, A. I.
Bishop, D. M. Paganin, K. M. Pavlov, “Mask-assisted deterministic phase-amplitude retrieval from a
single far-field intensity diffraction pattern: Two experimental proofs of principle using visible light”,
Ultramicroscopy 111 (7), 782–787 (2011) [75], with permission from Elsevier.
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Figure 19. Schematic diagram of the X-ray holographic microscopy setup, consisting of a holography
mask support, a movable object (sample) support, and a charge coupled device (CCD) detector. The
membrane with the optical elements (mask), i.e., the object and reference holes, is fixed in the centre
of the X-ray beam. A second membrane, which provides support for the object, can be moved freely
in a plane perpendicular to the beam. Reprinted from D. Stickler, R. Fromter, H. Stillrich, C. Menk, C.
Tieg, S. Streit-Nierobisch, M. Sprung, C. Gutt, L. M. Stadler, O. Leupold, G. Grubel, and H. P. Oepen,
Applied Physics Letters 96 (4), 042501 (2010) [51], with the permission of AIP Publishing.

7. Conclusions

FTH has been continuously developed in both experimental and data analysis aspects.
Various shapes of reference apertures have been proposed to increase the intensity of
reference wave, comparing to the original FTH design with a single point-like reference. In
X-ray FTH, zone plates and other DOEs were demonstrated for focusing incident beam
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into a point-like reference, thus eliminating the requirement for a physical reference in the
sample plane [20]; the point-like reference could even be created in a different plane than
the sample one [121]. A large field of view or 3D-sample distribution can be imaged by
separating the planes with optical elements (the reference and object supporting mask) and
those with the object, allowing for the arbitrary shifting or rotating of the object [31,35,51,55].

Numerical algorithms have been developed to improve the quality of reconstructed
object distributions and to reach the resolution given by the numerical aperture of the
optical setup rather than by the size of the reference: iterative phase retrieval [16,23,30,35,
37,43,44,47,57,64,70,71,78,80,92,98,116,126], compressive sensing [105], deconvolution [124],
and, more recently, deep learning [19] algorithms. Future development can be expected
from adapting the FTH principle to other than real space domain, for example, Fourier
domain as shown by Harada et al. [111]. Novel FTH applications are anticipated from
using bright, intense coherent ultra-short X-ray sources for time-resolved FTH at nanometre
resolutions, and for imaging of biological samples [68].
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