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Abstract: Artificial intelligence (AI) represents a growing and promising branch of computer science
that is expanding the horizon of prediction, screening, and disease monitoring. The use of multimodal
imaging in retinal diseases is particularly advantageous to valorize the integration of machine
learning and deep learning for early diagnosis, prediction, and management of retinal disorders. In
age-related macular degeneration (AMD) beyond its diagnosis and characterization, the prediction of
AMD high-risk phenotypes evolving into late forms remains a critical point. The main multimodal
imaging modalities adopted included color fundus photography, fundus autofluorescence, and
optical coherence tomography (OCT), which represents undoubtful advantages over other methods.
OCT features identified as predictors of late AMD include the morphometric evaluation of retinal
layers, drusen volume and topographic distribution, reticular pseudodrusen, and hyperreflective foci
quantification. The present narrative review proposes to analyze the current evidence on AI models
and biomarkers identified to predict disease progression with particular attention to OCT-based
features and to highlight potential perspectives for future research.

Keywords: artificial intelligence; age-related macular degeneration; deep learning; multimodal imaging

1. Introduction

Artificial Intelligence (AI) is a new branch of computer science that has significantly
revolutionized the field of medicine [1–3]. The development of AI has allowed applications
in several fields of ophthalmology, particularly in retinal disorders. The most significant
advances were performed in age-related macular degeneration (AMD), covering different
clinical aspects including screening, diagnosis, prediction, and monitoring [4]. The most
critical element in managing AMD is still represented by the identification of predictive
models allowing prompt identification of patients at risk on a large scale. It can be advanta-
geous to refer individuals who deserve further testing, treatment, and more strict follow-up
examinations [5]. The early detection of high-risk AMD phenotypes is particularly useful
to predict future exudation that may benefit from timely management with anti-vascular
endothelial growth factor (anti-VEGF), leading to better clinical outcomes [6]. Although no
current treatment is available for GA, promising therapies are on the horizon, highlighting
the need to refine disease activity and the prognostic implications and potential clinical
endpoints to be incorporated in future clinical trials [7–13].

Despite the extensive literature available on screening and diagnosis with high per-
formance in detecting AMD at any stage [14–18], one of the main challenges remains the
assessment of the risk of conversion and disease progression [19]. Thus, the need to expand
the knowledge on potential predictors and models that can help predict AMD phenotypes
evolving into late stages. Regarding imaging biomarkers, the use of optical coherence
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tomography (OCT)-based features seems to present several technical and practical advan-
tages. Beyond its use on a large scale in routine clinical practice for the diagnosis and
management of AMD and in trials [20], the high resolution of both spectral-domain and
swept-source technologies offers the opportunity to identify preceding alterations and
early stages of the disease before the lesions appear clinically evident. Therefore, recently,
OCT-defined classification of atrophy and neovascular features in the setting of AMD has
been precisely defined by a consensus group of leading experts [21–23]. Furthermore,
several OCT qualitative features have been identified, enabling the evaluation of disease
progression and treatment response and corroborating the importance of OCT biomarker
identification to achieve optimal AMD management [24].

AI based on deep learning (DL) offered tremendous advantages in ophthalmology,
providing the opportunity to be applied to medical imaging analysis. DL techniques found
the best application in retinal pathologies, where ocular imaging is routinely used for
diagnosis and management, including fundus photographs, fundus autofluorescence, and
OCT [14,25–28]. Understanding the existing DL models and biomarkers explored so far
may further expand the development of more accurate predictive models in AMD.

This narrative review proposes to analyze the strengths and weaknesses of the existing
AI predictive models. Imaging technologies, biomarkers, and AI models are analyzed and
discussed to improve the understanding of the key elements considered in the models.
These aspects would help delineate future research on biomarker identification, imaging
modalities, and refining predictive AI models.

2. Historical Background and Principles of Artificial Intelligence in Ophthalmology

The term AI was first coined by John McCarthy in 1956 and referred to “hardware or
software that exhibits behavior which appears intelligent”, capable of resembling human
intelligence in useful tasks such as learning, identifying images, and problem solving [29].
AI has proved to be particularly suitable to imaging-centric specialties, and thus exception-
ally useful in ophthalmology, showing efficacy comparable to that of the specialist mainly
in identifying diseases with a high incidence, such as glaucoma, retinopathy of prematurity,
diabetic retinopathy, and AMD [30–33].

More specifically, the integration of AI machine learning (ML) and DL in ophthalmic
settings for the early diagnosis, prediction, and timely treatment of the most common sight-
threatening eye diseases is an urgent need given the lifespan extension and, consequently, a
large amount of medical data. Within this framework, AI technologies have the promising
potential to revolutionize ophthalmic health care services creating a significative clinical
impact and minimizing doctor burden [34,35]. ML is a subfield of AI technology that
was introduced in the 1980s and includes DL and conventional machine learning (CML).
ML allows the computer system to learn and improve how to complete a task on its own
without being explicitly programmed [36]. Among CML algorithms used in AI, random
forests (RF) [37] and support vector machines (SVM) [38] are the most commonly used in
the field of ophthalmology.

DL was introduced in the 2000s as a subset of ML that learns features in data using
an artificial neural network (ANN) structure inspired by the human brain structure and
function. DL is composed of multiple stimulus inputs into the so-called hidden layers of
neurons, each of which can learn different features from the offered stimuli. This allows this
machine model to complete complex tasks resulting in the output being recognized [39].

Among the various DL methods, deep convolutional neural network (DCNN) has
proved to be particularly suitable for medical image recognition [29]. DCNNs have evolved
from traditional artificial neural networks, using a three-dimensional neural pattern and em-
ploying a special mathematical filtering operation called convolution [40]. Full training of
DCNN implies a large amount of training data already labeled from medical experts, exten-
sive computational and memory resources, and complicated by overfitting and convergence
issues that require repetitive and time-consuming adjustments [41]. A valid alternative
for CNN training from scratch involves fine-tuning a CNN using transfer learning, which
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involves transferring the learned features from a pre-trained CNN to initialize another
task [41,42]. CNN-based transfer learning models demonstrated a good performance in
classifying OCT-based features in AMD [43]. Several state-of-the-art DL techniques have
been applied for retinal image segmentation, such as FCNN, U-Net, Seg-net, Deeplabv3,
and AlexNet [14,44–47].

3. Model Analysis in Age-Related Macular Degeneration

DL models have been implemented using a combination of imaging and non-imaging
features. Several imaging biomarkers have been identified and characterized using different
imaging modalities. Most of the models were trained using large databases, such as the
Age-Related Eye Disease Study (AREDS) study database [27,48–50], which mainly used
color fundus photographs (CFP). More recently, with the multiplication of clinical trials
in AMD [51–54], different imaging techniques were adopted, expanding the spectrum of
the predictors. The present chapter summarizes the DL models developed using different
multimodal imaging modalities.

3.1. Imaged-Based Features
3.1.1. Fundus Photographs

CNN models represented the state-of-the-art image classification in retinal diseases
using CFP. Several DL models were trained to predict AMD stage from the AREDS study
database with variable levels of accuracy ranging from 63.3% to 92.1% [5,14,35,55]. The
images were classified according to the AREDS 9-steps plus three scales to identify ungrad-
able images. The accuracies increased by restricting the analysis of fundus images from
individuals 55 years or older, with 82.2% of sensitivity and 97.1% specificity in categorizing
intermediate AMD (AREDS classes 4–9) features. The algorithm performed better for
late AMD (AREDS classes 10–12) with a sensitivity of 100% and specificity of 96.5% [56].
Burlina et al. [28] used AREDS data and employed DCNN (ResNet-50 network) to stratify
images in 4-step and 9-step severity scales. The five-year progression risk was then esti-
mated by creating three DCNNs to produce three different predictions. The 9-step AMD
severity scale was based on the data from AREDS report 17 [56], as summarized in Table 1.

Table 1. The 9-step age-related macular degeneration (AMD) severity scale modified from the AREDS
17 report.

Step Total Drusen Area Increased Pigment Depigmentation 5-Year Risk (%)

1 <125 µm (C-1) None None 0.3

2 ≥125 µm (C-1); <250 µm (C-2)
<125 µm (C-1)

None
≥ Q

None
≥Q; <354 µm (I-2) 0.6

3 ≥250 µm (C-2); <354 µm (I-2) None None 1.9

4
≥354 µm (I-2); <650 µm (O-2)
≥125 µm (C-1); <354 µm (I-2)
<250 µm (C-2)

None
≥Q
≥0

None
≥Q; <354 µm (I-2)
≥354 µm (I-2); <0.5 DA

4.9

5
≥650 µm (O-2); <0.5DA
≥354 µm (I-2); <0.5DA
≥250 µm (C-2); <354 µm (I-2)

None
≥Q
≥0

None
≥Q; <354 µm (I-2)
≥354 µm (I-2); <0.5 DA

6.1

6
≥0.5 DA
≥650 µm (O-2); <0.5DA
≥354 µm (I-2); <650 µm (O-2)

None
≥Q
≥0

None
≥Q; <354 µm (I-2)
≥354 µm (I-2); <0.5 DA

13.9

7 ≥0.5 DA
≥650 µm (O-2); <0.5DA

≥Q
≥0

≥Q; <354 µm (I-2)
≥354 µm (I-2); <0.5 DA 28.1

8 ≥0.5 DA
Any

≥0
≥0

≥354 µm (I-2); <0.5 DA
≥0.5 DA 47.4

9 Any ≥0 Non central GA 53.2

C-1: 125 µm and 0.0069 disc area (DA); C-2: 250 µm and 0.028 DA; I-2: 354 µm and 0.056 DA; O-2: 650 µm and
0.19 DA; 0.5DA 1061 µm and 0.5 DA; Q: questionable; GA: geographic atrophy.
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A step forward was performed by drusen quantification, which contemplated assess-
ing the total area and number of large drusen (125 µm), and the recognition of reticular
pseudodrusen (RPD), achieving an accuracy of 96% [5]. The CNN DenseNet model demon-
strated superior performance to other CNNs (VGG version 16, VGG version 19, Inception
V3, and ResNet version 101) in detecting RPD on both CFP and FAF images [57].

DeepSeeNet is a DL model designed as a CNN with an Inception-v3 architecture, de-
veloped to determine patient-based AREDS Simplified Severity Scale scores using bilateral
CFP. This model consisted of three main subnetworks: (a) Drusen-Net (D-Net), which clas-
sifies drusen according to dimensions (small/none, medium, and large); (b) Pigment-Net
(P-Net), which identifies the presence of pigmentary abnormalities; and (c) Late AMD-
Net (LA-Net), which detects the presence of late complications including neovascular
AMD and/or geographic atrophy. The performance of DeepSeeNet was superior to reti-
nal specialists in classifying AMD according to AREDS scores. When considering the
D-Net and P-net subnetworks, the model was superior in assessing large drusen and
pigmentary abnormalities. However, the recognition of late AMD through the LA-net
was similar to that of retinal specialists. Noteworthy, DeepSeeNet is publicly available on
https://github.com/ncbi-nlp/DeepSeeNet (accessed on 1 November 2022) [35].

Using longitudinal images on a dataset of 4903 eyes with AMD selected from the
AREDS, a three-step model comprised of a pre-trained SNN (Inception V3) was developed
by reducing each image into a single feature vector; the feature vectors were then combined
by applying an interval scaling to account for the uneven time intervals. Finally, a recur-
rent neural network classified the images according to the progression [58]. The authors
compared their results with a model that used a CNN of retinal fundus images combined
with single nucleotide polymorphisms (SNPs) and AMD severity to predict late AMD
progression. The severity scale was assessed on a centralized grading based on the AREDS
AMD scale of fundus images at each semi-annual or annual follow-up visit. The model was
simplified into sub-models. The fundus image taken at the current visit was used alone or
combined with the SNPs to predict whether the progression time to late AMD exceeded
the inquired year [59]. By comparing the two methodological approaches, the longitudinal
prognostic model, taking into account two- and three-times points, performed better over
the single time point method. However, the three-time points model had a non-significant
increase over the two-time points, suggesting that using more than two-time points does
not affect the predictive value of the model [58].

3.1.2. Fundus Autofluorescence

Fundus autofluorescence (FAF) has a limited application in DL models for AMD,
mainly restricted to geographic atrophy (GA) assessment and, more recently, to its predic-
tion [26,56,60,61].

A recent DL model used data from the study of eyes of patients with bilateral
GA enrolled in lampalizumab phase 3 clinical trials (Chroma [NCT02247479]; Spectri
[NCT02247531]) or in an observational study (Proxima A [NCT02479386]) to predict GA
progression. The model was designed as a regression task, with three multi-task CNN
trained using FAF alone, OCT alone, and a multimodal approach (combined FAF/OCT)
at the same visit. The GA growth rate prediction performance was high for both the FAF
alone and the multimodal model, with r2 of 0.48 and 0.47, respectively [51].

DenseNet achieved the highest performance at 0.939 over the other 4 CNN models
tested in detecting RPD on FAF. The FAF image analysis using DenseNet demonstrated the
highest κ value for the primary performance metric (0.789) compared to human graders,
with higher specificity and precision levels of two retinal fellows [56]. FAF-based algorithms
can segment the GA lesions 6-times more quickly than human evaluation with very high
performance, validation, and testing scores [59].

https://github.com/ncbi-nlp/DeepSeeNet
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3.1.3. Optical Coherence Tomography

The CNN-based models were used to transfer learning for classifying OCT images.
Transfer learning employed pre-trained models as the starting points to process other tasks
reducing the computation time, resources, and the need to develop neuronal network
models ex novo. Using pre-trained CNN with transfer learning is considered faster and
easier than building a new CNN. The model can be fine-tuned to learn specific features
from a new data set of OCT images [43,62].

OCT imaging modality applied in AI prediction models is gaining consideration as it
provides both a qualitative assessment of the drusen and other features such as hyperreflective
foci (HRF) and a quantitative estimation of the morphometric changes in retinal layers [63–69].
Different strategies have been developed to create predictive models using retinal morpholog-
ical features. To extract and measure OCT features, fully automated image analysis is essential
to identify specific biomarkers of interest, such as the status of outer retinal layers, drusen,
RPD, and HRF [70,71]. The main biomarkers considered for AMD progression included the
automated drusen segmentation on OCT volumetric cube extrapolating different quantita-
tive drusen features such as number, mean volume, topographic distribution, maximum
height, slope, reflectivity, and drusen area. Furthermore, the presence and distribution of
HRF, choroidal thickness, presence of RPD, and photoreceptor outer segment loss were also
estimated for an accurate prediction [72–74].

3.2. Non-Imaging Features
3.2.1. Demographic Features

Demographic features are confounding factors for AMD progression that should be
incorporated to implement the risk prediction algorithm [75]. Implementing a hybrid
sequential prediction model permitted to incorporate longitudinal OCT images and demo-
graphic information in a recursive neural network (RNN) model. The demographic factors
included age, gender, race, smoking status, and visual acuity. The model performance
in predicting AMD progression was high in both the short term, with an AUC of 0.96
within 3 months, and long term, reaching an AUC of 0.97 within 21 months, supporting the
importance of combining imaging and demographic factors [70]. A 5-year predictive model
revealed an AUROC of 0.92, obtained by incorporating baseline demographic features with
both qualitative and quantitative OCT features [76].

An ML algorithm predicting the progression from early into late AMD at 1 or 2 years
was built using a logistic model tree (LMT), combining socio-demographic characteristics
with color fundus images. The demographic parameters included gender, age, smoking
status, diabetes, body mass index, blood pressure, sunlight exposure, visual acuity, and
AMD in the fellow eye. By stratifying the patients according to gender, smoking, and age,
the authors noticed that all the models performed better on females and nonsmokers, while
the 1-year models performed worse in subjects less than 60 years old [5].

Another model obtained by the bootstrap least absolute shrinkage and selection oper-
ator (LASSO) considered a combination of retinal phenotypes, demographic characteristics,
and genetic features. The model found that the most relevant non-imaging predictors were
represented by age, smoking status, pulse pressure, education, and Mediterranean diet
score, with AUCs comprised between 0.88 and 0.92 [77].

3.2.2. Genetic Factors

Genetic features integrated into predictive models incorporated risk alleles of single-
nucleotide polymorphisms (SNPs) at different AMD-associated loci [69]. Despite the strong
evidence of a genetic association in advanced AMD, no univocal associations were found to
be directly linked to GA progression [78]. Likewise, DL models interpolating demographic,
genetic, and imaging features failed to identify specific AMD risk-associated SNPs with
a predictive value for neovascularization and GA [69]. Yan et al. [58] combined 52 AMD
genetic variants previously identified (Appendix A, Table A1) [79] with fundus images and
AMD severity, demonstrating that the addition of genotypes improved only modestly the
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accuracy of the predictive model. Moreover, Peng et al. [80] confirmed that the 52-SNPs
AMD genetic risk score did not improve the prediction of the DL model at 5 years, while
the accuracy only slightly improved when considering two SNPs (ARMS2 rs10490924, CFH
rs1061170).

A bootstrap LASSO model indicated that the genetic risk score was one of the four
most relevant predictors, together with the presence of intermediate drusen, the AREDS
simplified scale, and age. The prediction model had high performances with AUC between
0.91 and 0.92, but when subtracting the genetic score the model was similar with AUCs
between 0.88 and 0.93. The authors specified that in a minority of cases the genetic evalua-
tion helped identify high-risk patients, especially when the simplified AREDS score [76]
was 0 in patients with a high genetic score instead [62]. Taken together, the results from
different studies suggested that including genotype information may have a marginal role
in the predictive models, with a negligible contribution to the predictive power further
complicated by the scarce availability of genetic analysis in clinical practice.

4. Automated Analysis of OCT Biomarkers and Morphometric Parameters

The use of DL models allowed the automatic quantification of imaging biomarkers
and morphometrics parameters, revolutionizing the clinical approach to predicting disease
progression [25]. The leading automated imaging analyses included the evaluation of retinal
layers thickness, drusen volume and topographic distribution, reticular pseudodrusen
estimation, and hyperreflective foci distribution. These features have an important role in
predicting AMD progression, as summarized below.

4.1. Retinal Layers Morphometric Analysis

The morphometric changes in retinal layers were deemed important quantitative
biomarkers of AMD progression. Studies have demonstrated a progressive thinning of
the outer retinal layers reflecting photoreceptor degeneration, but also indicating involve-
ment of rod, bipolar, and horizontal cells [81–83]. Structure–function correlations further
corroborated the role of outer nuclear layer (ONL) thickness as a surrogate of cone-rod
dysfunction [65,66,84]. The progressive ONL thinning was considered a robust predictor of
conversion with a faster thinning in eyes developing GA [68].

Ellipsoid zone (EZ) retinal pigment epithelium (RPE) thickness was included as an
OCT surrogate of photoreceptor outer segment length and EZ integrity, while the RPE-
Bruch’s membrane (BrM) thickness was included as a morphometric parameter for drusen
load and topographical distribution [75,85]. The segmentation of RPE with photoreceptors
was previously labeled as RPE+ inner segment/outer segment (IS/OS) [69]. OCT B-scans
segmentation also included the retinal nerve fiber layer, ganglion cell layer, inner plexiform
layer, and the choroid performed through the CNN model using the raw B-scan with
normalized intensity as input. Retinal layers segmentation can be better visualized using
the en face thickness and drusen maps [86].

Retinal thickness maps obtained through a fine-tuned DCNN (VGG16) were compared
to a CNN model trained from scratch (AMDnet), demonstrating that the layer segmentation-
based preprocessing showed the strongest predictive power for progression into advanced
AMD, reaching AUC of 0.89 for the B-scan and 0.91 for the volumes [87].

4.2. Drusen Volumetric Evaluation and Reticular Pseudodrusen Estimation

Automated drusen segmentation algorithms have been developed that allow easy
drusen growth and regression detection over time [65,84,88]. Considering drusen as RPE
elevations, the delineation of the RPE with respect to the BrM plane into every single B-scan
resulted in a three-dimensional segmentation and a topographical map of the drusen in
the OCT volume [70]. Drusen thickness is often reported with an en face topographical
representation with quantitative correlate displayed in a colorimetric scale [65,67,69,84].
The quantification of total drusen area, number of large drusen (≥125 µm), and RPD were
used for late AMD prediction increasing the predictive model performance [5,67,88]. The
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most remarkable drusen features involved in the prediction included the mean drusen
thickness, maximum drusen height, and the mean drusen attenuation considering the
attenuation within drusen in comparison with the overlying outer retinal bands and the
ONL [89].

The recognition of RPD represents a crucial element in AMD progression [90–98] that
was largely overlooked in AREDS studies for using CFP as the only imaging modality.
The proper identification of RPD needs a multimodal imaging approach, where the use
of FAF, near-infrared reflectance, and OCT allows the correctly identification of the stage
and distribution of such subretinal lesions representing the histopathological correlate
of subretinal drusenoid deposits (SDD) [93,99–101]. The deep learning detection of RPD
was possible by utilizing a large dataset provided by the AREDS2 ancillary study of FAF
imaging, using a standard protocol for their recognition and grading [102]. The DenseNet
model could discern the presence of RPD on FAF with high accuracy (AUC 0.94). Label
transfer was applied between FAF and CFP images and classified the corresponding CFP
image according to the graded FAF for model training. The model then identified RPD on
CFP with an AUC of 0.83 and a high specificity of 0.90. Therefore, the DenseNet DL model
was considered highly accurate in identifying RPD presence from FAF images, suggesting
that the model can exceed the performance of nonspecialized ophthalmologists in routine
clinical practice [56]. Agrón et al. [103] used a simplified severity scale for AMD [48]
(Figure 1), assigning 1 point for each feature in both eyes, but in the absence of large drusen
1 point was assigned if both eyes had medium-sized drusen. Moreover, the original scale
modification consisted of including any GA (including noncentral GA) as late AMD. The
authors found that the presence of RPD was associated with a higher risk for progression
(Hazard ratio, HR of 4.7, 95%CI, 3.9–5.8) independently from the severity scale. When
stratifying the patients according to the severity levels, the RPD risk was less prominent
and non-significant for the 3–4 levels [103].
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4.3. Hyperreflective Foci

Hyperreflective foci (HRF) on OCT were identified as well-circumscribed hyper-
reflective roundish formations above drusen [75]. The identification of HRF is of leading
importance in neovascular conversion, representing a distinctive hallmark alone and a more
robust indicator when overlaying drusen [64,69]. HRF are also important predictors of GA
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development, likely representing the histopathological correlates of migrating RPE cells
and disaggregated photoreceptors. The increasing number of HRF, often accompanying a
reduced retinal thickness and ONL thinning, was found to be associated with RPE atrophy
increase [62,63,69,104,105].

An approach to defining the presence of HRF consisted of identifying a set of connected
HRF voxels greater or equal to four, corresponding to approximately 5.570 µm3, through
a connected components algorithm [106]. A random forest classifier was also trained to
provide a probability that a given pixel on B-scan corresponded to HRF, refining the results
through an iterative approach considering previous classifications. A total of 150 annotated
B-scans by certified readers were used as a dataset for the classifier training [88].

A component filtering algorithm was applied, and all the HRF colocalizing with retinal
vessels were removed to account for the potential interference of retinal vessels leading to
a false estimation of HRF. In this study, HRF voxels detected in a three-dimensional OCT
volume were identified through a U-NET semantic segmentation architecture trained on a
pre-existing dataset. Moreover, to assess the HRF dynamics, en face HRF thickness maps
were compared between consecutive examinations [107]. The automated identification of
HRF allowed evaluation of not only the presence but also load and dynamics, which were
best obtained using a ResUNet+ model tested on Cirrus and Spectralis OCTs. The authors
suggested preferring the utilization of cross entropy training loss over Dice-based training
to obtain a higher performance in HRF automated identification [67,108].

5. Predictive Models for Disease Progression in Age-Related Macular Degeneration
5.1. Geographic Atrophy Prediction

A predictive model of GA conversion indicated outer retinal (RPE+ inner segment/outer
segment -IS/OS) and ONL thinning and increasing HRF at the ONL layer as morphometric
factors predominantly involved; the only non-imaging factor was represented by age. SNPs
did not contribute significantly to predicting GA conversion [69]. Eyes progressing to
macular atrophy presented the greatest drusen height and HRF localized at 0.5-mm eccen-
tricity, and the distribution of HRF was not concentrated in areas overlying drusen [67].
Schmidt-Erfurth et al. [69] also noted that the amount of HRF and the alterations seen
in GA progressors did not colocalize with drusen but tended to spread more into the
retina [69]. HRF distribution was found to be associated with the GA border, with the
majority of HRF (65%) situated within a 1-mm junctional zone; at this level, increasing 2D
HRF concentrations and counts were associated with GA progression [106].

Another feature associated with a higher risk for GA over neovascular conversion
is represented by the presence of RPD in isolation, not considering the AMD severity
scale [102]. Other quantitative outer retinal and sub-RPE features identified through ML
demonstrated a role in identifying GA converters, including EZ-RPE thickness, EZ total
and partial attenuation, RPE-BrM thickness, and RPE total attenuation [75]. More recently,
a DL model quantified multimodal imaging biomarkers involved in GA progression. The
best fit model associated with GA progression included FAF patterns alone, the interaction
with the HRF concentration (HRF*FAF patterns), and the presence of RPD. In contrast, the
interaction of age*sqrt GA area was negatively associated with GA growth, indicating that
larger lesions in older patients were less prone to enlarge [108].

Using a variation in the U-Net architecture, where the model outputs a likelihood esti-
mate for a given feature for every input image pixel, RPE loss, photoreceptor degeneration,
and hypertransmission were identified. A fourth model segmented RPE and outer retina
atrophy (RORA) as regions of overlapping RPE loss, photoreceptor degeneration, and
hypertransmission. The presence of RORA (30.5%), followed by hypertransmission (21.5%),
contributed the most to the prediction of visual acuity in GA, whilst the low-luminance
(VA) was predicted by importance from photoreceptor degeneration (38.9%) followed by
hypertransmission (26%) [109].
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5.2. Predictive Factors of Neovascular Conversion

The prediction towards neovascular conversion included thickening of the RPE-drusen
complex, an increase in the drusen area, and drusen-centric HRF associated with a thick-
ening of the ONL where HRF tended to migrate. In this predictive model, demographic
and genetic factors did not contribute to the neovascular conversion (AUC = 0.68) [69]. The
relationship between the drusen topographical distribution and HRF was confirmed to
be relevant when differentiating neovascular and GA conversion. In eyes progressing to
macular neovascularization (MNV), the greatest drusen volume was observable within
the foveal center, with a slight increase in mean HRF volume over time [67]. A choroidal
thinning was also observable in MNV progressors, but the difference was not significant
after adjusting for the false discovery rate. However, longitudinal evaluation confirmed a
faster thinning of the ONL and outer retinal bands, as well as choroidal thinning towards
the point of MNV conversion [68].

A greater score in the modified severity scale in conjunction with RPD presence was
associated with a higher risk of neovascular AMD [102]. Nevertheless, most of the literature
currently available investigates prognostic indicators or biomarkers of treatment response
and clinical outcomes after anti-VEGF treatment [110–119].

6. Discussion

The biomarkers and artificial intelligence prediction models in AMD analyzed in this
narrative review are summarized in Table 2. The DL models created using CFP included
three DCNNs estimating the 5-year conversion risk (%) according to clinical features,
including total drusen area, increased pigmentation, and depigmentation [55]. A pre-
trained CNN (Inception V3) model of multiple longitudinal images with two and three
time points [42]. Using FAF alone or combined with OCT was dedicated to the GA growth
prediction using multi-task CNNs [51].

Table 2. Biomarkers considered in artificial intelligence prediction models in age-related macular de-
generation.

Imaging and Non-Imaging Features

Fundus photograph [42,55]
- Total drusen area
- Increased pigment
- Depigmentation

Fundus autofluorescence [41,51] - GA growth rate
- RDP presence

OCT [56,57,59,75]

- Quantitative drusen features: drusen number, mean volume, drusen area, topographic
distribution, maximum height, slope, and reflectivity

- Presence and distribution of HRF
- Choroidal thickness
- Presence of RPD, and photoreceptor outer segment loss
- Morphometric analysis of retinal layers

Demographic features [1,5,56,59,62]

- Age
- Gender
- Race
- Smoking status
- Visual acuity
- Diet
- Education
- Pulse pressure
- Body mass index
- Sunlight exposure

Genetics [62,69,79] - 49 SNPs, smoking, diet quality, education and pulse pressure
- 52-SNPs AMD genetic risk score

AMD: age-related macular degeneration; FAF: fundus autofluorescence; GA: geographic atrophy; HRF: hyper-
reflective foci; MNV: macular neovascularization; OCT: optical coherence tomography; ONL: outer nuclear
layer; RORA: outer retina atrophy; RPD: reticular pseudodrusen; RPE: retinal pigment epithelium; SNPs: Single
Nucleotide Polymorphisms.
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The most crucial multimodal imaging technique is represented by OCT, which allows
an exhaustive evaluation of several biomarkers and morphometric parameters within
a single volumetric acquisition. In our opinion, the importance of OCT should also be
interpreted in light of its wide use in clinical practice, the readiness of execution, and
the numerous preliminary studies investigating potential predictors to be included in DL
models. Through the automated segmentation of the OCT volumetric cube it is possible
to extrapolate different quantitative drusen features, which include drusen number, mean
volume, drusen area, topographic distribution, maximum height, slope, and reflectivity [57].
The most remarkable drusen features involved in the prediction included the mean drusen
thickness, maximum drusen height, and the mean drusen attenuation considering the
attenuation within drusen in comparison with the overlying outer retinal bands and
ONL [88]. An automated grading system can evaluate the presence and distribution of
HRF, choroidal thickness, the presence of RPD, and photoreceptor outer segment loss [60].
The identification of HRF is of leading importance in neovascular conversion, representing
a distinctive hallmark alone and a more robust indicator when overlying drusen HRF, also
important predictors of GA development [64,69].

Several studies also analyzed the influence of demographic factors alone or in com-
bination with clinical or OCT features, as summarized in Table 2. However, the specific
AMD risk associated with SNPs did not improve the prediction of the DL models for both
GA and neovascularization [62,69,79].

Quantitative outer retinal and sub-RPE features identified through ML that demon-
strated a role in determining GA converters included EZ-RPE thickness, EZ total and partial
attenuation, RPE-BrM thickness, and RPE total attenuation [75]. A DL model quantified
multimodal imaging biomarkers involved in GA progression. The best-fit model associated
with GA progression included FAF patterns alone, the interaction with the HRF, and the
presence of RPD [108]. Furthermore, the progressive ONL thinning visible on OCT was
found to be a robust predictor of conversion with a faster thinning in eyes developing
GA [68]. Using a variation in the U-Net architecture, the presence of RORA (30.5%), fol-
lowed by hypertransmission (21.5%), contributed the most to the prediction of visual acuity
in GA [109].

Factors contributing to the prediction towards neovascular conversion included the
thickening of the RPE-drusen complex, an increase in the drusen area, and drusen-centric
HRF associated with a thickening of the ONL where HRF tended to migrate [69]. More-
over, the most significant drusen volume was observable within the foveal center in eyes
progressing to MNV, with a slight increase in mean HRF volume over time [67].

7. Conclusions and Future Perspectives

With recent advances in DL, this field is significantly expanding the spectrum of
AMD prediction through multimodal imaging. DCNN represented the most relevant and
suitable DL methodology for recognizing imaging output data. However, training a DCNN
model from scratch is particularly time-consuming and expensive. A reasonable option
is represented by fine-tuning CNN, consisting of transferring pre-learned features from a
pre-trained CNN to initialize a new model.

When approaching AMD prediction, it is essential to know and apply the AMD
severity scales that allow an improvement in disease prediction along with other imaging
and non-imaging parameters. Although the imaging biomarkers represented the most
relevant predictive features, some DL models performed better by including non-imaging
parameters, such as demographic baseline characteristics including age, gender, race,
smoking status, fellow eye status, body mass index, blood pressure, sunlight exposure,
education, and Mediterranean diet score. Contrariwise, the incorporation of genetic features
such as SNPs modified the predictive power only slightly, suggesting a marginal role of
genotypic characterization in identifying patients at high risk of AMD evolution into
late stages.
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Different multimodal imaging modalities were used in the predictive algorithms, in-
cluding CFP, FAF, and OCT. Among those, OCT represented the most informative modality,
allowing the qualitative identification of specific biomarkers and the quantitative estimation
of morphometric changes in retinal layers, drusen volume, and choroidal thickness. The
most relevant predictors are represented by ONL and outer retinal layer thickness changes,
drusen and volume morphometric modifications, quantitative and qualitative changes in
HRF, and the presence of RPD. For GA conversion, the most important factors identified
were outer retina and ONL thinning, increasing HRF and their topographic distribution,
as well as age as the unique non-imaging factor. The prediction towards neovascular
conversion was less investigated, but the main factors identified were represented by an
increasing drusen area and volume within the foveal center with overlying HRF and outer
retinal, ONL, and choroidal thinning. Identifying OCT predictors presented significant
advantages, including the routinary use of this imaging modality in clinical practice, the
large number of qualitative and quantitative features that can be extrapolated at each
examination, and the repeatability of acquisition and metrics. In AMD, the interpolation of
imaging biomarkers and risk factors allowed a good risk stratification that can be estimated
through DL models with high diagnostic performance. The understanding of the strengths
and limitation of different DL systems is crucial to identify future methodologies. Moreover,
further studies are encouraged to assess more accurate metrics and predictors and to build
even more accurate predictive models that can be available in clinical practice.
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Appendix A

Table A1. A summary of the 52 independent AMD risk variants identified in 34 loci.

# Locus Name Variants

1 CFH rs10922109; rs570618; rs121913059; rs148553336;
rs187328863; rs61818925; rs35292876; rs191281603

2 COL4A3 rs11884770
3 ADAMTS9-AS2 rs62247658
4 COL8A1 rs140647181; rs55975637
5 CFI rs10033900; rs141853578
6 C9 rs62358361
7 PRLR/SPEF2 rs114092250
8 C2/CFB/SKIV2L rs116503776; rs144629244; rs114254831; rs181705462
9 VEGFA rs943080
10 KMT2E/SRPK2 rs1142
11 PILRB/PILRA rs7803454
12 TNFRSF10A rs79037040
13 MIR6130/RORB rs10781182
14 TRPM3 rs71507014
15 TGFBR1 rs1626340
16 ABCA1 rs2740488
17 ARHGAP21 rs12357257
18 ARMS2/HTRA1 rs3750846
19 RDH5/CD63 rs3138141
20 ACAD10 rs61941274
21 B3GALTL rs9564692
22 RAD51B rs61985136; rs2842339
23 LIPC rs2043085; rs2070895
24 CETP rs5817082; rs17231506
25 CTRB2/CTRB1 rs72802342
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Table A1. Cont.

# Locus Name Variants

26 TMEM97/VTN rs11080055
27 NPLOC4/TSPAN10 rs6565597
28 C3 rs2230199; rs147859257; rs12019136
29 CNN2 rs67538026
30 APOE rs429358; rs73036519
31 MMP9 rs142450006
32 C20orf85 rs201459901
33 SYN3/TIMP3 rs5754227
34 SLC16A8 rs8135665
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