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Abstract: A digital micromirror device (DMD) has a wide range of applications in holographic
display, light field manipulation, etc., due to its high-speed refresh rates. In order to precisely
control the wavefront, the influence of the micromirror array structure of the DMD requires careful
analysis. Based on an accurate three-dimensional phase model of DMD, we analyzed the diffraction
characteristics of DMD. The model was established by accurately describing the phase distribution
along each micromirror surface direction, and the distance between the point on the micromirror and
the diffraction plane. The results showed that the orders of the DMD are the results of two groups
of micromirrors interfering with each other, and a slight offset occurs when the incidence angle is
twice the micromirror tilt angle, which can be removed by adjusting the incidence angle. The phase
distribution results showed the main order of the DMD with all micromirrors in the on state can
be approximated as a plane wave, which means that the hologram can be normally loaded on the
DMD without worrying about phase disturbance from the micromirror array structure. This provides
great convenience for computer holography based on DMD. Numerical simulations and experiments
demonstrated the effectiveness of the work.
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1. Introduction

Computer holography has widespread applications in many fields, such as three-
dimensional (3D) displays [1–3], light field manipulation [4], and structured light gen-
eration [5]. The technology generates holograms based on diffraction algorithms, and
uses a spatial light modulator (SLM) to modulate the incident wavefront. Two types of
SLMs are often used in these works: liquid crystal on silicon (LCOS) SLM and a digital
micromirror device (DMD) based on micro-electromechanical systems (MEMS). Although
the LCOS-based SLM is currently the main device used in holography, its low refresh rate
limits its application. In applications where high speed is required, such as high-resolution
and large field-of-view holographic displays, high-speed light field manipulation, etc.,
the binary DMD has more advantages due to its extremely high refresh rate and high
space-bandwidth product expansion capability [6–11]. Therefore, in these applications, it
is highly necessary to extensively analyze the influence of DMD on the diffraction field.
The phase DMD that has appeared in recent years makes it possible to realize multi-level
phase modulation with ultra-high refresh rates. However, due to the immaturity of the
technology, the reported phase DMD can only offer up to 16 discrete levels of phase control
at a frame rate of 1440 Hz [12–16]. Therefore, the advantage of the binary amplitude DMD
can be sustained for a period of time.

A DMD is an array of highly reflective aluminum micromirrors, and the mirrors
can be individually rotated to an on or off state [17,18]. When a hologram is loaded on
the DMD for reconstruction, the unique micromirror array structure of the DMD will
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affect the reconstructed wavefront [19–21]. One study analyzed the effect of different
thresholding techniques on the diffraction field [22]. Different from introducing computer
holography into the DMD, the influence of the micromirror array structure of the DMD
on the diffraction field also needs to be carefully analyzed. Many previous studies have
analyzed the diffraction properties of the DMD. Thomas Kreis described the results of DMD
used for optical reconstruction, while the phase difference between the micromirrors was
neglected [23]. Some studies have considered the phase difference; however, the diffraction
envelopes described by the models in these works were not accurate enough [24,25]. Some
studies have analyzed DMD by developing a two-dimensional (2D) reflectance function,
while there were many inconsistencies in the details of the equations among them [26–30].
Most studies have focused on the intensity distribution of the diffraction field of DMD,
while ignoring the phase properties of the diffraction field [23–30].

In this study, we analyzed the intensity and phase properties of the diffraction field
of DMD based on an accurate 3D phase model. The 3D phase model is established by
accurately describing the phase distribution along each micromirror surface direction, and
the distance between the point on the micromirror and the diffraction plane. We use the
discrete Rayleigh-Sommerfeld diffraction integral method to calculate the diffraction field.
The intensity analysis results show the position and intensity relationship between each
diffraction order. The orders are the results of two groups of micromirrors interfering with
each other, and a slight offset appears when the incidence angle is twice the micromirror tilt
angle. When the incidence angle is suitable, this offset can be removed and the main order
of the diffraction field can be exactly located on the optical axis. The phase analysis of the
diffraction field shows that the main order of the DMD could be approximated as a plane
wave, which means that a desired wavefront could be reconstructed without additional
phase disturbance from the DMD, and that the DMD can be treated as an amplitude-only
SLM. Numerical simulations and optical experiments validate our research.

2. Diffraction Characteristics Analysis

When in use, each micromirror of the DMD has two possible states (on = 1 and off = 0)
corresponding to ±micromirror tilt angle. Only the light reflected by the micromirrors in
the on state contributes to the diffraction field. For simplicity, we first analyze the diffraction
characteristics of the DMD with all micromirrors in the on state. When loading a hologram
on the DMD causes some of the micromirrors to be in the off state, the modulation function
of the DMD could be regarded as the multiplication of the reflection function of the DMD
with all micromirrors in the on state and the modulation function of the hologram.

A DMD with all micromirrors in the on state is shown in Figure 1. Figure 1a shows
the 2D structure of the DMD, and Figure 1b shows the structure of the DMD along the
diagonal direction x′-axis. M and N denote the horizontal and vertical resolution of the
DMD, respectively. The plane x′oz is the incidence plane, and the z-axis is the optical
axis. α denotes the incidence angle, and β denotes the diffraction angle. γ denotes the
micromirror tilt angle (relative to x′-axis). ∆ denotes the micromirror pitch along the x-axis
or the y-axis, and ∆′ denotes the micromirror pitch along the diagonal direction x′-axis
or the counter-diagonal direction y′-axis. λ denotes the wavelength of the incidence light.
The micromirrors can be divided into two groups, Group B (blue square in Figure 1a) and
Group R (red square in Figure 1a), according to the phase distribution on the micromirror
surface. For a point P(x, y) on a micromirror of the DMD, the phase of P(x, y) can be
described by Equation (1).

ϕx,y =


2π
λ

(
p%∆′

cos(γ) sin(α− γ) +
⌊ p

∆′
⌋
∆′ sin(α)

)
(P(x, y) ∈ Group B)

2π
λ

(
(p− ∆′

2 )%∆′

cos(γ) sin(α− γ) +

⌊
p− ∆′

2
∆′

⌋
∆′ sin(α) + 1

2 ∆′ sin(α)
)

(P(x, y) ∈ Group R),
(1)



Photonics 2023, 10, 130 3 of 11

where % denotes the mod operation and b·c denotes the floor operation. We have

p =
x + y√

2
, (2)

∆′ =
√

2∆, (3)

P(x, y) ∈ Group B, i f
⌊ x

∆

⌋
+
⌊ y

∆

⌋
== even, (4)

P(x, y) ∈ Group R, i f
⌊ x

∆

⌋
+
⌊ y

∆

⌋
== odd. (5)
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Figure 1. The DMD with all micromirrors in the on state: (a) 2D structure; (b) 1D structure along the
diagonal direction x′-axis.

The distance between the point P(x, y) and the diffraction plane along the z direction
can be described by Equation (6):

dx,y =

{
d0 − (p%∆′) tan(γ) (P(x, y) ∈ Group B)
d0 −

[
(p− ∆′

2 )%∆′
]

tan(γ) (P(x, y) ∈ Group R),
(6)

where d0 denotes the distance between the xoy plane and the diffraction plane along the
optical axis. According to the Rayleigh-Sommerfeld diffraction theory, the diffraction field
U1(x1, y1) at the diffraction plane can be given by:

U1(x1, y1) =
1

2π

L
2∫

− L
2

W
2∫

−W
2

Ax,yejϕx,y

(
1

rx,y,x1,y1

− j
2π

λ

)
ej 2π

λ rx,y,x1,y1

rx,y,x1,y1

dx,y

rx,y,x1,y1

dxdy, (7)

rx,y,x1,y1 =
√
(x1 − x)2 + (y1 − y)2 + d2

x,y), (8)

L = M∆, (9)

W = N∆, (10)

where A(x, y) denotes the amplitude of point P(x, y). When the incident light is a uniform
plane wave and all micromirrors of the DMD are in the on state, A(x, y) = 1.

For a one-dimensional (1D) structure corresponding to the micromirrors belonging to
Group B along the x′-axis in Figure 1b, Equations (1)–(10) can be deduced as:

ϕx′ =
2π

λ

(
x′%∆′

cos(γ)
sin(α− γ) +

⌊
x′

∆′

⌋
∆′ sin(α)

)
, (11)
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dx′ = d0 − (x′%∆′) tan(γ), (12)

U1
(

x′1
)
=

1
2π

W′
2∫

−W′
2

Ax′ e
jϕx′

(
1

rx′ ,x′1
− j

2π

λ

)
ej 2π

λ rx′ ,x′1

rx′ ,x′1

dx′

rx′ ,x′1
dx′, (13)

rx′ ,x′1 =
√
(x′1 − x′)2 + d2

x′), (14)

W ′ = N∆′. (15)

For a deeper understanding of the diffraction properties of the DMD, we also used the
Fourier method to analyze the diffraction field of the DMD for the 1D case, and obtained
similar results to the 3D phase model method. Base on the Fourier method, the modulation
function of the DMD can be described by [31]:

G(x′) =

N
2 −1

∑
n=− N

2

a(x′ + n∆′)ej 2π
λ n∆′ sin(α), (16)

where a(x′) denotes the modulation function of a single micromirror, which can be given by:

a(x′) = rect(
x′

∆′
)ej 2π

λ {
cos(β)

cos(β+γ)
[sin(α−γ)−sin(β+γ)]+sin(β)}(x′−x′), (17)

x′ =
∆′

2
cos(α− 2γ)

cos(β)

cos(β + γ)

cos(α− γ)
. (18)

The spectrum of the DMD can be obtained by Fourier transform:

F{G(x′)} = ej∆θ(0)∆′
cos(α)

cos(α− γ)

cos(β + γ)

cos(β)
sin c{∆′

λ

cos(α)
cos(α− γ)

[sin(α− γ)− sin(β + γ)]}
sin(Nδ

2 )

sin( δ
2 )

ej (N−1)δ
2 . (19)

where

∆θ(0) = −2π

λ
{ cos(β)

cos(β + γ)
[sin(α− γ)− sin(β + γ)] + sin(β)}x′, (20)

δ =
2π

λ
∆′{sin(α)− sin(β)}. (21)

3. Results and Discussion

We analyzed the amplitude and phase characteristics of the diffraction field of DMD
based on the 3D phase model method. For comparison, we also show the results of the
Fourier method for the 1D case. A DMD driven by the ViLUX V-9001 module is used in the
research. The resolution is 2560× 1600, and the pixel pitch ∆ is 7.56 µm.

Figure 2 shows the 1D diffraction field of the DMD with all micromirrors in the on state,
corresponding to Figure 1b. The incidence angle α is 24◦ as recommended by the DMD
manufacturer, and is twice the micromirror tilt angle, 12◦. The wavelength λ is 632.8 nm.
The initial distance d0 is 500 mm. The number of the micromirrors along the diagonal
direction x′-axis is 1600, and the pitch is ∆ ′ =

√
2∆. The size of the analyzed diffraction

field is five times the size of the DMD (for the 1D case), and it contains multiple diffraction
orders. In order to calculate the correct diffraction field containing high order terms,
encryption sampling is required in the DMD plane and the diffraction plane. The sampling
intervals in the DMD plane and the diffraction plane are ∆ ′/10 and ∆ ′/4, respectively.
Therefore, the number of samples in the DMD plane and the diffraction plane for the 1D
case are 1600× 10 and 1600× 5× 4, respectively. According to Equations (11)–(15), we
calculated the diffraction fields based on the 3D phase model and the Fourier method, as
shown in Figure 2. The blue dotted line and the purple dashed line represent the results of
the Fourier method and the results of the 3D phase model method, respectively. The curves



Photonics 2023, 10, 130 5 of 11

for the Fourier method are superposed onto the curves for the 3D phase model method, as
shown in Figure 2a,c. It can be seen that the two methods obtain consistent results.
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Figure 2. The 1D diffraction field of DMD with all micromirrors in the on state: (a,b) the incidence
angle α is 24◦; (c,d) the incidence angle α is 24.476◦.

According to the grating theory, the center position of the diffraction envelope on a
micromirror is determined by the direction of the reflected light with respect to the normal
state of the micromirror surface, and the envelope is symmetrically distributed around the
z-axis when the incident angle is twice the micromirror tilt angle, as shown in Figure 2a.
This envelope determines the relative intensities of the diffraction orders. The positions of
the orders are determined by the interference field from the micromirror array. The zero
order of the interference pattern is located in the direction of the reflected light with respect
to the normal state of the DMD plane. Based on Equations (22) and (23), the theoretical
position of the Nth-order can be calculated, as shown in Table 1, and the order closest to
the optical axis is the 7th-order. Due to the position of the interference zero order and the
interval between the interference patterns, the 7th-order cannot be exactly located on the
optical axis when the incident angle is twice the micromirror tilt angle, and there will be a
slight offset, as shown in Figure 2a.

θnth = arcsin(sin(α)− λn
∆′

) (22)

x′nth = d0 tan(θnth) (23)

Table 1. The center position of the Nth -order.

Order
(Center Positions)

3D Phase Model
/Fourier Model (◦)

3D Phase Model/
Fourier Model (mm) Theory (◦) Theory (mm)

6th 2.96 25.84 2.96 25.84

7th −0.43 −3.79 −0.43 −3.79

8th −3.83 −33.46 −3.83 −33.46
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Figure 2b shows the corresponding phase distribution. It can be seen that the phase
distribution of the 7th-order is close to a straight line. Table 2 shows the simulated phase
difference of N∆′ distance at the center of the Nth-order, and the theoretical phase difference
of a plane wave at the corresponding angle. The theoretical result can be calculated by
Equation (24). It can be seen that the results are relatively consistent. This means that the
main diffraction order of the DMD with all micromirrors in the on state can be approximated
as a plane wave. This result is highly beneficial for computer holography, meaning that the
DMD does not cause additional phase disturbances on the modulated wavefront. This also
explains why the hologram calculated with a plane reference wave can be directly loaded
onto the DMD and effectively work.

∆ϕnth =
2π

λ
N∆′ sin(θnth) (24)

Table 2. The phase difference of N∆′ distance at the center of the Nth-order.

Order (∆ϕnth ) 3D Phase Model (Rad) Fourier Model (Rad) Theory (Rad)

6th 8765.00 8765.00 8766.38

7th −1286.52 −1286.52 −1286.72

8th −11,337.98 −11,337.97 −11,339.82

Computer holography systems are on-axis in many cases. However, using a DMD
with an incident angle twice the micromirror tilt angle will result in a slight offset of the
major diffraction order relative to the optical axis. This offset can sometimes seriously
affect the reconstruction quality of the hologram. Therefore, the incident angle needs
to be adjusted so that the main order can be exactly located on the optical axis, and the
accurate incident angle αnth to make Nth-order located on the optical axis can be calculated
by Equation (25). It is worth noting that the diffraction envelope will also shift when the
incident angle changes. Figure 2c,d shows the diffraction field when the incident angle
is adjusted to make the 7th-order exactly located on the optical axis; the angle is 24.476◦.
The phase distribution becomes a horizontal line. This means that the 7th-order could be
approximated as a plane wave propagating along the optical axis.

αnth = arcsin(
λnth

∆′
) (25)

Figure 3 shows the diffraction fields of the 7th-order without/with considering the 3D
phase model of the DMD when a rectangular aperture and a binary amplitude grating are
displayed on the DMD for the 1D case. It can be seen that the micromirror array structure
of the DMD does not severely disturb the diffraction field of the original object when we
adjust the incident angle to make the 7th-order exactly located on the optical axis.

For the 2D case, the diffraction fields from Groups B and R micromirrors interfere
with each other, resulting in a change in the diffraction field. We first show the interference
results in the 1D case, as shown in Figure 4. It can be seen that the 7th and other odd orders
disappear due to interference, and the intensity of the 6th-order becomes the highest, as
shown in Figure 4a. Changing the incident angle according to Equation (25) can exactly
locate the 6th-order on the optical axis, as shown in Figure 4c. According to the phase
distribution in Figure 4d, it can be seen that the 6th-order can still be approximated as a plane
wave, even in the case of Group B interfering with Group R. For the 2D case, the results
are shown in Figure 5, and are similar to the results of the 1D case. The simulation results
in Figure 5a–c and the experimental results in Figure 5d–f are in good agreement. In order
to speed up the calculation, the resolution and the propagation distance in the simulation
are reduced to 10% of their original values, so that the interval is also reduced to 10%. The
diffraction fields of Groups B and R are similar, and the highest order closest to the optical
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axis is the 7th-order when the incidence angle α is 24◦, as shown in Figure 4a,b,d,e. However,
the diffraction field changes when all micromirrors are in the on state (Group B+ Group R).
The 7th-order disappears, and the 6th-order becomes the highest, as shown in Figure 4c,f.
We can see that the diffraction order used in the holography system based on the DMD is
the 6th-order, other than the 7th-order for the 2D case.
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Figure 6 shows the diffraction field of the DMD with all micromirrors in the on
state (Group B+ Group R) when the 6th-order is exactly located on the optical axis, with
the incident angle 20.801◦ calculated by Equation (25). The offset is removed and the
wavefront can be approximated as a plane wave. Figure 7 shows the diffraction fields when
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a rectangular aperture and a binary amplitude grating are displayed on the DMD, and the
results are similar to the results of the 1D case.
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Another advantage of the DMD over the LCOS-based SLM is that it can work with
non-monochromatic radiation, as shown in previous studies [32,33]. However, the 3D
phase model is based on the condition that the incident light is a uniform plane wave. As a
result of this, the model is not applicable when the incident light is quasi-monochromatic
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and spatially incoherent [32]. When the incident light contains several coherent radiation
sources, the model can be used for analysis [33].

In our model, for the sake of simplification, we only analyzed the results when the
DMD had no manufacturing errors (micromirror tilt angle variation, orientation of the
micromirror axis-of-rotation variation, and window flatness), which made the model
concise and easy to analyze. However, these manufacturing errors could cause significant
deterioration of the diffraction field, as shown in [34]. The 3D phase model we proposed has
the ability to accurately analyze the influence of these manufacturing errors by changing
the tilt angle and other parameters. However, the analysis requires more careful work, and
could be an independent research objective; we hope to study this influence in detail in
the future.

4. Conclusions

We proposed an accurate 3D phase model of the DMD, and analyzed its amplitude
and phase characteristics with the discrete Rayleigh-Sommerfeld diffraction integration
method. We found that the main diffraction order of the DMD with all micromirrors in the
on state had a slight offset from the optical axis when the DMD was illuminated at the angle
twice the micromirror tilt angle, and the order we used was the result of the Groups B and
R interfering with each other. We provided the exact incident angle for removing this offset.
The phase analysis results showed that the main order of the DMD with all micromirrors
in the on state could be approximated as a plane wave. It means that the micromirror
array structure of the DMD will not bring additional phase disturbances in wavefront
modulation. This provides great convenience for computer holography applications based
on the DMD.
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