# Highly Dispersive Optical Solitons in Absence of Self-Phase Modulation by Laplace-Adomian Decomposition

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{*}

## Abstract

**:**

## 1. Introduction

#### Description of the Governing Model

## 2. Highly Dispersive Soliton Solutions for the Governing Model (1.1)

## 3. Application of Laplace Transform Combined with Adomian Decomposition Method

## 4. Test Examples

#### 4.1. Dark Highly Dispersive Optical Soliton

#### 4.2. Bright Highly Dispersive Optical Soliton

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M.R. Highly dispersive optical solitons in absence of self-phase modulation by exp-function. Optik
**2019**, 186, 436–442. [Google Scholar] [CrossRef] - Biswas, A.; Ekici, M.; Sonmezoglu, A.; Alshomrani, A.S. Highly dispersive optical solitons in absence of self-phase modulation by F-expansion. Optik
**2019**, 187, 258–271. [Google Scholar] [CrossRef] - Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M.R. Highly dispersive optical solitons in absence of self-phase modulation by Jacobi’s elliptic function expansion. Optik
**2019**, 189, 109–120. [Google Scholar] [CrossRef] - Biswas, A.; Ekici, M.; Sonmezoglu, A.; Belic, M.R. Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion. Optik
**2019**, 181, 1028–1038. [Google Scholar] [CrossRef] - Biswas, A.; Vega-Guzman, J.; Mahmood, M.F.; Khan, S.; Ekici, M.; Zhou, Q.; Moshokoa, S.P.; Belic, M.R. Highly dispersive optical solitons with undetermined coefficients. Optik
**2019**, 182, 890–896. [Google Scholar] [CrossRef] - González-Gaxiola, O.; Biswas, A.; Asma, M.; Alzahrani, A.K. Highly dispersive optical solitons with non-local law of refractive index by Laplace-Adomian decomposition. Opt. Quantum Electron.
**2021**, 53, 55. [Google Scholar] [CrossRef] - González-Gaxiola, O.; Biswas, A.; Ekici, M.; Khan, S. Highly dispersive optical solitons with quadratic-cubic law of refractive index by the variational iteration method. J. Opt.
**2022**, 51, 29–36. [Google Scholar] [CrossRef] - Adomian, G.; Rach, R. On the solution of nonlinear differential equations with convolution product nonlinearities. J. Math. Anal. Appl.
**1986**, 114, 171–175. [Google Scholar] [CrossRef] - Adomian, G. Solving Frontier Problems of Physics: The Decomposition Method; Kluwer: Boston, MA, USA, 1994. [Google Scholar]
- Duan, J.-S. Convenient analytic recurrence algorithms for the Adomian polynomials. Appl. Math. Comput.
**2011**, 217, 6337–6348. [Google Scholar] [CrossRef] - Hosseini, M.M.; Nasabzadeh, H. On the convergence of Adomian decomposition method. Appl. Math. Comput.
**2006**, 182, 536–543. [Google Scholar] [CrossRef] - Babolian, E.; Biazar, J. On the order of convergence of Adomian method. Appl. Math. Comput.
**2002**, 130, 383–387. [Google Scholar] [CrossRef]

**Figure 1.**Case 1: graphic representation: (

**a**) numerically generated dark soliton, (

**b**) 2D density plot.

**Figure 2.**Case 2: graphic representation: (

**a**) numerically generated dark soliton, (

**b**) 2D density plot.

**Figure 3.**Case 3: graphic representation: (

**a**) numerically generated dark soliton, (

**b**) 2D density plot.

**Figure 4.**Case 4: graphic representation: (

**a**) numerically generated bright soliton, (

**b**) 2D density plot.

**Figure 5.**Case 5: graphic representation: (

**a**) numerically generated bright soliton, (

**b**) 2D density plot.

**Figure 6.**Case 6: graphic representation: (

**a**) numerically generated bright soliton, (

**b**) 2D density plot.

**Table 1.**Equation (1) coefficients for dark highly dispersive optical solitons.

Cases | ${\mathit{a}}_{1}$ | ${\mathit{a}}_{2}$ | ${\mathit{a}}_{3}$ | ${\mathit{a}}_{4}$ | ${\mathit{a}}_{5}$ | ${\mathit{a}}_{6}$ | $\mathit{\lambda}$ | $\mathit{\mu}$ | $\mathit{\sigma}$ | $\mathit{\kappa}$ | $\mathit{\nu}$ | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|

1 | $1.20$ | $0.45$ | $3.05$ | $1.06$ | $2.22$ | $1.06$ | $0.05$ | $0.62$ | $0.06$ | $0.34$ | $0.09$ | 16 |

2 | $0.50$ | $0.64$ | $0.33$ | $0.02$ | $2.10$ | $2.03$ | $0.02$ | $0.01$ | $0.89$ | $0.17$ | $-0.81$ | 16 |

3 | $1.55$ | $1.04$ | $0.92$ | $2.22$ | $3.40$ | $-2.15$ | $4.02$ | $0.01$ | $0.90$ | $-0.26$ | $2.15$ | 16 |

x | $-3.0$ | $-2.0$ | $-1.0$ | $1.0$ | $2.0$ | $3.0$ | |
---|---|---|---|---|---|---|---|

t | |||||||

$0.1$ | $5.21\times {10}^{-9}$ | $3.45\times {10}^{-9}$ | $2.09\times {10}^{-9}$ | $2.16\times {10}^{-9}$ | $3.64\times {10}^{-9}$ | $5.02\times {10}^{-9}$ | |

$0.3$ | $6.01\times {10}^{-8}$ | $4.32\times {10}^{-8}$ | $3.34\times {10}^{-8}$ | $3.32\times {10}^{-8}$ | $4.14\times {10}^{-8}$ | $6.88\times {10}^{-8}$ | |

$0.5$ | $4.02\times {10}^{-7}$ | $3.62\times {10}^{-7}$ | $1.92\times {10}^{-7}$ | $2.02\times {10}^{-7}$ | $3.22\times {10}^{-7}$ | $5.10\times {10}^{-7}$ |

x | $-3.0$ | $-2.0$ | $-1.0$ | $1.0$ | $2.0$ | $3.0$ | |
---|---|---|---|---|---|---|---|

t | |||||||

$0.1$ | $9.01\times {10}^{-9}$ | $7.12\times {10}^{-9}$ | $6.33\times {10}^{-10}$ | $1.02\times {10}^{-9}$ | $6.09\times {10}^{-9}$ | $8.62\times {10}^{-9}$ | |

$0.3$ | $7.13\times {10}^{-8}$ | $3.02\times {10}^{-8}$ | $1.11\times {10}^{-8}$ | $2.01\times {10}^{-8}$ | $3.98\times {10}^{-8}$ | $7.08\times {10}^{-8}$ | |

$0.5$ | $2.62\times {10}^{-7}$ | $2.88\times {10}^{-7}$ | $1.52\times {10}^{-7}$ | $1.28\times {10}^{-7}$ | $3.01\times {10}^{-7}$ | $2.87\times {10}^{-7}$ |

x | $-3.0$ | $-2.0$ | $-1.0$ | $1.0$ | $2.0$ | $3.0$ | |
---|---|---|---|---|---|---|---|

t | |||||||

$0.1$ | $6.71\times {10}^{-9}$ | $4.45\times {10}^{-9}$ | $9.04\times {10}^{-10}$ | $9.32\times {10}^{-10}$ | $5.16\times {10}^{-9}$ | $7.23\times {10}^{-9}$ | |

$0.3$ | $5.59\times {10}^{-8}$ | $5.01\times {10}^{-8}$ | $2.71\times {10}^{-8}$ | $3.09\times {10}^{-8}$ | $4.25\times {10}^{-8}$ | $8.00\times {10}^{-8}$ | |

$0.5$ | $1.36\times {10}^{-7}$ | $1.08\times {10}^{-7}$ | $1.01\times {10}^{-7}$ | $1.33\times {10}^{-7}$ | $2.21\times {10}^{-7}$ | $2.07\times {10}^{-7}$ |

**Table 5.**Equation (1) coefficients for bright highly dispersive optical solitons.

Cases | ${\mathit{a}}_{1}$ | ${\mathit{a}}_{2}$ | ${\mathit{a}}_{3}$ | ${\mathit{a}}_{4}$ | ${\mathit{a}}_{5}$ | ${\mathit{a}}_{6}$ | $\mathit{\lambda}$ | $\mathit{\mu}$ | $\mathit{\sigma}$ | $\mathit{\kappa}$ | $\mathit{\nu}$ | N |
---|---|---|---|---|---|---|---|---|---|---|---|---|

4 | $0.55$ | $0.15$ | $2.22$ | $3.76$ | $1.05$ | $3.00$ | $0.01$ | $0.90$ | $1.22$ | $0.05$ | $0.53$ | 16 |

5 | $0.20$ | $0.94$ | $2.09$ | $1.98$ | $4.20$ | $-1.15$ | $3.02$ | $1.04$ | $2.06$ | $-0.60$ | $17.87$ | 16 |

6 | $-2.55$ | $2.00$ | $1.76$ | $2.87$ | $1.22$ | $1.45$ | $0.02$ | $2.36$ | $0.64$ | $0.14$ | $3.18$ | 16 |

x | $-3.0$ | $-2.0$ | $-1.0$ | $1.0$ | $2.0$ | $3.0$ | |
---|---|---|---|---|---|---|---|

t | |||||||

$0.1$ | $6.43\times {10}^{-9}$ | $4.15\times {10}^{-9}$ | $2.58\times {10}^{-9}$ | $2.09\times {10}^{-9}$ | $3.99\times {10}^{-9}$ | $5.89\times {10}^{-9}$ | |

$0.3$ | $8.11\times {10}^{-8}$ | $5.76\times {10}^{-8}$ | $2.88\times {10}^{-8}$ | $2.62\times {10}^{-8}$ | $4.88\times {10}^{-8}$ | $7.79\times {10}^{-8}$ | |

$0.5$ | $6.22\times {10}^{-7}$ | $5.02\times {10}^{-7}$ | $3.93\times {10}^{-7}$ | $3.34\times {10}^{-7}$ | $4.85\times {10}^{-7}$ | $6.94\times {10}^{-7}$ |

x | $-3.0$ | $-2.0$ | $-1.0$ | $1.0$ | $2.0$ | $3.0$ | |
---|---|---|---|---|---|---|---|

t | |||||||

$0.1$ | $8.89\times {10}^{-9}$ | $6.27\times {10}^{-9}$ | $3.98\times {10}^{-9}$ | $3.01\times {10}^{-9}$ | $6.08\times {10}^{-9}$ | $8.09\times {10}^{-9}$ | |

$0.3$ | $9.53\times {10}^{-8}$ | $4.29\times {10}^{-8}$ | $4.88\times {10}^{-9}$ | $1.07\times {10}^{-8}$ | $4.13\times {10}^{-8}$ | $8.44\times {10}^{-8}$ | |

$0.5$ | $9.71\times {10}^{-7}$ | $5.42\times {10}^{-7}$ | $1.93\times {10}^{-7}$ | $6.34\times {10}^{-8}$ | $3.65\times {10}^{-7}$ | $8.04\times {10}^{-7}$ |

x | $-3.0$ | $-2.0$ | $-1.0$ | $1.0$ | $2.0$ | $3.0$ | |
---|---|---|---|---|---|---|---|

t | |||||||

$0.1$ | $7.97\times {10}^{-9}$ | $6.01\times {10}^{-9}$ | $4.03\times {10}^{-9}$ | $3.98\times {10}^{-9}$ | $6.24\times {10}^{-9}$ | $8.00\times {10}^{-9}$ | |

$0.3$ | $8.37\times {10}^{-8}$ | $6.19\times {10}^{-8}$ | $5.18\times {10}^{-8}$ | $5.99\times {10}^{-8}$ | $6.43\times {10}^{-8}$ | $8.40\times {10}^{-8}$ | |

$0.5$ | $9.11\times {10}^{-7}$ | $7.32\times {10}^{-7}$ | $3.58\times {10}^{-7}$ | $3.81\times {10}^{-7}$ | $6.95\times {10}^{-7}$ | $8.89\times {10}^{-7}$ |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

González-Gaxiola, O.; Biswas, A.; Moraru, L.; Moldovanu, S. Highly Dispersive Optical Solitons in Absence of Self-Phase Modulation by Laplace-Adomian Decomposition. *Photonics* **2023**, *10*, 114.
https://doi.org/10.3390/photonics10020114

**AMA Style**

González-Gaxiola O, Biswas A, Moraru L, Moldovanu S. Highly Dispersive Optical Solitons in Absence of Self-Phase Modulation by Laplace-Adomian Decomposition. *Photonics*. 2023; 10(2):114.
https://doi.org/10.3390/photonics10020114

**Chicago/Turabian Style**

González-Gaxiola, Oswaldo, Anjan Biswas, Luminita Moraru, and Simona Moldovanu. 2023. "Highly Dispersive Optical Solitons in Absence of Self-Phase Modulation by Laplace-Adomian Decomposition" *Photonics* 10, no. 2: 114.
https://doi.org/10.3390/photonics10020114