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Abstract: Instead of acquiring the previous aberrations of an optical wavefront with a sensor, wave-
front sensor-less (WFSless) adaptive optics (AO) systems compensate for wavefront distortion by
optimizing the performance metric directly. The stochastic parallel gradient descent (SPGD) algorithm
is pervasively adopted to achieve performance metric optimization. In this work, we incorporate
CoolMomentum, a method for stochastic optimization by Langevin dynamics with simulated anneal-
ing, into SPGD. Numerical simulations reveal that, compared with the state-of-the-art SPGD variant,
the proposed CoolMomentum-SPGD algorithm achieves better convergence speed under various
atmospheric turbulence conditions while requiring only two tunable parameters.

Keywords: adaptive optics; statistic parallel gradient descent; CoolMomentum

1. Introduction

Adaptive optics (AO) [1] technology reduces optical wavefront distortions with de-
formable mirrors (DMs) or spatial light modulators (SLMs). It is used in astronomical
telescopes and free-space optical communication (FSO) to mitigate the effect brought about
by atmospheric turbulence [2,3]. Fluorescence microscopy adopts AO technology to reduce
optical aberrations introduced by the refractive index structure of specimens [4]. Retinal
imaging adopts AO technology to compensate for the eye’s optical aberrations, enabling
an unprecedented visualization of retinal structures [5]. Laser processing uses AO technol-
ogy to correct for aberrations introduced when focusing lasers onto workpieces, bringing
about tailored focal intensity distribution [6]. Extreme ultraviolet lithography uses AO
technology to mitigate aberrations induced by the thermal deformation of a mirror [7]. In
the field of structured light, AO technology shows promise in both phase and polarization
error correction, providing a solution for the highly flexible generation of structured light
fields [8,9].

Basically, there are two paradigms in applying AO technology. As for the conventional
paradigm [10], a wavefront sensor, whose role is to sense the aberration of an optical
wavefront, is indispensable. The aberration is then compensated by applying a conjugate
phase. The other paradigm exerts wavefront control instruction according to direct system
performance metric optimization [11]. A wavefront sensor is absent in this paradigm; hence,
wavefront sensor-less (WFSless) AO is realized [12]. WFSless AO enjoys substantial benefits
in circumstances where a wavefront sensor is inapplicable, or where strong scintillation
is present.

Various gradient-descent methods can be applied to optimize the system performance
metric in a WFSless AO system. Among them, the stochastic parallel gradient descent
(SPGD) [13,14] optimization algorithm is pervasively recognized as a promising method. As
for SPGD, the control elements introduce stochastic parallel perturbations into the optical
system, and a set of performance metrics is measured with a photodetector. The extremum
of the performance metric is achieved by the adaptation of the correction elements after
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numerous iterations. In such a manner, the effect of wavefront distortions is eliminated.
For each iteration in the optimization process, control voltages exerted on the correction
elements are determined by the gradient estimation of the system performance metric,
a predefined or adaptive gain of step size, and the history of control voltages. Aside
from effective convergence, the efficiency of the SPGD algorithm is a significant concern.
Constant endeavors have been made to accelerate the iteration process.

Along with the advent of SPGD, two approaches for algorithm acceleration have
already been proposed by Vorontsov [15]. One approach brings in an additional low-
resolution modal wavefront corrector, which excels at dealing with large-scale aberrations
efficiently. The other approach utilizes global coupling, i.e., each correction element partici-
pates in both local and global wavefront control. The possibility of an adaptive gain, or
learning rate in the field of machine learning, has also been explored extensively. Carhart
has constructed an adaptive gain according to the change in system performance metric [16],
which indicates whether the optimization process is in a transition state or a stationary
state. Different gains are preferred in those states, respectively. A hybrid gain composed of
the sign, absolute value, and previous increment of the system performance metric change
has been proposed by Weyrauch et al. [17]. With the development of deep learning, various
optimizers have been proposed to train neural networks. Many of the proposed optimiz-
ers, e.g., Momentum [18,19], Adagrad [20,21], Adam [22,23], and Nadam [24], have been
successfully incorporated into the SPGD algorithm, bringing about an acceleration of the
iteration process. The effectiveness of these SPGD variants has been verified theoretically
and experimentally. Among the adopted optimizers, Adam and its sibling Nadam achieve
the best performance [25–27].

CoolMomentum [28] is a method for stochastic optimization by Langevin dynamics
with simulated annealing, recently proposed by Borysenko from the Kharkiv Institute of
Physics and Technology, Ukraine. In this paper, we adapt CoolMomentum to conventional
SPGD, thus proposing a new SPGD variant algorithm coined CoolMomentum-SPGD, which
achieves better performance on both iteration efficiency and convergence accuracy than the
state-of-the-art algorithms under various atmospheric turbulence conditions. Meanwhile,
the proposed CoolMomentum-SPGD algorithm requires only two tunable parameters,
which indicates it is technically more feasible than the four-parameter Adam and Nadam
SPGD variants.

2. Materials and Methods

In the absence of a stand-alone wavefront sensor, WFSless AO develops the control
schemes of the wavefront corrector according to far-field images acquired with a camera.
Each image is then formulated as a scalar performance metric. Thus, the problem of elimi-
nating wavefront distortion is treated as maximizing/minimizing the specific performance
metric. By deliberately introducing prescribed voltage perturbations to the wavefront
corrector, the consequent variance in the performance metrics may be utilized to determine
the proper voltages to be exerted on the actuating elements of the wavefront corrector.
In this way, WFSless AO eliminates wavefront aberrations by direct system performance
metric optimization. A typical WFSless AO system configuration is illustrated in Figure 1.

Figure 1. Schematic of a wavefront sensor-less (WFSless) adaptive optics (AO) system.
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For a wavefront corrector with N elements, a far-field image I(x, y) is acquired after
control voltages {uj} (j = 1, . . . , N) are applied. The image I(x, y) is then analyzed to form
a performance metric J. Therefore, J is a function of the control voltages {uj} (j = 1, . . . , N):

J = J(u1, . . . , uj, . . . , uN) j = 1, . . . , N. (1)

To optimize J, various gradient descent approaches are available. As for the conventional
SPGD [15] algorithm, stochastic small perturbations {δuj} (j = 1, . . . , N) are exerted in
parallel to the control voltages {uj} (j = 1, . . . , N). All perturbations share the same
magnitude: |δuj| = δu, while the signs of perturbations are randomly chosen with equal
probability for δuj = δu and δuj = −δu. In actual practice, bilateral perturbations are
often applied. To begin with, perturbations {δuj} (j = 1, . . . , N) are applied to get a
corresponding performance metric J+. Then, perturbations in the other direction are
applied to get an oppositely perturbed performance metric J−. To explicitly indicate the
iterative steps, a superscript n is added. Therefore, we have

J(n)+ = J(u(n)
1 + δu(n)

1 , . . . , u(n)
j + δu(n)

j , . . . , u(n)
N + δu(n)

N ) (2)

and
J(n)− = J(u(n)

1 − δu(n)
1 , . . . , u(n)

j − δu(n)
j , . . . , u(n)

N − δu(n)
N ). (3)

Performance metric variation δJ = J+ − J− is adopted to help estimate the gradient.
Specifically, δJδuj is a proven reasonable approximation of the gradient [15]. In this way,
the iterative procedure of the conventional SPGD algorithm can be expressed as

u(n+1)
j = u(n)

j + γδJ(n)δu(n)
j , j = 1, . . . , N. (4)

in which γ is a gain coefficient (i.e., learning rate) that scales the degree of updates. γ
is positive for performance metric maximization and negative otherwise. The second
component γδJ(n)δu(n)

j is the required update of the voltage on every control element.
When expressed in vector form, this component may be replaced with a single vector
∆u(n+1) for simplicity.

SPGD is pervasively recognized as an effective method for performance metric opti-
mization. Meanwhile, endeavors have always been made to accelerate the iteration process.
The momentum of inertia and adaptive learning rates are the most common considera-
tions, such as those exploited in Momentum-SPGD [20] and Adam-SPGD [22]. Recently,
Borysenko proposed a method for stochastic optimization by Langevin dynamics with
simulated annealing, namely CoolMomentum [28]. According to Langevin dynamics,

4T(1− ρ)/(1 + ρ) = const, (5)

in which T is the temperature, and ρ is the coefficient of momentum. By gradually decreas-
ing the momentum coefficient ρ in the optimization procedure, (1− ρ)/(1 + ρ) increases
accordingly. According to Equation (5), T decreases. Therefore, simulated annealing, or
cooling, is achieved implicitly. That is where the name “CoolMomentum” comes from.
Different cooling strategies are available, among which a promising one is

ρ(n) = 1− (1− ρ0)/αn. (6)

The initial momentum coefficient ρ0 is predefined manually. The decreasing rate of the
momentum coefficient ρ(n) depends on the hyperparameter α, or “cooling rate”. On the
condition that ρ(n) decreases to zero at the last iteration step, for an altogether S-step
iteration procedure the cooling rate α is set as

α = (1− ρ0)
1/S. (7)
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With this delicately chosen α, the momentum component vanishes when the iteration
procedure ends, and the implicit temperature decreases to its minimum as well. When
transforming the Langevin equation into the form of the Momentum optimization al-
gorithm, the learning rate comes to its advent. The relation between learning rate lr(n)

and momentum coefficient ρn is inherently constrained by Langevin dynamics, which
expresses as

lr(n) = lr0 ·
1 + ρ(n)

2
, (8)

in which lr0 is a manually predefined initial learning rate. For every iteration step, the
momentum coefficient ρ(n) is determined by Equation (6); hence, cooling down occurs.
Then, the learning rate lr(n) updates itself according to the value of ρ(n), as in Equation (8).

Incorporating the momentum coefficient ρ(n) and learning rate lr(n) into the conven-
tional SPGD algorithm (Equation (4)), we propose the CoolMomentum-SPGD algorithm.
Algorithm 1 illustrates the thorough procedure.

Algorithm 1 CoolMomentum-SPGD

Require: lr0 (initial learning rate), ρ0 (initial momentum coefficient)
Set {uj} = 0 (j = 1, . . . , N),
Set {∆uj} = 0 (j = 1, . . . , N), in which N is the number of corrector channels
Compute α = (1− ρ0)

1/S, in which S is the number of iterations to perform
for n = 1, . . . , S do

ρ(n) = max(0, 1− (1− ρ0)/αn)

lr(n) = lr0 · (1 + ρ(n))/2
J(n)+ = J(u(n)

1 + δu(n)
1 , . . . , u(n)

j + δu(n)
j , . . . , u(n)

N + δu(n)
N )

J(n)− = J(u(n)
1 − δu(n)

1 , . . . , u(n)
j − δu(n)

j , . . . , u(n)
N − δu(n)

N )

δJ(n) = J(n)+ − J(n)−
∆u(n+1)

j = ρ(n)∆u(n)
j + lr(n)δJ(n)δu(n)

j

u(n+1)
j = u(n)

j + ∆u(n+1)
j

end for

It is worth noting that only two tunable parameters are required, i.e., the initial learning
rate lr0 and initial momentum coefficient ρ0. Identifying the most favorable set of tunable
parameters is quite laborious. Therefore, having fewer parameters will be a great benefit
for practical application. The predefined tunable parameters of four typical algorithms are
compared in Table 1. The conventional SPGD algorithm merely has a sole parameter—the
learning rate lr. Momentum-SPGD and CoolMomentum-SPGD have two parameters,
respectively—learning rate and momentum coefficient. In contrast, the renowned Adam-
SPGD has four tunable parameters. In the next section, the performances of the SPGD
algorithm and its variant algorithms are thoroughly compared.

Table 1. Predefined tunable parameters comparison.

Algorithm param1 param2 param3 param4

SPGD [15] lr
Momentum-SPGD [29] lr ρ

Adam-SPGD [22] lr β1 β2 ε
CoolMomentum-SPGD [28] lr0 ρ0

3. Results

To confirm the superiority of our CoolMomentum-SPGD algorithm, adequate numer-
ical simulations have been performed. A sum of 100 Kolmogorov phase screens under
turbulence strength D/r0 = 5, 10, and 15 are generated, respectively [30]. D is the aperture
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diameter of the receiver, and r0 is the atmospheric coherent length. Statistics of the sim-
ulated phase screens are depicted with a violin plot (Figure 2). Two metrics, i.e., the root
mean square (RMS) error and initial Strehl ratio of the AO system with simulated phase
screens, are provided in pairs under different atmospheric turbulence strengths. The unit
of measurement is common for the two metrics. Every stick in the violin plot indicates an
instance of the simulated phase screens. The difference in turbulence strengths manifests
well in statistical distribution.

Figure 2. Statistics of the simulated phase screens. The root mean square (RMS) error and the Strehl
ratio are depicted in a violin plot. The left side of the pattern for each turbulence strength indicates
RMS distribution. The right side of each pattern indicates the Strehl ratio distribution. The two types
of distribution share the same unit of measurement. Every stick denotes a simulated phase screen,
the RMS or Strehl ratio of which is indicated by the stick’s level.

To perform SPGD or any of its variant algorithms, a performance metric J (Figure 1)
must be specified. Here, the mean radius of the intensity distribution [31] measured by the
camera is adopted. Thus, the performance metric is expressed as

J =
∫∫ √

(x− x0)2 + (y− y0)2 I(x, y) dx dy∫∫
I(x, y) dx dy

, (9)

in which I(x, y) is the two-dimensional intensity distribution, and (x0, y0) is the centroid of
I(x, y). This performance metric is measured repetitively in the iterative procedures of all
evaluated algorithms hereafter.

To evaluate the performance of the proposed CoolMomentum-SPGD algorithm, we
compare it with three other representative counterparts—conventional SPGD, Momentum-
SPGD, and Adam-SPGD. The reason for choosing the Momentum-SPGD algorithm as a
basis of comparison lies in the fact that Momentum-SPGD is not only a typical improve-
ment on conventional SPGD (by introducing momentum components into the iterative
procedure) but also a degraded version of CoolMomentum-SPGD (without cooling the
momentum components). At the same time, Adam-SPGD is chosen as a benchmark since
it is pervasively acknowledged as state-of-the-art [25,27]. Numerical simulations are per-
formed under three different atmospheric turbulence strengths . The parameters of each
algorithm (as in Table 1) are determined through a brute-force search for each circumstance.
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The range and interval of the brute-force search are determined empirically. Accordingly,
for each turbulence strength, every algorithm has been tuned for its optimal performance.

The characteristics of a 97-element deformable mirror are introduced to perform the
simulations. Figure 3 illustrates the obtained averaged Strehl ratio adaptation curves.
Except for Momentum-SPGD under turbulence strength D/r0 = 15, all other curves con-
verge to global extrema. It is worth noting that, under each atmospheric circumstance,
CoolMomentum-SPGD achieves the fastest convergence without exception. Under weak
turbulence circumstances (Figure 3a), the other three algorithms perform almost the same,
while CoolMomentum-SPGD still maintains a recognizable lead. When turbulence is mod-
erate (Figure 3b), the superiority of CoolMomentum-SPGD over other curves is especially
obvious. Even with severe turbulence (Figure 3c), CoolMomentum-SPGD still holds the
lead through the whole iterative process.

(a) D/r0 = 5 (b) D/r0 = 10 (c) D/r0 = 15

Figure 3. The averaged Strehl ratio adaptation curves of CoolMomentum-SPGD and other counter-
parts under turbulence strength D/r0 = 5, 10, and 15.

To evaluate the performance of CoolMomentum-SPGD more intuitively, a typical
phase screen generated under turbulence strength D/r0 = 10 is picked out. The initial
uncorrected wavefront and its corresponding far-field Point Spread Function (PSF) are
provided in Figure 4a,f, respectively. The aforementioned four algorithms are applied
separately. The number of iterations is set to 400 deliberately, which is far from adequate for
each algorithm to converge. It is obvious that after 400 iterations CoolMomentum-SPGD
eliminates the wavefront aberration effectively and the corresponding far-field PSF takes
shape well. CoolMomentum-SPGD outperforms other algorithms notably. Actually, the
outcome of the performance evaluation based on the wavefront and PSF (Figure 4) is in
accordance with the Strehl ratio curves in Figure 3b.

To investigate every single realization of the wavefront correction process, the Strehl
ratio adaptation curves of 100 realizations for each iterative optimization algorithm are
provided, respectively (Figure 5). The atmospheric turbulence strength is D/r = 10 for
all of these realizations. It is shown that, even for a specific atmospheric turbulence
strength, the realization curves of SPGD and those of Momentum-SPGD diverge consid-
erably (Figure 5a,b). In other words, although the averaged curve indicates a reasonable
performance, for some realizations (lower blue curves) conventional SPGD and Momentum-
SPGD lose their effectiveness. In contrast, the realization curves of Adam-SPGD and
CoolMomentum-SPGD are much more concentrated. Figure 5c,d demonstrate the effective-
ness of Adam-SPGD and CoolMomentum-SPGD in most cases. The performance difference
between Adam-SPGD and CoolMomentum-SPGD is not quite significant. Basically, with
CoolMomentum-SPGD the realization curves tend to rise more abruptly at the beginning of
the iterative procedure, leading to a faster convergence speed than Adam-SPGD. The root
of CoolMomentum-SPGD’s performance advantage over Adam-SPGD will be discussed in
Section 4.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 4. Wavefront aberration correction and the corresponding far-field point spread function (PSF)
of a typical phase screen generated under turbulence strength D/r0 = 10. Four different iterative opti-
mization algorithms are adopted, respectively. The number of iterations is set to 400. (a) Uncorrected
wavefront. (b) Wavefront corrected with SPGD. (c) Wavefront corrected with Momentum-SPGD.
(d) Wavefront corrected with Adam-SPGD. (e) Wavefront corrected with CoolMomentum-SPGD.
(f–j) The corresponding PSFs of wavefront (a–e), respectively.

(a) SPGD (b) Momentum-SPGD

(c) Adam-SPGD (d) CoolMomentum-SPGD

Figure 5. The Strehl ratio adaptation curves of 100 realizations (blue) and the average (red) under
turbulence strength D/r0 = 10.
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The capability of eliminating wavefront aberration, i.e., convergence effectivity at
the end of the iterative procedure, is illustrated in Figure 6. The Strehl ratio curves of the
initial uncorrected wavefront (green) and the ideally corrected wavefront with a 97-element
deformable mirror (black) are also provided for reference. Under various atmospheric
turbulence circumstances, all of the evaluated algorithms are able to eliminate the wavefront
aberration effectively, leading to a substantial increase in the Strehl ratio over the initial
curve. Except for Momentum-SPGD’s slight underperformance when D/r0 is 15, there is
no apparent difference between the evaluated algorithms under every specific turbulence
circumstance. At the end of the iterative procedure, CoolMomentum-SPGD does not
outperform its rivals, whereas its performance advantage is basically on convergence speed,
as demonstrated in Figures 3 and 5. It is worth noting that CoolMomentum-SPGD surpasses
the renowned Adam-SPGD in convergence speed with only two tunable parameters.

Figure 6. The capability of eliminating wavefront aberration measured in the Strehl ratio. Initial: the
initial Strehl ratio of the AO system with uncorrected wavefront. Ideal: the ideal Strehl ratio possibly
achieved with a 97-element deformable mirror.

4. Discussion

To investigate the root of CoolMomentum-SPGD’s impressive performance, it is
beneficial to inspect the step size in the iterative procedures. The Euclidean norm is
adopted to measure the length of each step, i.e., the update of the control voltage vector
∆u(n+1). Figure 7 illustrates every step size ‖∆u(n+1)‖ during the whole iterative procedure
of each evaluated algorithm. Several thought-provoking comparisons can be made:

• SPGD vs. others. The adjacent step size varies abruptly in the iterative procedure of
SPGD (Figure 7a), whereas it shows much more consistency between adjacent steps for
the other three algorithms. The consistency of step size is essentially due to taking the
momentum of inertia into account, as in the case of Momentum-SPGD, Adam-SPGD,
and CoolMomentum-SPGD.

• CoolMomentum-SPGD vs. Momentum-SPGD. For Momentum-SPGD, the step size
is generally even in the whole iterative procedure (Figure 7b). For CoolMomentum-
SPGD, the step size behaves in a bold manner in the early stage, while it descends
gradually into a negligible magnitude in the later stage (Figure 7d). This dramatic
decline in step size originates from the “cooling” operation of the inertial momen-
tum. It is worth comparing the crucial iterative schemes of Momentum-SPGD and
CoolMomentum-SPGD.
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Momentum-SPGD:
∆u(n+1)

j = ρ ∆u(n)
j + lr δJ(n)δu(n)

j , (10)

u(n+1)
j = u(n)

j + ∆u(n+1)
j . (11)

CoolMomentum-SPGD:

∆u(n+1)
j = ρ(n)∆u(n)

j + lr(n)δJ(n)δu(n)
j , (12)

u(n+1)
j = u(n)

j + ∆u(n+1)
j . (13)

The expressions of Momentum-SPGD and CoolMomentum-SPGD are quite similar.
The update of control voltage ∆u(n+1)

j consists of two parts, the inertial momentum
of the past updates and the gradient scaled by a learning rate. Thus, either of the
algorithms has two parameters, a momentum coefficient and a learning rate. However,
the momentum coefficient and learning rate for Momentum-SPGD are both fixed,
while those for CoolMomentum-SPGD are variable through the iterative procedure.
Figure 8 illustrates ρ(n) and the corresponding lr(n) (according to Equation (8)) in a
typical iterative procedure of CoolMomentum-SPGD. The “cooling” of the momentum
is prominent in Figure 8a. It is this cooling momentum that leads to the decaying step
size in Figure 7d, as well as the superiority in convergence speed. It is worth noting that
ρ(n) and lr(n) are determined by their initial values ρ0 and lr0, respectively. Therefore,
two predefined parameters are needed to implement CoolMomentum-SPGD, which
is the same as Momentum-SPGD.

• CoolMomentum-SPGD vs. Adam-SPGD. Both of the algorithms take into account
the inertial momentum and possess adaptive learning rates, by which remarkable
performance is achieved. Adam-SPGD’s adaptive learning rate originates from the
division by cumulative squared gradients [32]. In contrast, CoolMomentum-SPGD’s
adaptive learning rate stems from the cooling momentum (Equation (8)). According
to the above numerical simulations, CoolMomentum-SPGD’s scheme achieves better
convergence speed than Adam-SPGD’s in controlling wavefront correctors, despite
the fact that fewer tunable parameters are required.

(a)

(b)

Figure 7. Cont.
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(c)

(d)

Figure 7. Step size ‖∆u(n+1)‖ for the (n + 1)-th iteration during the whole iterative procedure of
algorithms (a) SPGD, (b) Momentum-SPGD, (c) Adam-SPGD and (d) CoolMomentum-SPGD.

(a) Momentum coefficient ρ(n) (b) Learning rate lr(n)

Figure 8. Critical parameters in the iterative procedure of CoolMomentum-SPGD.

5. Conclusions

Increasing the convergence speed of the iterative optimization algorithms adopted
in controlling the wavefront correctors in WFSless AO systems is of great significance. In
this paper, we propose a new SPGD variant algorithm, which is coined CoolMomentum-
SPGD. Numerical simulations have been made to compare our algorithm with several
representative counterparts. It is demonstrated that CoolMomentum-SPGD converges
faster than others under various atmospheric turbulence conditions (Figure 3). With
inadequate iterations, it eliminates wavefront aberration effectively (Figure 4). It is worth
noting that CoolMomentum-SPGD outperforms the renowned Adam-SPGD algorithm. In
addition, CoolMomentum-SPGD requires fewer tunable parameters than Adam-SPGD,
which makes it practically more promising. Furthermore, the step size during the whole
iterative procedure of each evaluated algorithm has been inspected. The discussion on step
size sheds light upon the distinct performances of the algorithms.
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