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Abstract: Lensless imaging represents a significant advancement in imaging technology, offering
unique benefits over traditional optical systems due to its compact form factor, ideal for applications
within the Internet of Things (IoT) ecosystem. Despite its potential, the intensive computational
requirements of current lensless imaging reconstruction algorithms pose a challenge, often exceeding
the resource constraints typical of IoT devices. To meet this challenge, a novel approach is introduced,
merging multi-level image restoration with the pix2pix generative adversarial network architecture
within the lensless imaging sphere. Building on the foundation provided by U-Net, a Multi-level
Attention-based Lensless Image Restoration Network (MARN) is introduced to further augment the
generator’s capabilities. In this methodology, images reconstructed through Tikhonov regularization
are perceived as degraded images, forming the foundation for further refinement via the Pix2pix
network. This process is enhanced by incorporating an attention-focused mechanism in the encoder–
decoder structure and by implementing stage-wise supervised training within the deep convolutional
network, contributing markedly to the improvement of the final image quality. Through detailed
comparative evaluations, the superiority of the introduced method is affirmed, outperforming existing
techniques and underscoring its suitability for addressing the computational challenges in lensless
imaging within IoT environments. This method can produce excellent lensless image reconstructions
when sufficient computational resources are available, and it consistently delivers optimal results
across varying computational resource constraints. This algorithm enhances the applicability of
lensless imaging in applications such as the Internet of Things, providing higher-quality image
acquisition and processing capabilities for these domains.

Keywords: lensless imaging; pix2pix; image restoration; multi-stage deep neural network

1. Introduction

In the design of traditional lens-based imaging systems, factors such as focal length,
material, and the refractive index of the optical lens must be taken into account. These
constraints often make it challenging to design lenses that are compact. Furthermore, the in-
herent optical characteristics of lenses typically necessitate a protruding shape (e.g., mobile
phone cameras), complicating the concealment and portability of lens-based imaging sys-
tems. With the advancement of IoT technology, the design of covert and miniaturized
imaging devices has encountered significant challenges.

Lensless imaging technology [1] has emerged as a promising solution to these issues.
This approach involves placing an optical modulation device in front of the image sensor.
The modulation of light, traditionally performed using the optical lens, is achieved through
a combination of the optical modulation device and a back-end solution algorithm, thus
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enabling a lensless imaging system. Imaging systems based on lensless technology, when
compared to their lens-based counterparts, are not only more cost-effective and compact
but also offer a larger field of view and improved concealability. A variant of lensless
imaging technology, lensless microscopic imaging, has been widely used in the medical
field. Unlike lensless imaging structures based on optical modulation devices, the observed
targets are usually placed on a transparent substrate located between the light source and
the image sensor [2? ].

Furthermore, the design of lensless imaging systems is less constrained by material
requirements. Various substances have been employed in the creation of optically mod-
ulating devices, including chromium masks on quartz [4], diffusers [5], phase masks [6],
and an assortment of programmable modulators [7]. The versatility of lensless imaging
technology extends to applications such as 3D imaging [8] and face recognition [9].

Significant advancements in the field have been documented. For instance, images
of a cityscape were reconstructed by DeWeert et al. [7]. A novel lensless opto-electronic
neural network architecture was proposed by Wanxin Shi et al. [10], resulting in effective
computational resource conservation. The FlatScope, a lensless microscope, was designed
by Jesse K. Adams et al. [11]. Additionally, compression sensing was applied to lensless
imaging by Guy Satat et al. [12]. Given these innovative developments, lensless imaging
technology demonstrates substantial potential and a wide range of applicability across
various domains.

In the realm of the IoT, imaging systems equipped on terminal devices occasionally
necessitate image reconstruction and restoration at the terminal itself. However, existing
end-to-end lensless image reconstruction algorithms often demand substantial computa-
tional resources, rendering them unsuitable for terminals with limited capabilities. On the
other hand, in different application scenarios, such as those with sufficient available com-
putational resources, there is a need to obtain reconstructed images with the best possible
quality. To address and reconcile this challenge, a multi-stage lensless image restoration
algorithm is introduced within the proposed method, leveraging the pix2pix architecture
and deep neural networks. This ensures the high-quality reconstruction and restoration
of lensless images across varying computational resources. For instance, the rapid recon-
struction of lensless images in low-computational resource settings and obtaining the best
possible lensless image reconstruction results when computational resources and time are
abundant, achieving adaptive computing power for lensless imaging.

Within the proposed method, the lensless image, initially reconstructed through
Tikhonov regularization, is perceived as a degraded image. Restoration is then initiated by
employing a generative adversarial network built on the pix2pix architecture. Subsequently,
images produced using the deep neural network, acting as a generator, are treated as
degraded images subject to further restoration processes. Throughout the iterative image
restoration, the network’s breadth is systematically expanded, and supervisory modules
are instituted at each output juncture, a strategic move designed to uphold the integrity
and quality of the images rendered at every phase.

This methodology underscores a nuanced approach to lensless image processing,
acknowledging the computational restrictions present in certain terminal devices within
the Internet of Things ecosystem. By adopting a multi-tiered restoration algorithm, the pro-
cess not only adapts to the constraints of device-specific resources but also iteratively
enhances image quality, effectively balancing performance requirements with available
computational assets.

In the context of lensless imaging systems, employing analytical solutions for de-
riving reconstructed images exhibits increased robustness against variable illumination
conditions, distinguishing it as a more adaptable approach compared with conventional
end-to-end image reconstruction algorithms. The image restoration algorithms based on
this methodology demonstrate substantial environmental adaptability.

The pivotal contributions of this article are manifold:
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The application of generative adversarial networks for the restoration of noise-free
images constitutes another major contribution, refining the quality of reconstructed images
beyond the capabilities of deep convolutional networks alone.

The introduction of multi-stage image restoration techniques to the domain of lensless
imaging marks a significant advancement. This innovation enables lensless imaging
systems to execute high-caliber image restoration within a diverse array of IoT scenarios,
irrespective of the variance in available computing resources.

A novel multi-tiered lensless image restoration network architecture is articulated
and used as a generator of the GAN, known as the Multi-level Attention-based Lensless
Image Restoration Network (MARN). This framework is instrumental in enhancing the
image quality procured from FlatCam systems and affords the network the flexibility for
continuous cascading, contingent on the computational resources at its disposal.

The compilation of a comprehensive lensless dataset, derived from ImageNet [13],
featuring 60,000 images with an initial resolution of 5120 × 5120. These images, captured
via our proprietary FlatCam, were subsequently downsampled to a resolution of 512 × 512,
followed by meticulous calibration and reconstruction. The potency of the proposed
method was rigorously affirmed through its application to this dataset, and its performance
was benchmarked against alternative methodologies, showcasing its superior effectiveness.

Collectively, these contributions underscore the significant strides made in the realm
of lensless imaging, particularly in enhancing the robustness and adaptability of imaging
systems confronted with diverse environmental conditions and computational constraints.
This research not only paves the way for more resilient and efficient imaging methodolo-
gies but also broadens the horizons for the practical, real-world applications of lensless
imaging technologies.

2. Lensless Imaging System

FlatCam is a lensless camera based on an amplitude mask designed by Asif et al [14]. It
is also one of the most studied camera models in the field of lensless imaging. FlatCam has
shown great potential in areas such as compression sensing based on a lensless imaging [15],
face recognition based on a lensless system [16,17], lensless image reconstruction [18–22],
and 3D imaging based on a lensless system [23]. Our lensless imaging system is built on
the FlatCam prototype, as shown in Figure 1.

Figure 1. The lensless camera system we built.
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2.1. Theoretical Model

In lensless imaging systems, distinct from their lens-based counterparts, light that car-
ries scene information undergoes modulation using an optical device prior to its interaction
with the sensor. This process is mathematically represented by Equation (1).

y = ϕx + ε (1)

Here, y ∈ Rm denotes the image as captured by the sensor, with ϕ ∈ Rm∗n representing
the system transfer matrix, and x ∈ Rn signifying the original image information. The term
ε is indicative of additive noise. The pursuit then becomes a quest to extract an accurate
measure of x through the utilization of Equation (1).

Given the nature of this challenge as an ill-posed inverse problem, the optimization of
the algorithm becomes essential in effectively approximating a solution. Several strategies
for this optimization dilemma have been proposed [24,25]. In this study, the Tikhonov regu-
larization algorithm is employed as the optimization technique [26]. The post-optimization
problem is articulated as follows in Equation (2):

x̄ = argmin || ΦLxΦT
R − y ||22 +τ || x ||22 (2)

In this context, ΦL and ΦT
R are the decomposed left and right system transfer matrices

of ϕ, achieved through the use of a separable coding mask [4]. The term || ΦLxΦT
R − y ||

quantifies the squared residual norm, and τ || x ||22 stands as the regularization term,
with τ being the regularization parameter. The reconstructed image is then computable via
Equation (2), and the impact of this reconstruction is demonstrable through the degraded
image, as illustrated in Figure 2. This methodology illuminates the intricacies of handling
ill-posed inverse problems in lensless imaging systems, underscoring the necessity for
meticulous algorithm optimization. By doing so, it enables a more precise reconstruction of
images, even when they are subject to conditions that typically complicate image capture
and processing.

Mask

Sensor

Optical system

Monitor
Raw data

Image processing

Tikhonov 
regularization

Post-Processing 
Degraded image

Degraded image

Output image

Figure 2. Framework of this study.

2.2. Calibration

Calibration remains a critical step for lensless cameras, akin to their lens-based counter-
parts. Some lensless cameras employ end-to-end deep neural network image reconstruction
algorithms in the imaging process. While these systems do not undergo an explicit cali-
bration phase, calibration is inherently integrated into the deep neural network’s training
regimen [27–29].

Particularly for FlatCam-based lensless cameras, the calibration process fundamen-
tally involves acquiring the left and right system transmission matrices, ΦL and ΦR, of the
camera system. The methodology adopted here parallels that of [14], utilizing ’n’ sepa-
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rable patterns to ascertain ΦL and ΦR. These matrices are subsequently computed via
Equations (4) and (5), respectively.

Ỹk = ukvT (3)

ΦL = [u1, u2 · · · uN ]H−1 (4)

ΦR = [v1, v2 · · · vN ]H−1 (5)

where uk, vk are the approximate terms of the image captured by the sensor through
truncating the singular value decomposition ,’H’ denotes the Hadamard matrix, and ’N’
represents the total count of separable patterns. The term Ỹk stands for the measured
image of the displayed image Yk. Significantly, Equation (3) corresponds to the rank-1
approximation acquired through TSVD (Truncated Singular Value Decomposition).

This procedural delineation emphasizes the nuanced calibration required for lensless
cameras, particularly those based on the FlatCam design. By integrating these systematic
calibration steps [14], lensless imaging technology becomes more precise, contributing
to the advancement of this emerging field and enhancing the reliability of the imaging
systems employed across various applications.

2.3. Image Reconstruction

The algorithm employed in reconstructing images within a lensless imaging system is
pivotal, directly influencing the quality of the resultant lensless images. This aspect remains
a focal point of research within the domain of lensless imaging. Currently, the algorithms
utilized for image reconstruction in lensless imaging systems predominantly fall into
two categories: those based on convex optimization and those that are data-driven [30].

Convex optimization-based image reconstruction algorithms offer the advantage of
speed, facilitating quicker image processing. However, they often compromise on the
quality of the reconstructed images. On the other hand, data-driven image reconstruction
strategies, while typically more time-consuming, consistently yield higher quality recon-
structed images, surpassing their convex optimization-based counterparts [14,20,29,31,32].

This dichotomy highlights an essential trade-off in the field of lensless image recon-
struction: the balance between the processing speed and the quality of the reconstructed
images. The choice between these methodologies can significantly impact practical appli-
cations, making it a critical consideration in the ongoing development and refinement of
lensless imaging technologies.

In order to better balance computational complexity and image quality, we propose a
progressive multi-stage image restoration algorithm for lensless image restoration : pix2pix-
MARN. This algorithm treats the reconstructed image [14] as a degraded image, accesses a
progressive deep neural network at the back end, and continuously optimizes and outputs
the image in stages, finally obtaining a better quality reconstructed image. The details of
the deep neural network will be given in Section 3.1.

3. Proposed Method
3.1. Generate Adversarial Network Structure: Pix2pix

The proposed method for lensless image restoration is primarily based on a generative
adversarial network architecture: pix2pix [33], as illustrated in Figure 3. Furthermore,
the generator component employs a U-Net network structure with an integrated attention
mechanism. Within the pix2pix network framework, the discriminator receives two cate-
gories of image pairs: one consists of the degraded image coupled with the restored image
from the generator, signifying ’FAKE’, while the other pairs the degraded image with the
ground truth, indicating ’REAL’. The objective of the generator is to augment the quality
of the produced images via an ongoing learning process, aspiring to eventually “deceive”
the discriminator. Through this iterative enhancement, the generator aims to reach a level
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of proficiency where its outputs are indistinguishable from the authentic images, thereby
misleading the discriminator effectively. Through extensive training and learning, the gen-
erator progressively refines the restored images derived from the degraded ones, bringing
them increasingly closer to the ground truth. This continual improvement enhances the
generator’s capability, which is instrumental in the image restoration process.

Figure 3. The pix2pix architecture for lensless image restoration.

A prevalent and fitting selection for the generator component is the U-Net, char-
acterized by its encoder–decoder structure. Convolutional neural networks of similar
design have demonstrated proficiency in recovering noise-free images. Building on the
foundation provided by U-Net, a Multi-level Attention-based Lensless Image Restora-
tion Network(MARN) is introduced to further augment the generator’s capabilities. This
enhanced approach will be delineated in upcoming sections.

3.2. Multi-Stage Architecture

The image restoration framework, shown in Figure 4, restores the image step by
step in three stages. The main component of these three stages is the U-net network
architecture [34] based on the attention mechanism [35,36]. In the first stage, the entire
image is taken as input, considering only one patch per image. In the next stage, the output
of the first stage is used as input to the second stage, and the input image is divided into
four patches of equal size, which are fed into the encoder–decoder architecture and stitched
together to form the complete image. In this way, the amount of data can be increased
to allow the network to be fully trained, and the image can be restored at a lower scale,
allowing more detail to be restored. In the third stage, the output of the previous stage is
still used as input. To increase the perceptual field, the decoder architecture of the third
stage receives the feature maps from the first and second stages, respectively.

Loss_1

ground truth

Loss_2

ground truth

Loss_3

ground truthOutput Image

encoder

decoder

series connection

Figure 4. The MARN algorithm framework.



Photonics 2023, 10, 1274 7 of 15

Let us consider the input lensless reconstructed image IL. We denote the j-th patch in
the i-th stage as IL

i,j. If the image is not separated into any patches at the i-th stage, we define

the image as IL
i . Thus, the input image for the first stage can be denoted as IL

1 , the input
image for the second stage can be denoted as IL

2,1,IL
2,2,IL

2,3,IL
2,4, and the input image for the

third stage can be denoted as IL
3 . Encoders and decoders at the i-th stage are denoted as

enci and deci, respectively.
For our deep neural network, at the first stage, the lensless reconstructed image IL

1 is
input into the enc1 to obtain the corresponding feature image F1.

F1 = enc1(IL
1 ) (6)

Then, F1 is input to the dec1 to get the first stage of the lensless restoration image RI1.

RI1 = dec1(F1) (7)

At the second stage, we need to split F into four patches of the same size. The
relationship between the input at the second stage and RI1 can be expressed as Equation (8).

RI1 = (IL
2,1 ± IL

2,2)∓ (IL
2,3 ± IL

2,4) (8)

where ± and ∓ do not represent adding the images pixel by pixel, ± represents stitching
the images left and right, and ∓ represents stitching the images top and bottom.

We can obtain the feature map F2 for the second stage by feeding IL
2,1,IL

2,2,IL
2,3,IL

2,4 into
the enc2 and stitching together the feature maps from the enc2 output.

F2,j = enc2(IL
2,j) ∀j ∈ [1, 4] (9)

F2 = (F2,1 ± F2,2)∓ (F2,3 ± F2,4) (10)

As with the first stage, the second stage of the lensless restoration of images RI2 is
obtained by using the F2 as input to the dec2.

RI2 = dec2(F2) (11)

At stage 3, we use the RI2 obtained at stage 2 directly as the input to the enc3.

IL
3 = RI2 (12)

F3 = enc3(IL
3 ) (13)

To enhance the details of the image and prevent the loss of image information in the
first and second stages of processing, we concatenate the three stages of feature maps as
input to the dec3.

Ftotal = F1 + F1 + F3 (14)

RI3 = dec3(Ftotal) (15)

where + stands for series connection. RI3 is the final restoration image.

R̂I = RI3 (16)

3.3. Encoder and Decoder Architecture

The architecture for encoding and decoding is depicted in Figure 5. The attention
module employed integrates the Convolutional Block Attention Module as presented
in [35].
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128 128 I/
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4

+
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2

+

32 32 32

Encoder Decoder

attention-
block

conv2d
relu
conv2d

+

connect

Figure 5. The architecture for encoding and decoding.

Encoding encompasses the process of feature extraction from input data using a con-
volutional neural network, culminating in a feature map rich in channels. Conversely,
decoding involves the restoration of this feature map to its initial size and channel density
through a structure that mirrors the encoder. Skip-connections established between en-
coders and decoders facilitate the transmission of information across all phases of encoding,
significantly expediting network convergence and gradient propagation [34,37].

The principles of encoding and decoding are foundational to numerous deep neu-
ral network structures, with a myriad of effective methodologies drawing on these el-
ements [36,38–44]. Diverging from a direct application of the encoding and decoding
framework, an attention mechanism is incorporated into this architecture, akin to the
approach in [36]. This integration aims to optimize the attention module’s efficacy and
augment the intricacies of the restored image, prompting the positioning of the attention
module within the encoder segment.

3.4. Loss Function

Using mean squared error (MSE) directly as a loss function would result in a loss
of high-frequency detail in the image. To improve image quality, we let the Charbonnier
penalty function help us design our loss function [45]. We optimize our deep neural
network with the following loss function:

loss =
3

∑
i=1

λi[Lcon(RIi, Y) + µLedge(RIi, Y)] (17)

where Y represents the ground truth, Lcon and Ledge represent Charbonnier loss and edge loss
respectively, and µ and d are system parameters; set µ to 0.05 and λ1, λ2, and λ3 to 0.1, 0.4, and 1,
respectively, according to experience. Lcon and Ledge are calculated in Equations (18) and (19).

Lcon =
√
(RIi −Y)2 − ε2 (18)

Ledge =
√
(4(RIi)−4(Y))2 − ε2 (19)

In the context of lensless imaging, the pix2pix network and the convolutional neural
network functioning as generators share the goal of minimizing the discrepancy between
the restored image and the ground truth. Consequently, the same loss function is adopted
for both networks.
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3.5. Supervision Module

The supervision module is mainly represented in the loss function. When calculating
the total loss, we first calculate the loss in different stages, and then accumulate and sum
them through a certain proportion to obtain the total loss, and modify our model parameters
through the backward transfer algorithm. In Section 4.4, we demonstrate the effectiveness
of this approach through ablation experiments.

4. Experimental Results and Analysis
4.1. Dataset

A lensless camera is built to capture the ImageNet dataset [13] in a dark room and
downsampled the captured images to a size of 512 × 512. Due to experimental constraints,
we were unable to capture all of the ImageNet dataset and only 60,000 of the images were
captured. Among them, 47,880 images were used as the training set and 12,000 images
were used as the validation set. The remaining 120 images from the ImageNet dataset and
500 images other than the dataset were used as the test set.

In the training set, we reconstruct each captured image using Tikhonov regularization
and then form a data pair from the reconstructed image to the captured image. This data
pair will be used to train our deep neural network. Figure 6 shows two sample sets of
data pairs.

Figure 6. Two sets of samples from the training set.

In the test set, we also reconstructed each of the acquired images using Tikhonov
regularization, using the reconstructed images as the test set images.

The FlatCam used to collect the data is the same as that in [46]. The system parameters
of FlatCam are shown in Table 1. We disassembled a camera and placed the mask close to
the sensor. According to our measurements, the distance between the sensor and the mask
is less than 3 mm.

Table 1. Flatcom system parameters.

System Parameters

Distance to target 30 cm
Mask pattern m-sequence
Sensor size 23.04 mm × 23.04 mm

Camera model vc-25mc-m30
Scene 5120 × 5120 × 1

Mask size 15.3 mm × 15.3 mm

It is important to highlight that, in the comparative experiments involving convolu-
tional neural networks, including FCN-8s, U-Net, and others, a consistent variable control
was maintained by conducting all tests within the pix2pix architecture framework. This
standardization ensures that the performance differences are attributable to the neural
network structures and strategies themselves, rather than variations in the overarching
experimental setup.
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4.2. Experimental Details

Unless otherwise specified, all our image restoration experiments were performed on
a server equipped with an NVIDIA GeForce RTX 3090 graphics card and Intel i9-10940X
CPU. In deep neural network training, we used a fixed learning rate (lr = 10−4) and Adam
optimizer to train until the network converged. Our network was completely convoluted.
Any size of image can be used as input as long as the GPU memory allows. Specifically, we
used the input image size of 512 × 512 pixel dataset. If not otherwise specified, all network
performances mentioned in this paper are measured conditional to the input and output
being 512 × 512 images.

4.3. Comparison With Other Algorithms

To evaluate the performance of the proposed algorithm, we have reconstructed and re-
stored lensless images on our dataset and compared them with other algorithms, including
U-net [34], FCN-8s [47], and Dense-U-net [48].

Figure 7a is an image from the test set, which we first reconstructed using Tikhonov
regularization to obtain Figure 7b, and we then used Figure 7b as input for each algorithm
to obtain each of the remaining images in Figure 7, respectively. As can be seen from the
objective evaluation metrics, the proposed algorithm significantly outperforms FCN-8s and
U-net. In the first stage, the PSNR of Dense-U-Net was higher than that of our proposed
algorithm, but in the second and third stages, the PSNR of the proposed algorithm exceeded
that of Dense-U-Net. It is worth mentioning that the size of the proposed model is much
smaller than that of Dense-U-Net. In terms of running speed, the proposed algorithm is
almost 18% faster than Dense-U-Net in the first stage, but there is not much difference in
image quality. The sizes and running times of the individual models are given in Table 2.
Figure 8 gives a comparison of the results of using different algorithms for some sample
test sets.

Figure 7. A sample result from the test set.
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Table 2. Model size and run time.

Algorithm Model Parameter Size/K Time/s

FCN-8s 131,269 0.043
U-Net 3950 0.046

Dense-U-Net 338,828 0.079
MARN-1-stage 7125 0.065
MARN-2-stage 14,250 0.097
MARN-3-stage 50,697 0.149

Figure 8. Seven images from the test set were restored using FCN-8s, Unet, Dense-U-Net, and the
proposed method.

The quantitative evaluation of 120 images is summarized in Figure 9 from the perspec-
tive of PSNR and SSIM, respectively. Based on the curves, it can be seen that the proposed
method outperforms other algorithms on almost all images. The average quantization
metrics for each of the 120 images are given in Table 3. It is clear that the proposed method
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improves, on average, 8.5968, 1.4225 (dB), and 0.0365 over the existing methods for the
three metrics MSE, PSNR, and SSIM, respectively.

Figure 9. The quantitative evaluations of PSNR and SSIM for 120 images.

Table 3. Comparison of quantitative indicators.

Algorithm MSE PSNR/dB SSIM

Previous work 105.4972 8.2982 0.0098
FCN-8s 94.6699 18.5603 0.4803
U-Net 86.2329 16.2278 0.4484

Dense-U-Net 89.3149 20.3110 0.5565
MARN-1-stage 88.9985 20.2235 0.5033
MARN-2-stage 82.5377 21.3704 0.5798
MARN-3-stage 80.7181 21.7335 0.5930

4.4. Ablation Experiment

In order to verify the effectiveness of the monitoring module and the attention mod-
ule, we conducted ablation experiments. The experimental results are shown in Table 4.
Since the supervision module directly affects the output of multi-stage restored images,
without the supervision module, our model can only restore images once, so there is only
the output of MARN-3-stage in the table.

Table 4. Ablation results.

Algorithm Supervision
Module

Attention
Module

MSE PSNR SSIM

MARN-1-stage
√

94.4483 18.9328 0.4418
MARN-2-stage

√
86.9825 20.5046 0.5556

MARN-3-stage
√

84.4851 21.0566 0.5805
MARN-3-stage

√
87.9114 20.4234 0.5635

MARN-1-stage
√ √

88.9985 20.2235 0.5033
MARN-2-stage

√ √
82.5377 21.3704 0.5798

MARN-3-stage
√ √

80.7181 21.7335 0.5930

It can be seen from Table 4 that removing the supervision module not only destroys the
multi-level output of the network, but also makes the network training more difficult and
the model parameters difficult to fully train; the effect of removing the attention module
is not obvious. We think this may be related to the insufficient details of the data set
we selected.

5. Discussion

This study introduces a multi-stage image restoration algorithm into the field of lens-
less imaging. By combining the pix2pix architecture and deep neural networks, it achieves
high-quality image reconstruction and restoration under varying computational resource
conditions. This has a positive impact on image processing and sensing applications
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in domains like IoT, with the potential to enhance the performance and adaptability of
imaging systems.

The proposed method provides a solution for image processing requirements on
terminal devices, enabling them to independently perform image reconstruction and
restoration. This is particularly significant for IoT terminal devices, such as smart cameras
and sensors, as it can improve their autonomy and performance.

Despite demonstrating good performance under different computational resource
conditions, the method may still require significant computational resources in some
cases and may not achieve real-time reconstruction. This limitation could restrict its
application in resource-constrained terminal devices. For IoT devices, actual deployment
and performance validation are crucial. Future work could involve deploying this method
on real terminal devices and conducting large-scale performance validation and practical
application case studies.

In summary, this work provides strong support for the development and application
of lensless imaging technology, particularly in the context of IoT. However, there are
still challenges to overcome, and future research can further improve and expand upon
this method.

6. Conclusions

This paper pioneers the integration of the pix2pix architecture and multi-stage im-
age restoration within the realm of lensless imaging, adeptly catering to the demand for
high-quality image acquisition in lensless imaging systems amidst varying computational
resources in the Internet of Things (IoT) landscape.

The methodology advanced in this study facilitates more comprehensive training of
deep neural networks. By implementing supervised multi-stage image restoration, this
ensures the pinnacle of image restoration quality in lensless systems when adequate compu-
tational resources are available. The efficacy and superiority of the proposed method have
been substantiated through both comparative and ablation experiments. It is anticipated
that the algorithm’s applicability extends beyond merely lensless image restoration. There
is an expectation that its potential could be further realized in tasks involving lensless
image inference, broadening its scope of influence within the field.
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