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Abstract: The combination of single‑pixel imaging and single photon‑counting technology enables
ultra‑high‑sensitivity photon‑counting imaging. In order to shorten the reconstruction time of single‑
photon counting, the algorithm of compressed sensing is used to reconstruct the underdetermined
image. Compressed sensing theory based on prior constraints provides a solution that can achieve
stable and high‑quality reconstruction, while the prior information generated by the network may
overfit the feature extraction and increase the burden of the system. In this paper, we propose a novel
sparse autoencoder network prior for the reconstruction of the single‑pixel imaging, andwe also pro‑
pose the idea of multi‑channel prior, using the fully connected layer to construct the sparse autoen‑
coder network. Then, take the network training results as prior information and use the numerical
gradient descent method to solve underdetermined linear equations. The experimental results indi‑
cate that this sparse autoencoder network prior for the single‑photon counting compressed images
reconstruction has the ability to outperform the traditional one‑norm prior, effectively improving
the reconstruction quality.

Keywords: sparse autoencoder network prior; single‑photon counting compressive imaging; single‑
pixel imaging; multi‑channel prior; numerical gradient descent

1. Introduction
Single‑pixel imaging, also known as computational ghost imaging, is an imaging

method based on compressed sensing. It loads a series of patterns on the spatial light
modulator (SLM) to modulate the imaging scene, using a point detector without spatial
resolution to detect the correlation intensity and then using the measured light intensity
value and the measurement matrix corresponding to the pattern to restore the image [1].
Single‑pixel imaging and single‑photon counting technology can be combined to realize
single‑photon counting compression imaging if a single‑photon detector is used. It has
two main advantages. One is that two‑dimensional imaging can be achieved only by us‑
ing point detectors. Compared with the imaging method using single‑photon avalanche
photodiode array, multi‑anode photomultiplier tube, microchannel plate photomultiplier
tube, and other array single‑photon detectors, it has lower cost and higher resolution, es‑
pecially in infrared, Terahertz, and other special frequency bands [2,3]. Secondly, the point
detector in the single‑pixel imaging system can collect the light intensity of multiple pixels
at the same time. By utilizing the relationship between photon count values and light inten‑
sity, the imaging sensitivity of the system is no longer limited by the detection sensitivity
of the single‑photon point detector, and thus, the imaging sensitivity of the system can be
very high. By using a single‑photon detector with photon limit sensitivity as point detec‑
tion, imaging sensitivity can be further improved so that single‑photon counting imaging
that exceeds the single‑photon limit can be achieved [4]. Therefore, single‑photon counting
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compression imagingwill have broad application prospects in ultra‑weak light imaging de‑
tection, such as medical diagnosis, astronomical observation, and spectral measurement.

For a two‑dimensional single‑photon image, the observation value f ∈ Rr can be
modeled as follows:

f = A
−
x + w, (1)

where A ∈ Rr×mn is a linear operator, and w ∈ Rr is a zero‑mean Gaussian white noise.
The problem of image reconstruction is to extract x from f through a linear system Ax = f .
However, under normal circumstances, the system is underdetermined (r < mn) or ill‑
conditioned (such as deconvolution and deblurring). The classic least squares methodwill
cause noise amplification, blurring, and overlap, so it is no longer applicable.

In order to stabilize the reconstruction, additional constraints and prior knowledge
are required. In the early stage, the development of single‑photon image reconstruction
methods mainly came from the regularization constraints based on compressed sensing
theory [5] and the introduction of explicit priors [6], such as one‑norm prior [7], Bayesian
prior [8], etc. The use of sparsity and low‑rank prior [9] information can quickly recon‑
struct images at low sampling rates, and good reconstruction effects can be obtained. The
one‑norm prior is a structured sparsity constraint that mainly contributes to feature extrac‑
tion and selection, making the training more efficient and interpretable. The L2‑norm can
also be used as a regularization term, preventing overfitting and improving the model’s
generalization ability, but it cannot make the network sparse so that it does not meet the
sparsity requirements of compressed sensing. Therefore, the previous work often uses
one‑norm as the prior information. The method using sparsity and low‑rank prior, known
as TVAL3, is really competitive in compressed sensing, particularly performing well at a
high sampling rate, which effectively solves a class of equality‑constrained non‑smooth
optimization problems with a particular structure. While this method is limited by the
sampling rate, its performance drops sharply when the sampling rate decreases.

Recently, neural networks have been used to assist rapid imaging and general image
reconstruction problems. They can be roughly divided into two methods. One method
is to use a traditional matrix with fixed acquisition methods and the elements that can be
changed in a specific way (such as Gaussian matrix, Hadamard matrix, etc.) as measure‑
ment matrix to realize the linear measurement of the image, and the neural network is
used to solve it. This method can avoid a large number of calculations brought by tradi‑
tional iterative algorithms so as to achieve rapid reconstruction [10]. Another method is
to use neural networks for joint learning sampling and reconstruction. The first layer of
the network uses a fully connected layer, which eliminates bias and activation functions,
and its weight matrix is used as the measurement matrix for compressed sensing after
training. Since the measurement matrix is obtained through joint optimization with the
reconstruction part, this method not only has a faster reconstruction speed but also has
a better reconstruction quality than the iterative algorithm [11]. However, the number
of weights of the fully connected layer will increase exponentially with the dimension of
the reconstructed image. When the reconstructed image is very large, the reconstruction
burden will be greatly increased.

This paper proposes a novel sparse autoencoder network prior for single‑photon im‑
age reconstruction combined with compressed sensing theory. Due to the powerful fea‑
ture extraction capability of the sparse autoencoder network and the superiority of the
network prior, the experimental results demonstrate that the reconstruction performance
of this method is better than that of the traditional one‑norm prior. Our contributions can
be summarized as follows:
• We proposed a novel compressed sensing reconstruction method with a sparse au‑

toencoder network prior that can be directly applied in photon‑counting compressed
imaging systems. Compared with the traditional one‑norm prior, this sparse autoen‑
coder network prior has significant advantages in terms of reconstruction quality;

• We proposed the concept of multi‑channel prior information, and our experiments
demonstrated that reconstructing images under the constraints of multi‑channel net‑
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work priors could effectively solve the problems encounteredwith single‑channel net‑
work priors. Good reconstruction results can be achieved regardless of the lowor high
measurement rate.

2. Compressive Reconstruction System for the Single‑Pixel Imaging
A compressive reconstruction system based on the sparse autoencoder network prior

for the single‑pixel imaging is shown in Figure 1. The combination of single‑pixel imag‑
ing and single‑photon counting technology was proposed byWenkai Yu et al. in 2012 [12].
The parallel light generator is composed of an LED light source with an output power of 10
W, a collimator, an attenuator, and a diaphragm. The LED light source emits parallel light
through the collimator, attenuator, and diaphragm, making the intensity of parallel light
at the single‑photon level, which illuminates the imaging target and then, the image on the
Digital Micro‑Mirror Device (DMD) through a convex lens. The DMD is composed of 1024
× 768 micro‑mirror arrays. Each micro‑mirror can control the rotation angle of the micro‑
mirror through a binary matrix loaded on the DMD to realize spatial light modulation. In
the binary matrix, “1” corresponds to the rotation of the micro‑mirror +12◦, and “0” corre‑
sponds to the rotation of the micro‑mirror −12◦. We use a single‑photon detector (PMT)
to collect the reflected photons with a deflection of +12◦ and transmit them into a specially
developed FPGA‑based single‑photon pulse counting circuit. The PMT is used in a photon
counting mode. In this mode, the incident light is weak so that the photomultiplier tube
outputs a discrete sequence of single‑photon pulses, where one pulse represents the detec‑
tion of a photon. The density of a single‑photon pulse represents the intensity of light, and
they are directly proportional. For this reason, we could obtain the accurate light intensity
without considering the instability probability caused by current and voltage. The circuit
loads the generated measurement matrix onto the DMD and, at the same time, counts the
single‑photon pulses from the PMT synchronously to obtain the photon pulse count value
and then combines the prior information obtained after the sparse autoencoder network
training to reconstruct the final image.
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and uses an iterative algorithm based on compressed sensing plus a prior regular term to 

Figure 1. The compressive reconstruction systemwe used for single‑pixel imaging. (a) The structure
of the system. The object is imaged on the DMD after the illumination by the parallel light and
then collected by PMT. The signal processed by FPGA is the measurement value Y, which is used to
reconstruct the picture with the prior information. (b) The relationship between photon pulse and
light intensity.

The traditional prior information reconstruction method uses a random matrix (such
as a Gaussian randommatrix) that meets the properties of RIP as the measurement matrix
and uses an iterative algorithm based on compressed sensing plus a prior regular term
to reconstruct a clear image. For example, the OMP algorithm uses a compressed sens‑
ing method based on a norm prior to iteratively reconstruct the image [8,13]. Under the
premise that the measurement matrix is fixed and the hardware quality is not considered,
the quality of image reconstruction depends on the selection of the prior information and
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the pros and cons of the iterative algorithm. Traditional one‑norm prior can no longer
meet the requirements of today’s image reconstruction. For images with obvious charac‑
teristics, we propose a new reconstructionmethod based on a sparse autoencoder network
prior, which effectively improves the reconstruction effect of one‑norm prior. This will be
introduced in detail in Section 3.

3. Sparse Autoencoder Network Prior‑Based Reconstruction Method
3.1. Compressed Sensing

Compressed sensing, also known as compressive sampling or sparse sampling, is a
technique for finding sparse solutions to underdetermined linear systems. The image re‑
construction process of solving the underdetermined equation y = Ax is based on known
measurement values y and measurement matrix A to obtain the original image x. It is
widely used in single‑photon compression imaging technology [14]. Therefore, single‑
photon compression imaging technology based on compressed sensing methods heavily
relies on the inherent sparsity of single‑photon images. If we define a manifold prior as
prior(x), the image reconstruction model can be expressed as follows:

Min
x

||Ax − y||2 + λ × prior(x), (2)

where x ∈ Rmn is the reconstructed image; A ∈ Rr×mn represents a partially sampled ran‑
dommatrix; y ∈ Rr represents the original data obtained in the single‑photon imaging sys‑
tem, and λ is a hyperparameter that balances the effects of image fidelity and
prior constraints.

3.2. Sparse Autoencoder Network
Sparse autoencoder [15] is an unsupervised learning algorithm used for learning fea‑

ture representation. It is a type of autoencoder neural network that transforms input data
into a series of encoding values and reconstructs them back to the original inputs using
a decoder. Its main target is to extract important features from high‑dimensional data
sets by learning a low‑dimensional representation. During this process, sparse autoen‑
coder usually imposes sparsity constraints on encoding values tomake the learned features
more robust and interpretable. A standard sparse autoencoder model typically consists of
three parts: encoder; decoder; and loss function. Figure 2 shows a diagram of a simple
sparse autoencoder.
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hidden layers, which means the extraction and reconstruction of image features. The SAE_LOSS is
the loss function we use in this experiment, consisting of two parts, MSELoss and sparsity penalty.
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In its specific structure, the original image UCAS image is given as input; then, the
image is first transformed into a low‑dimensional feature vector through the encoder. The
encoder consists of fully connected layers, which compress the low‑dimensional feature
vector in a feature‑specific manner. Then, the compressed feature vector is fed into the
hidden layer, and the activation function of the hidden layer is usually selected as Sigmoid
or ReLU. In the hidden layer, regularization of the activation value is necessary to handle
issues caused by insufficient activation leading to overfitting. The activation value is ad‑
justed to the sparsity constraint, and a sparse vector is output to the decoder. When this
sparse vector reaches the decoder, it is projected onto a fully connected output layer first,
which is equal in size to the pixels of the image. Then, the output of this layer will en‑
ter the reversal embedding operation, which remaps the high‑dimensional feature vector
compressed by the encoder back to the original input space and is used for reconstructing
the original image. The feature extraction diagram is shown in Figure 3.
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In a sparse autoencoder, if the dimension of the hidden layer is greater than or equal
to the input dimension, its parameters will simply store the input data and output them
when required. Although this method achieves high accuracy during training, the neural
network will experience overfitting when mapping the data identically. To prevent the
autoencoder network from mechanically copying the input to the output, it is necessary
to learn an under‑complete representation of the input that forces it to capture the most
relevant features in the training data. This approach is often used to extract themost useful
features from the input signal.

Throughout the encoding and decoding process, to control the activity level of neu‑
rons in the hidden layer, the sparse autoencoder introduces a sparsity constraint term in
the loss function, which constrains the activation status of the hidden layer to obtain better
feature abstractions and sparse representations. The loss function of the sparse autoen‑
coder consists of two key parts: reconstruction error and sparsity penalty. The reconstruc‑
tion error, named MSE loss, is mainly used to constrain the error of the model’s decoder
when reconstructing the sample, while the sparsity penalty forces the encoder model to
learn encoding values that conform to a certain sparsity level. This model can optimize
the weights of the autoencoder based on the reconstruction error, while sparse regulariza‑
tion can be achieved by restricting the weights of the encoder or adding a penalty term to
the loss function. The sparsity coefficient is a hyperparameter in the network that deter‑
mines how much non‑zero encoding should be learned. A low sparsity coefficient means
that the network can learn more non‑zero encoding to be more adaptive to noise.

Finally, themodel training is completed by optimizing the loss function, including the
reconstruction error from the decoder output and the sparsity constraint from the hidden
layer output. This approach allows for the gradual optimization of the parameters of the
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encoder and decoder, enabling the autoencoder to learn the characteristics of input data
and better reconstruct input images.

In image reconstruction, sparse autoencoder has certain advantages compared to other
neural networks such as dual fully connected layer autoencoder and U‑Net. Firstly, when
the activation rate of the intermediate hidden layer of the sparse autoencoder is limited, it
not only increases the compression degree of the image but also improves the modeling
of local rules and the effect of eliminating image noise. Secondly, sparse autoencoder has
fewer parameters and consumes fewer resources, making them easier to train and infer.
Moreover, the feature vectors learned by sparse autoencoder are interpretable and better
suited for dimensionality reduction processing of noisy images. Finally, in terms of ap‑
plication range, sparse autoencoders have been successfully applied in various image pro‑
cessing applications and perform better in traditional tasks such as low‑noise, denoising,
and dimensionality reduction compression.

In choosing the sparse autoencoder as a prior constraint for image reconstruction, this
decision is rooted in prior work where Alain et al. [16] established a connection between
the output of a sparse autoencoder network, denoted as Dx(u), and the true data density
p(u), as described by the following Equation (3).

Dx(u) =

∫
(u − η)gση (η)p(u − η)dη∫

gση (η)p(u − η)dη
, (3)

In the equation above, gση (η) is a Gaussian kernel with a standard deviation of ση .
This kernel is a smooth function characterized by rotational symmetry and translational
invariance.

As evident from this equation, the network output Dx(u) is a weighted average of
the image within the input neighborhood. In other words, the neural network can gen‑
erate a reconstructed image that closely resembles the original image by considering the
probabilities of pixel values within the input image regions, as well as the noise present in
the image. This implies a smoothed and weighted relationship between the output image
of the neural network and the regional pixels of the original image rather than a simple
one‑to‑one correspondence between pixel points. This equation mathematically explains
the principles underlying neural network image reconstruction and elucidates the prereq‑
uisite for employing the neural network as prior information—the neural network acting
as a prior can regulate relationships among regional pixels.

Moreover, D(x) progressively alignswith the input image x as the neural network loss
(D(x)− x) iteratively evolves. The change in D(x) can be derived through simultaneous
differentiation of both sides of Equation (3), resulting in Equation (4). This equation shows
that the autoencoder error D(x)− x is directly proportional to the smoothed gradient of
the logarithmic likelihood.

D(x)− x = σ2
η∇log[gση ∗ p](x), (4)

This equation implies that when there is a significant variation in the region of p(x),
particularly when this region contains texture information, D(x)− x should also exhibit
substantial changes. As the autoencoder undergoes successive training iterations, the er‑
ror D(x)− x approaches a minimum at either local or global extrema. This indicates that
within the context of image fidelity term reconstruction in this study, the proposed prior
constraint can gradually guide the fidelity term Ax − y toward an optimal output image
that adheres to texture features. This verifies that this prior constraint facilitates the incor‑
poration of texture information into the D(x)− x iterative training process.

Fundamentally, this sparse autoencoder network’s prior constraint resembles the prin‑
ciple of structured sparsity constraint, specifically the one‑norm prior constraint. The one‑
norm prior sets the probabilities of insignificantly contributing pixels to zero, reducing
noise and artifacts. Similarly, the sparse autoencoder network’s prior constraint regulates
based on the pixel grayscale variations within regions, aiding image reconstruction. Both
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approaches impact reconstruction at the pixel level. Consequently, the squared autoen‑
coder error can be used as a prior to influence image reconstruction. This motivation has
led to the proposal of a single‑photon compressed imaging method based on the prior
constraint of the sparse autoencoder network.

In order to obtain better prior information from the SAE network, we optimized the
training learning rate, network parameters, and loss function parameters, enabling the
SAE prior network to better assist in image reconstruction.

3.3. Single‑Pixel Imaging Based on the Sparse Autoencoder Network Prior
The experimental procedure is shown in Figure 4. We can obtain the reconstruction

of the image by solving the following objective function:

J(x) = Min
x

||Ax − y||2 + λ × ||D(x)− x||2, (5)

where x ∈ Rmn is the image to be reconstructed; A ∈ Rr×mn represents a partially sampled
randommatrix; y ∈ Rr represents the original data obtained in the single‑photon imaging
system; D(x) is the output of the network, and λ is a hyperparameter, which balances
the compressed sensing fidelity term and the prior constraint of the sparse autoencoder
network influences.
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The entire reconstruction process can be divided into two steps: training the sparse
autoencoder network to obtain prior information prior(x) and solving the objective func‑
tion to reconstruct the image. The main difference from the classical iterative method is
that during the image reconstruction process, we apply a novel prior constraint based on
the sparse autoencoder network in addition to the compressive sensing fidelity term. This
constraint will result in more desirable results compared to the traditional one‑norm prior
of the input image. The method of solving this objective function will be discussed in
detail later.

The success of the sparse autoencoder prior reconstruction method mainly lies in
two aspects:
1. The superiority of the network prior. It has been demonstrated in earlier works that

neural networks themselves are a form of prior knowledge, and their different struc‑
tures limit their ability to learn information. The image restoration ability constrained
by the prior of the network is superior tomany state‑of‑the‑art, non‑local, patch‑based
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priors, such as the BM3D prior [17]. We replace one‑norm prior with SAE prior to
change the role of the prior from a sparsity constraint to a contour similarity con‑
straint, making this process more interpretable;

2. The powerful feature extraction ability of the sparse autoencoder network allows it to
capture themost significant features in the training data. Using these features as prior
information for image restoration is advantageous in obtaining more accurate results.
Apart from the single‑channel network priors described above, the reconstruction per‑

formance can be improved by increasing the number of prior information channels, as
shown in Figure 5. We combine multiple different prior information as constraints for im‑
age reconstruction and assign them certainweights of influence. Through experiments, we
reach the conclusion that single‑channel network priors often have their limitations. For
example, the reconstruction effect at low sampling rates is better than that at high sam‑
pling rates. The performance of multi‑channel network priors can effectively express the
advantages of each single‑channel network prior while avoiding their shortcomings.
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Figure 5. The calculation structure of single‑channel andmulti‑channel network priors. (a) The struc‑
ture of single‑channel. We use the pre‑trained SAE network to obtain the prior information D(x) and
then initialize the image to be reconstructed x (img_h height and img_w width) as an all‑zero vector
(img_h* img_w height and 1 width). A is the measurement matrix, and Y is the measurement value
obtained via this experiment. x is calculated using gradient descent method as function 5. (b) The
structure of multi‑channel. We use two different SAE sampling rates to obtain the prior information.
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3.4. The Sparse Autoencoder Network Training and Reconstruction Method
3.4.1. The Sparse Autoencoder Network Training

Assuming that the input image is x ∈ Rmn, W ∈ RR×mn is the weight value, and
b ∈ RR is the bias, the core operation of the fully connected (FC) layer is the product
operation of the matrix vector:

Output = Wx + b, (6)

Through the influence of nonlinear activation functions, its essence is a nonlinear
transformation from one feature space to another. Any dimension in the target space, that
is, any node in the hidden layer, is believed to be influenced by each dimension of the
source space. The sparse autoencoder network using a fully connected layer can effectively
perform classification learning of different features of the input image. Compared with a
convolutional autoencoder network, this network is actually a convolution operation with
a kernel size equal to the size of the upper layer feature. The result after convolution corre‑
sponds to a node, which is a point in the fully connected layer. The advantage lies in that it
can comprehensively capture global information and capture the most significant features
of the input image.

Therefore, for the above reasons, we design the sparse autoencoder network to be a
simpler dual fully connected layer. The first layer reduces the dimensionality of the input
image so that the dimension of the hidden layer is much smaller than that of the input
image and realizes the encoding process of the input image. The second layer restores
the dimensionality to that of the input image, decoding the output reconstruction result.
During the training process, assuming the network output is D(x), weminimize the output
result to satisfy the following equation:

LossSAE = Ex

[
||D(x)− x||2

]
, (7)

where Ex
[
||D(x)− x||2

]
is the expectation calculation.

3.4.2. Reconstruction Method
After obtaining the final parameters of the sparse autoencoder network training, we

substitute them as the Equation (5).
This is a minimum value‑solving problem with a penalty term, and there are many

methods for solving it, such as the Augmented Lagrangemultiplier method (ALM) [18,19],
Alternating direction augmented Lagrange multiplier method (ADMM) [20], gradient de‑
scent method [21–23], and so on. Among them, the solutions of ALM and ADMM are to
solve the problembydecomposing it intomultipleminimumvalueswithout penalty terms,
and their iteration count is very large, resulting in the reconstruction time exhibiting expo‑
nentially with the image size. Compared to the first two methods, the reconstruction time
of the gradient descent method is significantly shorter, so we finally choose the gradient
descent method to solve the above equation. The solving algorithm steps are shown in
Algorithm 1.

Algorithm 1. The algorithm steps for solving with gradient method

1: Initialization: x0

2: for k = 1, 2, ..., K do

3: ∇ f (xk) ≈ f (xk+h)− f (xk−h)
2h

4: while the following equation is satisfied to stop iterating:
5: ∇ f

(
xk
)
< loss_max

6: end(while)
7: update xk+1 = xk −∇ f (x)× leaning_rate
8: end(for)
9: Output: xk+1



Photonics 2023, 10, 1109 10 of 21

The key to the gradient descent method is the accuracy of gradient calculation, and
traditional methods of calculating gradients are usually divided into two categories: an‑
alytical and numerical. The analytical method is to find the expression of the function
derivative and find the extreme value of the expression, that is, the gradient of the original
function. However, the derivative expression of most functions is very difficult to solve
and prone to errors. Therefore, considering the accuracy of gradient calculation, we use
numerical methods to calculate the gradient by using small changes in the independent
variable to estimate the derivative. Although this method is time‑consuming, it provides
higher accuracy.

Assuming f (x) is the function of the gradient to be obtained, h is the minimum value,
which is set to 0.0001, using the following Taylor series expansion:

f (x + h) = f (x) + f ′(x)h + f ′′ (x)h2 + O
(

h3
)

, (8)

f (x − h) = f (x)− f ′(x)h + f ′′ (x)h2 + O
(

h3
)

, (9)

f (x + h)− f (x − h) = 2 f ′(x)h + O
(

h3
)

, (10)

Therefore, the gradient of the function is as follows:

f ′(x) =
f (x + h)− f (x − h)

2h
+ O(h2), (11)

where O
(
h2) is the calculation error, the value is very small and can be ignored, so

we think
f ′(x) ≈ f (x + h)− f (x − h)

2h
, (12)

4. Result and Discussion
4.1. Implementation Details

We conducted four sets of simulation experiments and one application experiment to
evaluate the impact of sparse autoencoder prior on image reconstruction. In the simulation
experiments, we used theMNIST dataset and FACE dataset to train fully connected sparse
autoencoder networks and applied the results to reconstruct the “西光所” and “UCAS” im‑
ages; we reconstructed the imaging systemmeasurement value ywith the calculated value
Ax0. A is themeasurementmatrix corresponding to differentmeasurement rates, and x0 is
the original image; then, we obtained the theoretical measurement values y corresponding
to different MR. The process is shown in Figure 6. In the application experiments, the pho‑
ton counting method is used to reflect the light intensity; then, we obtained the number of
photon pulses from the system as the real measurement value y.
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Firstly, we fixed the network structure and changed the size of the hidden layer in the
sparse autoencoder network, that is, the network sample rate SR and the reconstruction
measurement rateMR in the range of 0.1–0.9, and compared the reconstruction resultswith
those of the traditional one‑norm prior and TVAL3 to verify the feasibility of the structure,
aiming to investigate the computational complexity of employing the sparse autoencoder
prior for the single‑photon reconstruction and the impact of network parameters on the
reconstruction outcomes.

Secondly, to enhance the performance of the sparse autoencoder, we needed to adjust
the sparsity parameter in the network. Therefore, we optimized the coefficient parameters
for the networks trained on the MNIST and FACE datasets using the dichotomy method
and then studied the λprior ratio of the corresponding sparse autoencoder network accord‑
ing to the order of magnitude of fidelity term and prior term during the iteration trained
on different datasets to explore the best prior reconstruction effect with a sum ratio.

Furthermore, we adjusted the network sample rate SR and reconstruction measure‑
ment rate MR of the sparse autoencoder for the MNIST and FACE datasets with adjusted
parameters to investigate the effect of network depth on reconstruction results. We also
used a multi‑channel prior method to explore whether it has a better generalization ability
and whether it can improve the prior reconstruction results.

Finally, we applied the principles and related data used in the simulation experiments
to the single‑photon image reconstruction system in the laboratory and conducted two
experiments at low sampling rates. We selected four measurement rates (MR = 0.05, 0.1,
0.3, 0.4) and analyzed and discussed the results by comparing the peak signal‑to‑noise
ratio (PSNR) with the original images. The ultimate goal of this study is to explore the
reconstruction ability of this method for single‑photon images.

The following formulas were used in the research process:

PSNR(x, x̂) = 20log10
Max(x̂)
||x − x̂||2

, (13)

assuming that x ∈ Rmn is the image to be reconstructed, and x̂ ∈ Rmn is the original image.

4.2. Experiment Result
4.2.1. Comparison between Sparse Autoencoder (SAE) Network Prior and
Other Methods

The reconstruction measurement rate of the measurement matrix in AX − Y is de‑
fined as MR, while the network sampling rate in the sparse autoencoder (SAE) network
is defined as SR. Table 1 shows the reconstruction results of the SAE network prior, tradi‑
tional one‑norm prior reconstruction, and TVAL3 at the same dataset, changing MR when
SR was fixed. The image reconstruction results are shown in Figure 7. Table 2 presents
the complexity of the two components involved in this method, namely, the training pa‑
rameter complexity of the sparse autoencoder and the computational complexity of the
prior‑constrained single‑photon reconstruction algorithm.

The results show that the method of reconstructing images using SAE network prior
information performs better than one‑norm prior at most MR and is significantly compet‑
itive when MR is low compared with TVAL3, which is consistent with the experimental
principles mentioned in Section 2.

Table 1. Reconstruction PSNR of different methods at different measurement rates MR.

Prior MR = 0.05 MR = 0.1 MR = 0.2 MR = 0.3 MR = 0.6

TVAL3 10.82683 9.84631 15.41595 22.62640 44.17010
one‑norm 15.60288 15.83556 16.57922 17.34535 20.72902
SAE (0.05) 15.63417 15.93219 16.71110 17.35355 19.37229
SAE (0.6) 15.59581 15.85697 16.78925 17.55059 20.41493
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Table 2. Computational complexity of single‑photon reconstruction based on SAE prior.

Computational Complexity
Estimation

Compute
Complexity

Parameter
Count

Training
Epochs

Training
Time (h)

SAE 16.778 M 16.788 M 1000 0.025
Min

x
||Ax − y||2 + λ × ||D(x)− x||2 Around 50,000 iterations 60 1.5
Min

x
||Ax − y||2 + λ × ||x||1 Around 50,000 iterations 80 2

Additionally, considering the computational complexity of the two components of
this approach, it can be observed that the first part, involving the sparse autoencoder
network, offers advantages such as lightweight structure, fast reconstruction, and high‑
quality reconstructed images. This part can be trained quickly and achieve excellent re‑
sults. The computational complexity of the second part, which involves single‑photon
reconstruction controlled by the prior constraint, is estimated using gradient descent. It as‑
sumes that the required number of computations for each operation and the amount of data
involved are proportional and uses a multiplication factor to estimate the computational
complexity of each operation. The computational complexity for each epoch operation is
recorded as 50,000 computations. Table 3 shows that the sparse autoencoder (SAE) prior in‑
volves approximately 20more epochs compared to the one‑normprior. Therefore, it is con‑
cluded that the image reconstruction effectiveness of using a sparse autoencoder network
as prior information surpasses that of the one‑norm prior reconstruction method with‑
out significantly sacrificing computational complexity to achieve performance improve‑
ment. Thus, it can be deemed advantageous to employ a sparse autoencoder network as
prior information.

Table 3. Training results at different Rho_target values with SR = 0.5 and beta = 0.1 (MNIST).

Rho_t 0.01 0.05 0.055 0.056 0.1

PSNR 20.27770 20.43110 20.52952 20.50590 20.41738
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We investigated the reconstruction performance of the SAE prior in low (SR = 0.05)
and high (SR = 0.6) sampling rates. Compared with the results using one‑norm prior, the
advantage of the SAE prior became more prominent when the sampling rate SR and the
prior measurement rate MR were both low. Correspondingly, when the sampling rate
SR and the prior measurement rate MR were both high, the advantage of the SAE prior
became more remarkable. We believe that this is due to the powerful feature extraction
ability of the SAE because when reconstructing the prior information using this network,
it has a stronger image reconstruction ability compared with adopting the one‑norm prior.

In this experiment, we found that the reconstruction results of the SAE prior were
better when the SR and MR were matched than when they were not. We realized that
this was because the features of the image we use were similar to those of the MNIST
dataset and had fewer features. Therefore, the SAE prior with SR = 0.05 and MR = 0.05
had a stronger capability of capturing the main image features, while the SAE prior with
SR = 0.6 might capture redundant features and, thus, had worse performance than that
with SR = 0.05. This suggests that it is more favorable to have both SR and MR low for
reconstruction. Similarly, when MR = 0.6, the SAE prior with SR = 0.6 could better satisfy
the feature capturing requirements; that is, the features captured by the SAE prior network
conformed to the reconstruction requirements of AX − Y. Therefore, the effect was better
when both SR and MR were high than when MR was high and SR was low.

4.2.2. Select the Optimal SAE Network Parameters and Prior Reconstruction Parameter λ
To enhance the performance of the prior network during the reconstruction process, it

is necessary to adjust the parameters of both the SAE network and the prior reconstruction.
Owing to the varying number of image features present across different datasets and other
reasons, the FACE dataset has more complex features than the MNIST dataset; we have
carried out distinct parameter optimization procedures for each of these datasets.

1. Parameters of SAE Network

The SAE network adds constraints to the loss function compared to the traditional au‑
toencoder. Among them, there is a control parameter of the hidden layer state, the expected
sparsity ratio Rho_t, used to represent the expected average activation of the hidden layer,
thus affecting the compression performance and generalization ability of the model, as
well as the coefficient penalty term beta. The higher the value of beta, the higher the spar‑
sity requirement of the encoder’s hidden layer, which may result in better compression
and generalization performance but, correspondingly, may also make network training
more difficult.

In this experiment, we fixed beta and Rho_t and trained the network at the same SR
to identify the optimal parameters for the SAE network on the MNIST and FACE datasets.
The process is shown in Figure 8.

For the MNIST dataset, we first measured the PSNR under different Rho_t with
beta = 0.1. The experimental results show that the network training achieves optimal per‑
formance when the expected sparsity ratio Rho_t is around 0.055. Next, we measured the
PSNR under different beta with fixed Rho_t = 0.05, and the experimental results show that
the sparsity coefficient penalty term achieves optimal performance when it is around 0.2;
that is, the network can perform better with Rho_t = 0.055 and beta = 0.2. Then, we mea‑
sured the optimal parameters of the FACE dataset in the same way as above, showing that
the network trained by the FACE dataset performs better when Rho_t = 0.01 and beta = 0.3.
The results are shown in Tables 3–6.

Table 4. Training results at different beta values with SR = 0.5 and Rho_t = 0.05 (MNIST).

Beta 0.1 0.15 0.2 0.23 0.25

PSNR 20.43130 20.44929 20.48450 20.44459 20.43981



Photonics 2023, 10, 1109 14 of 21

Table 5. Training results at different Rho_target values with SR = 0.5 and beta = 0.3 (FACE).

Rho_t 0.005 0.01 0.015 0.02 0.05

PSNR 18.67160 19.23764 18.67760 19.15409 18.95618
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Table 6. Training results at different beta values with SR = 0.5 and Rho_t = 0.05 (FACE).

Beta 0.1 0.2 0.3 0.4 0.5

PSNR 19.08152 19.36060 19.37492 19.27794 19.15430

2. The prior balance parameter λ in the prior reconstruction

The prior balancing parameter λ in the reconstruction objective balances the impact
of the compressive sensing fidelity term and the prior constraint. If its value is excessively
large, it could undermine the effect of the fidelity term, while its small value would ren‑
der the prior effect less pronounced. Hence, by analyzing the relative scale and gradient
changes of the two during training, we could determine the optimal value. Moreover, as
different image features exist across various datasets, the magnitudes of training quanti‑
ties also vary, implying that SAE prior networks based on different datasets should exhibit
distinct λ values, and the process is shown in Figure 9.

In our experiment, we conducted a λ test based on the MNIST dataset under the con‑
dition of SAE prior SR = 0.3, MR = 0.3, Rho_t = 0.055, and beta = 0.2. We selected a value
range of 0.1–10 for the initial scale of the fidelity term and prior constraint during train‑
ing and evaluated the reconstruction effects under various λ values. The experimental
results showed that the reconstruction quality was the best when λ = 0.5, with the recon‑
structed images exhibiting higher PSNR, as presented in Table 7. During the training, with
step_num = 1, the fidelity term result1 starts at a scale of 1010 and gradually decreases to
103 with increasing training iterations. To enable the fidelity term and the prior to achieve
amore synchronized gradient impact, we should select the λ value that allows for the prior
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constraint result2 to fit into this range. When λ = 0.5, result2 is at the scale of 106, meeting
our expectations.
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datasets to train the SAE network and test the best performance parameter λ.

Table 7. Reconstruction results at different values of λ (MNIST).

λ 0.01 0.1 0.5 1 10

PSNR 17.32141 17.32242 17.32894 17.32025 17.31337

Similarly, these experiments were conducted on the FACE dataset under the condi‑
tions of SR = 0.3, MR = 0.3, Rho_t = 0.01, and beta = 0.3 to examine the reconstruction
effects under different λ values. The result shows that the best λ under the FACE dataset
is 100, as presented in Table 8.

Table 8. Reconstruction results at different values of λ (FACE).

λ 25 50 100 110 150

PSNR 17.11100 17.12348 17.14735 17.40971 17.24071

4.2.3. The Effects of Sampling Rate SR and Reconstruction Measurement Rate MR of SAE
Prior on Image Reconstruction of Different Datasets

To investigate the impact of different datasets as prior information for SAE on recon‑
struction, the same network structure was used to train the MNIST dataset and the FACE
dataset separately. The prior results obtained from training were then used for the recon‑
struction of different test images.

Based on the experimental results presented in our previous study, we reconstructed
the image “UCAS” using the optimal reconstruction parameters obtained from the SAE
prior and the reconstruction process. Figures 10 and 11 illustrate the reconstructed results.
Our experimental results demonstrate that changing the sampling rate SR while keeping
the measurement rate MR constant has little effect on the overall reconstruction quality.
However, changing themeasurement rateMRwhile keeping the sampling rate SR constant
has a significant impact on the reconstruction quality. As “UCAS” has a relatively low
number of features, it still maintains some reconstruction competitiveness even under low
sampling rates. The results are shown in Tables 9 and 10.
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Table 9. Reconstruction results at different values of SR and MR (MNIST).

SR MR = 0.05 MR = 0.1 MR = 0.3 MR = 0.6 MR = 0.9

0.05 15.35845 15.74198 17.19696 20.58298 26.98725
0.1 15.38565 15.73773 17.19660 20.59198 27.01659
0.3 15.39108 15.73896 17.20087 20.61011 27.01370
0.6 15.38773 15.73296 17.20256 20.60886 27.01445
0.9 15.38594 15.73431 17.20620 20.60880 27.03663
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Table 10. Reconstruction results at different values of SR and MR (FACE).

SR MR = 0.05 MR = 0.1 MR = 0.3 MR = 0.6 MR = 0.9

0.05 15.39450 15.69398 17.17027 20.30837 25.02564
0.1 15.37207 15.75328 17.13487 20.13807 24.98679
0.3 15.38561 15.66410 17.24386 20.11817 24.93752
0.6 15.43811 15.70000 17.10307 20.18926 25.35408
0.9 15.40044 15.68401 17.31690 20.19478 25.22858

4.2.4. The Effect of Multi‑Channel Prior Experiment on Prior Reconstruction
Based on the conclusion in Section 4.2.1, we understand that the low MR prior recon‑

struction has better performance than the one‑norm prior when the SR is low, while the
highMRprior reconstruction has better performance than the one‑norm prior when the SR
is high. Therefore, we aim to improve the model’s generalization ability by combining the
low SR and high SR channels and incorporating fidelity terms. We adopt a multi‑channel
approach to incorporate the autoencoding prior, selecting appropriate weight parameters,
and minimizing the following expression:

J(x) = Min
x

||Ax − y||2 + λ1 × ||D1(x)− x||2 + λ2 × ||D2(x)− x||2, (14)

||D1(x)− x||2 and ||D2(x)− x||2 represent the prior information of two autoencoder
networks. In this experiment, SR = 0.05 and SR = 0.9 channels were selected for comparison
and analysis, combined with a single SR = 0.05 and SR = 0.9 channel.

The experimental results in Figure 12 demonstrate that themulti‑channel SAEnetwork
effectively addresses the drawbacks of the single‑channel method while preserving its ad‑
vantages, resulting in good performance for reconstructing low and high‑measurement‑
rate images. This validates the hypothesis that multi‑channel approaches can enhance the
performance of prior‑based image reconstruction. This trade‑off approach effectively bal‑
ances the strengths of both SR = 0.05 and SR = 0.9 scenarios, leading to improved prior‑
based image reconstruction. The findings suggest that the multi‑channel SAE network
can be a promising approach for enhancing the performance of prior‑based image recon‑
struction. However, this will significantly increase the difficulty of adjusting parameters,
which is a time‑consuming and laborious task.
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Application of ±1 binary matrix used in simulation training in a single‑photon imag‑
ing system in the laboratory. Applications 1 and −1 are converted to 0, respectively, and
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the subtraction of the measurement values applied on DMD is used as the actual measure‑
ment value Y. MR = 0.05, 0.1, 0.3, 0.4 are selected as the low measurement rate, and three
images are reconstructed. Specifically, it should be noted that the mask on the template
is slightly different from the actual original image in terms of angle, scaling, and padding.
In order to ensure the rigor of this experiment, the well‑reconstructed image at a sampling
rate of 0.9 is used as the input image for prior reconstruction, and the reconstructed images
are compared with the input image by calculating the PSNR.

The reconstruction results are shown in Figures 13 and 14, and the gradient during this
experiment is shown in Figure 15. In addition, when comparing the results of Figures 13
and 14with those of Figures 10 and 11, we found that the reconstruction results are better at
lowerMRwhen the actualmeasurement value Y of single‑photon reconstruction is applied
to binary matrix reconstruction.
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Although the reconstruction effect was slightly worse at MR = 0.3 compared to the
previous simulation experiment, the prior reconstruction method had a better reconstruc‑
tion effect at lower MR. This indicates that the SAE prior reconstruction method is more
competitive at low measurement matrix sampling rates and performs better in real exper‑
iments at low sampling rates than in simulation experiments.

5. Conclusions
We propose a new sparse autoencoder network prior for the single‑pixel image re‑

construction. Unlike traditional prior information, this method uses the trained results of
the sparse autoencoder network as the prior for the image reconstruction, and we demon‑
strate that SAE prior transforms sparsity constraints of the prior terms into contour simi‑
larity constraints, effectively optimizing the role of prior terms in the reconstruction pro‑
cess. Experimental results show that this method is more suitable for images with distinct
features, such as MNIST images and FACE images, and has significant advantages in re‑
constructing single‑photon images. Compared with the traditional one‑norm prior and
TVAL3, the proposed sparse autoencoder network prior outperforms the traditional one‑
norm prior when using matching prior sampling rates and reconstruction measurement
rates in single‑channel prior, and the reconstruction quality of the multi‑channel prior is
superior to one‑norm prior at any measurement rates when adjusting the weight settings,
effectively improving the reconstruction quality and flexibility while maintaining the cost
of computation at a similar level with one‑norm prior. Furthermore, the performance of
our SAE prior is significantly competitive whenMR is low compared to the TVAL3. There‑
fore, it is suitable for various scenarios and has broad development prospects. However,



Photonics 2023, 10, 1109 20 of 21

the disadvantage is that it has poor generalization ability and is unable to effectively recon‑
struct natural images with less obvious features under low sampling rates.

Author Contributions: Conceptualization, W.C. and H.W.; funding acquisition, H.W.; investigation,
S.D. and W.C.; methodology, H.Z. and H.G.; software, H.Z., J.D. and Q.L.; writing—original draft,
H.Z.; writing—review and editing, J.D., Q.L. andH.W.; visualization, S.D. andH.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research was funded by the West Light Foundation of the Chinese Academy of Sci‑
ences, grant No. XAB2021YN15.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

DataAvailability Statement: The data underlying the results presented in this paper are not publicly
available at this time but may be obtained from the authors upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Takhar, D.; Laska, J.N.; Wakin, M.B.; Duarte, M.E.; Baron, D.; Sarvotham, S.; Kelly, K.E.; Baraniuk, R.G. A new Compressive

Imaging camera architecture using optical‑domain compression. In Proceedings of the Conference on Computational Imaging
IV, San Jose, CA, USA, 16–18 January 2006.

2. Li, Q. Research on Key Technologies of Super Resolution Processing for Single Pixel Imaging Based on Deep Learning.
Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2021.

3. Yu, W.; Yao, X.; Liu, X.; Zhai, G.; Zhao, Q. Compressed sensing for ultra‑weak light counting imaging. Opt. Precis. Eng. 2012,
20, 2283–2292.

4. Yu, W. Applications of Compressed Sensing in Super‑Sensitivity Time‑Resolved Spectral Imaging. Ph.D. Thesis, University of
Chinese Academy of Sciences, Beijing, China, 2015.

5. Bai, L.; Liang, Z.; Xu, Z. Study of single pixel imaging system based on compressive sensing. Comput. Eng. Appl. 2011, 47,
116–119.

6. Zhang, X.Y.; Deng, C.J.; Wang, C.L.; Wang, F.; Situ, G.H. VGenNet: Variable Generative Prior Enhanced Single Pixel Imaging.
ACS Photonics 2023, 11, 2363–2373. [CrossRef]

7. Tropp, J.A.; Gilbert, A.C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory
2007, 53, 4655–4666. [CrossRef]

8. Ji, S.H.; Xue, Y.; Carin, L. Bayesian compressive sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [CrossRef]
9. Li, C.; Yin, W.; Jiang, H.; Zhang, Y. An efficient augmented Lagrangianmethodwith applications to total variationminimization.

Comput. Optim. Appl. 2013, 56, 507–530. [CrossRef]
10. Dong, W.S.; Wang, P.Y.; Yin, W.T.; Shi, G.M.; Wu, F.F.; Lu, X.T. Denoising Prior Driven Deep Neural Network for Image Restora‑

tion. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 41, 2305–2318. [CrossRef] [PubMed]
11. Xie, X.M.; Wang, Y.X.; Shi, G.M.; Wang, C.Y.; Du, J.; Han, X. Adaptive Measurement Network for CS Image Reconstruction.

In Proceedings of the 2nd CCF Chinese Conference on Computer Vision (CCCV), China Comp Federat, Tianjin, China, 11–14
October 2017; pp. 407–417.

12. Yu, W.‑K.; Liu, X.‑F.; Yao, X.‑R.; Wang, C.; Gao, S.‑Q.; Zhai, G.‑J.; Zhao, Q.; Ge, M.‑L. Single photon counting imaging system
via compressive sensing. arXiv 2012, arXiv:1202.5866.

13. Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal Matching Pursuit—Recursive Function Approximation with Applica‑
tions to Wavelet Decomposition. In Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific
Grove, CA, USA, 1–3 November 1993; pp. 40–44.

14. Donoho, D.L. Compressed sensing. IEEE Trans. Inf. Theory 2006, 52, 1289–1306. [CrossRef]
15. Ng, A. CS294A Lecture Notes Sparse Autoencoder. In Lecture Notes: Sparse Autoencoder; Stanford Univ. Press: Standford, CA,

USA, 2011.
16. Alain, G.; Bengio, Y. What Regularized Auto‑Encoders Learn from the Data‑Generating Distribution. J. Mach. Learn. Res. 2014,

15, 3563–3593.
17. Dabov, K.; Foi, A.; Katkovnik, V.; Egiazarian, K. Image denoising by sparse 3‑D transform‑domain collaborative filtering. IEEE

Trans. Image Process. 2007, 16, 2080–2095. [CrossRef] [PubMed]
18. Hestenes, M.R. Multiplier and gradient methods. J. Optim. Theory Appl. 1969, 4, 303–320. [CrossRef]
19. Yurkiewicz, J. Constrained optimization and Lagrange multiplier methods, by D. P. Bertsekas, Academic Press, New York, 1982,

395 pp. Price: $65.00. Networks 1985, 15, 138–140. [CrossRef]
20. Liu, Q.H.; Shen, X.Y.; Gu, Y.T. Linearized ADMM for Nonconvex Nonsmooth Optimization with Convergence Analysis.

IEEE Access 2019, 7, 76131–76144. [CrossRef]

https://doi.org/10.1021/acsphotonics.2c01537
https://doi.org/10.1109/TIT.2007.909108
https://doi.org/10.1109/TSP.2007.914345
https://doi.org/10.1007/s10589-013-9576-1
https://doi.org/10.1109/TPAMI.2018.2873610
https://www.ncbi.nlm.nih.gov/pubmed/30295612
https://doi.org/10.1109/TIT.2006.871582
https://doi.org/10.1109/TIP.2007.901238
https://www.ncbi.nlm.nih.gov/pubmed/17688213
https://doi.org/10.1007/BF00927673
https://doi.org/10.1002/net.3230150112
https://doi.org/10.1109/ACCESS.2019.2914461


Photonics 2023, 10, 1109 21 of 21

21. Kivinen, J.; Warmuth, M.K. Exponentiated gradient versus gradient descent for linear predictors. Inf. Comput. 1997, 132, 1–63.
[CrossRef]

22. Phillips, J.M. Gradient Descent. InMathematical Foundations for Data Analysis; Springer International Publishing: Cham, Switzer‑
land, 2021; pp. 125–142.

23. Shamir, O. Making Gradient Descent Optimal for Strongly Convex Stochastic Optimization. arXiv 2011, arXiv:1109.5647.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual au‑
thor(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1006/inco.1996.2612

	Introduction 
	Compressive Reconstruction System for the Single-Pixel Imaging 
	Sparse Autoencoder Network Prior-Based Reconstruction Method 
	Compressed Sensing 
	Sparse Autoencoder Network 
	Single-Pixel Imaging Based on the Sparse Autoencoder Network Prior 
	The Sparse Autoencoder Network Training and Reconstruction Method 
	The Sparse Autoencoder Network Training 
	Reconstruction Method 


	Result and Discussion 
	Implementation Details 
	Experiment Result 
	Comparison between Sparse Autoencoder (SAE) Network Prior and Other Methods 
	Select the Optimal SAE Network Parameters and Prior Reconstruction Parameter  
	The Effects of Sampling Rate SR and Reconstruction Measurement Rate MR of SAE Prior on Image Reconstruction of Different Datasets 
	The Effect of Multi-Channel Prior Experiment on Prior Reconstruction 
	Application of Network Prior in Single-Photon Image Reconstruction Results in Laboratory Experiments 


	Conclusions 
	References

