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Abstract: In this review, the conservation methods for various types of cultural relics enabled by
hyperspectral imaging are summarized, and the hyperspectral cameras and techniques utilized in the
process from data acquisition to analyzation are introduced. Hyperspectral imaging is characterized
by non-contact detection, broadband, and high resolution, which are of great significance to the
non-destructive investigation of cultural relics. However, owing to the wide variety of cultural relics,
the utilized equipment and methods vary greatly in the investigations of the associated conservation.
Previous studies generally select a single type of cultural relic for conservation. That is, seldom study
has focused on the application of hyperspectral techniques to generalized conservation methods that
are simultaneously suitable for different types of cultural relics. Hence, some widely used hyper-
spectral cameras and imaging systems are introduced first. Subsequently, according to the previous
investigations, the methods used for image acquisition, image correction, and data dimensionality
reduction in hyperspectral techniques are described. Thirdly, a summary of methods in cultural relic
conservation based on hyperspectral techniques is presented, which involves pigments, grottoes and
murals, and painting and calligraphy. Later, some challenges and potential development prospects in
hyperspectral-based methods are discussed for future study. Finally, the conclusions are given.

Keywords: conservation; hyperspectral imaging; mural disease; non-destructive analysis; painting
and calligraphy; pigment identification

1. Introduction

There is a great number of cultural relics around the world produced through its long
history. These relics are an important cultural heritage that carries the history of the progress
of people in the world and invaluable humanistic knowledge; thus, their conservation is
essential and has attracted increasing attention in recent years. In the early years of heritage
exploration, a manual approach with expert experience was the mainstream solution.
However, owing to the limitations of our knowledge, it is difficult to monitor and preserve
severely damaged heritage well, and human intervention is even more likely to cause
irreversible damage to the heritage. Therefore, various chemical and physical analytical
methods have been gradually introduced into the study of heritage conservation.

Spectral analysis techniques including X-ray fluorescence and laser Raman spec-
troscopy have been successfully used in cultural relic conservation for analyzing material
elements, identifying pigment composition [1], deconstructing rock formation [2], and
other functions. Raman spectroscopy can provide highly detailed structural information
of molecules, but its small light spot size makes it unsuitable for analyzing cultural relics
with large sizes. Later, digital image analysis was introduced to fully describe the spa-
tial information of cultural relics. Nevertheless, digital images have strict requirements
on the environmental lighting conditions and are limited to the visible light range, thus
resulting in notable information loss along the near- and mid-infrared wavelength range.
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The multispectral method uses both visible and invisible lights to describe the spectrum of
cultural relics and identify its pigment composition [3]. However, multispectral analysis is
usually characterized by wide spectral intervals, which may drown small differences in
sensitive bands and eventually lose some detailed information. With the development of
optoelectronics, hyperspectral imaging, first developed in the 1980s by the Jet Propulsion
Laboratory and previously used in medical diagnosis and food safety, was first utilized
for the pigment identification of cultural relics in 2003 [4]. Hyperspectral imaging that can
extend the spectral range to the mid-infrared band with much smaller spectral intervals has
been utilized for the information extraction of paintings and calligraphy [5–11], pigment
identification [12], and the paint loss disease of grottoes and murals [13–15].

In [16], several conventional imaging techniques for cultural relic conservation are
summarized, including X-ray, multispectral, and hyperspectral imaging, as well as the
corresponding devices and their parameters. In [17], the achievements of hyperspectral
imaging in painted artefacts for implied information mining and pigment analysis are con-
cluded. Similarly, the hyperspectral method is also used for rock and mineral identification.
Different hyperspectral remote sensing methods for rock and mineral identification, in-
cluding their advantages, disadvantages, and applicable scenarios, are summarized in [18].
In this paper, the detailed processes of cultural relic conservation based on hyperspectral
imaging, from data acquisition to data application, are introduced first. Subsequently,
the various types methods of cultural relic conservation using hyperspectral imaging are
discussed in detail. Finally, the current insufficiencies and several potential improvements
of cultural relic conservation enabled by hyperspectral imaging are presented.

2. Features of Hyperspectral Imaging

The past decades have witnessed the rapid development of spectral analysis, and
currently there are different instruments covering various wavelengths. Several typical
spectrometers and their major parameters are listed in Table 1. The hyperspectral imager
is an optical instrument that can acquire spectral information like reflection, scattering,
or radiation from an object at different wavelengths and transform it into high-resolution
images with 100–400 spectral channels. As shown in Table 1, compared to the Raman and
short-wavelength infrared spectrometers, hyperspectral imagers exhibit a high resolution of
less than 10 nm, and generally operate in a spectral range of 400–2500 nm [19], covering both
the visible and near-infrared light ranges. As for cultural relic conservation, hyperspectral
images are characterized by non-contact detection, are non-destructive, and have a wide
wavelength range. The spectrometers have the feature of “combining image with spectrum
acquisition”, which can preserve the spatial characteristics and spectral information of
cultural relics; hence, multi-angle methods can be further used with hyperspectral images.

Table 1. Parameters of several representative spectrometers.

Spectrometer Spectral Range Resolution Image Spectral Information

Raman Spectrometer 2.5–25 µm <15 cm−1 Chemical images with
molecular information Raman scattering of molecules

Short-wavelength Infrared
Spectrometer 1000–2500 nm <12 nm Optical images Reflectance of each pixel

Hyperspectral Spectrometer 400–2500 nm <10 nm Optical images Reflectance of each pixel

Hyperspectral images are different from digital images in that they include both the
spectral information and the spatial information. Taking the spatial information of the
image as two-dimensional (x, y) and the spectrum as the third dimensional information,
each pixel of the image contains detailed information with hundreds of bands. The spectral
information is generally expressed by reflectance [20]. As shown in Figure 1, for a certain
point of the hyperspectral image, its reflectance curve versus the wavelength can be easily
obtained. For the same matter, its reflectance curve is fixed and directly represents the
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rule of reflectance variation of the object along with the wavelength variation, which is
mainly determined by the physical properties of the matter and will not be influenced
by environmental changes. There are certain conditions that can cause subtle differences
in the reflectance spectrum of the same matter. For instance, the long-term placement of
the object can cause red shift, that is, the entire spectral curve shifting towards the red
light. In general, there are obvious individualized differences in the spectral profiles of
matters, which are the basis of hyperspectral cultural relic conservation. In fact, the high
resolution and large wavelength range of hyperspectral imaging can significantly enhance
the efficiency of data processing and analysis.
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The compact airborne spectrographic imager (CASI) based on hyperspectral imaging
was developed in 1989 [21]. In 2000, National Aeronautics and Space Administration
launched the Earth Observation 1 (EO-1) satellite with the Hyperion imaging spectrometer
for spaceborne hyperspectral remote sensing (HRS) application [22]. The EO-1 satellite
has been operating successfully for over 20 years, providing a large number of HRS
images. The Shenzhen-3 China Moderate Resolution Imaging Spectrometer is a spaceborne
hyperspectral imager launched in 2002. Since then, a series of spectrometers, including the
visible and near-infrared imaging spectrometer used in the Yutu lunar rover, have been
developed [23].

In the past two decades, a variety of hyperspectral imaging systems have emerged
to provide powerful capability for cultural relic conservation. Dvoptic, Headwall, and
XIMEA have developed hyperspectral scanning systems to study paintings [24–26]. The
VSC6000 system commercialized by Foster+Freeman has been widely used for handwriting
analysis [27]. The National Gallery of Art reflectance hyperspectral systems [9] extend
the spectral range to 2500 nm with a 2.8 nm spectral sampling wavelength, which can
support the mapping of paint binders and improving pigment identification. The Palace
Museum, together with the Remote Sensing Institute of the Chinese Academy of Sciences,
has developed a hyperspectral automatic scanning and stitching system specifically for
the analysis of paintings and calligraphy [28]. Additionally, compact and portable hyper-
spectral cameras have been widely used in cultural relic conservation. Table 2 sketches
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four main parameters of some commonly used hyperspectral cameras. The SVC1024i
portable geospectrometer and Dualix GaiaField imaging camera are generally used in
pigment identification. The visible and near-infrared (VNIR) 400H hyperspectral camera
from Themis Vision Systems is capable of extracting and identifying faded text [29], and has
been used to study tomb murals [30]. Furthermore, the Headwall short-wave near-infrared
unmanned airborne hyperspectral imager is suitable for extreme environmental conditions
like cliffs and crags. In [31], a novel hyperspectral camera with effective pigment mapping
was developed for painting imaging, which shows that the Fourier transform hyperspectral
imaging is a promising technique for cultural relic conservation.

Table 2. Parameters of commonly used hyperspectral cameras.

Hyperspectral Camera Brand Spectral Range Resolution Analysis Objects

VNIR A-Series hyperspectral
imager Headwall 380–1000 nm 3 nm Murals

VNIR 400H hyperspectral
camera Themis Vision Systems 400–1000 nm 2.8 nm Murals, paintings

Pro-V10 hyperspectral camera Dualix 400–1000 nm 3.5 nm Murals

SOC710 hyperspectral camera Surface Optics 400–1000 nm 2.4 nm Murals, crockery

SVC1024i portable
spectrometer Spectra Vista 340–2510 nm

52.8 nm, 350–1000 nm
58.0 nm, 1000–1900 nm
56.0 nm, 1900–2500 nm

Pigments,
porcelains

GaiaField imaging camera Dualix 385–1032 nm 3.5 nm Pigments

FieldSpec3 portable
spectrometer Malvern Panalytical 350–2500 nm 3 nm, 350–1000 nm

10 nm, 1000–2500 nm Pigments

T-FPS2500 hyperspectral
camera Themis Vision Systems 400–2500 nm 6.3 nm Murals, paintings

NUVNIR-350 pushbroom
hyperspectral imager Themis Vision Systems 350–1000 nm 1.5 nm Paintings

3. Hyperspectral Image Analysis

To obtain spectral data with higher reproduction and eliminate the influence of envi-
ronmental noise, hyperspectral images should be processed properly at each stage: hyper-
spectral image acquisition, spectral image correction, and data dimensionality reduction.
The methods used in these stages are described in detail below.

3.1. Hyperspectral Image Acquisition

Hyperspectral image acquisition can be carried out by using different kinds of hyper-
spectral imagers, such as close-up shooting cameras, airborne cameras, and satellite-based
cameras. The spaceborne and airborne spectrometers are able to receive ground reflection
information in different spectral bands including visible, near-infrared, mid-infrared, and
others. Under the geographical conditions of dry surface soil, archaeological remains can
form more obvious signs in hyperspectral images; in particular, their mid-infrared band
has a better reflection effect on the subsurface remains and can restore the general layout.
As is known, the flight altitude of aircraft (6–15 km) is much lower than that of satellites
(400–1000 km), thus the spatial resolution of airborne hyperspectral imaging is generally
much higher than that of the satellite platforms. Hence, in archaeological research, airborne
spectrometers are more attractive than spaceborne ones [32]. Therefore, airborne hyper-
spectral remote sensing has been utilized to detect the overall layout of the underground
part of Qin Shihuang’s Mausoleum [33].

In fact, there is a large number of small objects in cultural relic conservation. For the
murals, paintings, and ceramics, the close-range photography-based approach exhibits
notable advantages in spatial resolution and local details expression. To retain as much
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detail as possible in the original images, the effects of lighting and other environmental
factors must be eliminated. In the study of Han Xiu’s Tomb murals, Headwall’s VNIR
A-Series hyperspectral imager with a spectral range of 380–1000 nm was used to perform
hyperspectral imaging. Specifically, the spectrometer was installed 2–3 m away from
the mural, with a tungsten lamp with a large field of view installed next to it. As the
light source, the tungsten lamp could translate along the track with the spectrometer for
imaging, thus overcoming the uneven illumination resulted from the fixed light source
condition [34]. Similarly, by using a Headwall imaging spectrometer with a spectral range
of 400–2500 nm, the “Tablet of Buddha written by Cixi” in the Forbidden City has been studied
with the hyperspectral imaging method [28]. The hyperspectral images were acquired
by placing the calligraphy flat on a table with a halogen lamp as the light source, setting
the spectrometer parallel to the calligraphy, and rotating the scanning mirror to complete
the scan imaging of the calligraphy. In fact, the tungsten and halogen lamps both contain
abundant near-infrared wavelength light, which has a better color reproduction effect
on the artifacts. They also have a variety of light forms like direct radiation, scattering,
and diffusion, which are able to achieve a uniform illumination of the surface of cultural
relics. As shown in Figure 2, a tungsten iodide lamp with similar properties has been
widely used in hyperspectral artworks acquisition and also meets the requirements for
light illumination [35].
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3.2. Hyperspectral Image Correction Methods

Since the image acquisition is subject to interference from various environmental
factors in different scenarios, the acquired hyperspectral images cannot be directly used for
spectral analysis. Generally, images acquired indoors or by remote sensing are influenced
by the non-uniform illumination of light sources, thereby requiring reflectance correction.
Moreover, hyperspectral images of surface relics are greatly influenced by topography,
which results in using a remote sensing topography correction method to exclude the
negative effects of topographic factors. Therefore, before processing the hyperspectral
image data, proper correction with fully consideration of the characteristics of hyperspectral
acquisition can effectively reduce the difficulty of data analysis and eventually improve
its efficiency.

Subsequently, as the most commonly used correction methods of spectral reflectance,
the standard whiteboard and dark current correction is suitable for close-range imaging
and remote sensing imaging. To eliminate the error caused by non-uniform illumination,
point-to-point reflectance correction for the spectral images is carried out using a standard
diffuse reflection board. Then, the light source of the camera and the halogen lamps are
turned off, and the spectral images are captured under dark current conditions to exclude
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the noise from the instruments. Therefore, the spectral reflectance after processing can be
expressed as:

f =
fc − f0

fb − f0
(1)

Here, f c, f b, f 0 denote the spectral data, whiteboard data, and dark current data of the
acquired images, respectively.

As a hyperspectral imager reflectance correction algorithm, the average method of
standard whiteboard and dark current correction has been proposed to reduce the phe-
nomenon of “high-drifting reflectance” in the conventional algorithm [36]. Afterwards,
a batch processing approach based on the Environment for Visualizing Images (ENVI)
software is developed to improve the efficiency of data processing. In the average method,
let the size of the image data’s original value be K bands of m rows and n columns. Then,
the row-average value of the K-th band of the dark current data Ba(n,k) is

Ba(n,k) =

m
∑

i=1
Bm×n×k

m
(2)

where Bm×n×k denotes the dark current data of the m-th row and n-th column of the K-th
band. Similarly, the row-average value of the K-th band of the whiteboard data can be
calculated as

Wa(n,k) =

m
∑

i=1
Wm×n×k

m
(3)

where Wm×n×k denotes the whiteboard data in the m-th row and n-th column of the K-th
band. By substituting the aforementioned data into the correction formula of the average
method, the reflectance ρDN can be calculated as

ρDN =
DN(k,j) − Ba(n,k)

Wa(n,k) − Ba(n,k)
(4)

where DN(k,j) is the data in the j-th row of the K-th band. The average method does not
represent the overall data quality well due to the noise in the data. The improved average
method performs the overall reflectance inversion on the original image data ρDN(k) as

ρDN(k) =

m
∑

i=1

n
∑

j=1
DN(m,n)−

m
∑

i=1

n
∑

j=1
B(m,n)

m
∑

i=1

n
∑

j=1
W(m,n) −

m
∑

i=1

n
∑

j=1
B(m,n)

(5)

The calculation process is implemented in batch using ENVI, which reduces the
workload in multiple image processing.

Under the imaging conditions with complex topography, eliminating the influence
from topography is also significant to improve the quality of hyperspectral imaging. Sev-
eral models have been proposed for the topography correction of hyperspectral remote
sensing [37], and the Minnaert + SCS correction model was found to be optimal through the
comparison of parameter evaluation. This model can set up an environmental correction
method under non-Lambertian conditions. It introduces the solar zenith angle parameter,
which has a good effect on the difference of solar radiation between the shaded and sunny
slopes of mountains. Another spectral correction model based on the Kubelka–Munk
theory was proposed to remove the influence from moisture in the hyperspectral soil
composition analysis [38], which has provided a good alternative for excluding the mois-
ture interference with soil reflectance. In practical cultural relic conservation, appropriate
image correction methods should be used for different acquisition scenarios to provide
reliable data for the subsequent processing. For ground-based hyperspectral imaging
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techniques, the standard whiteboard method is the most commonly used approach for
image correction in cultural relic conservation. Additionally, some techniques do not take
the effect of light sources on reflectance correction into account. This is mainly due to
the fact that the small size of the object in close-range imaging makes it easier to form
ideal diffuse reflectance conditions, thereby reducing the influence from the non-uniform
light source. However, in conservation by remote sensing, cultural relics like grottoes and
tombs are usually large and immovable, which requires the use of a large-scale artificial
light source for hyperspectral imaging, and consequently makes it difficult to create ideal
diffuse reflection conditions. Generally, in accordance with the spatial distribution of the
light source, it can be divided into three different types, namely, the double-point light
source, the multi-point light source, and the linear light source. In practical applications, it
has been found that the light intensity of the double-point light source decreases with the
increase of the distance from the center of the light source. The variation of light intensity
greatly affects the accuracy of reflectance correction. Nevertheless, most conventional
reflectance correction methods have not taken this factor into consideration, which causes
a certain error in reflectance correction. Therefore, improving the accuracy of conventional
reflectance correction methods is urgently demanded.

3.3. Hyperspectral Data Dimensionality Reduction

With the feature of “uniting image and spectrum”, hyperspectral images can provide
spectral information in tens to hundreds of bands for each pixel, which greatly increases
the amount of data, but also brings in information redundancy. Hence, it is essential to
reduce the data dimensionality of the acquired hyperspectral images, so as to streamline
the information redundancy while retaining the information of important feature-sensitive
bands of cultural relics. Appropriate dimensionality reduction can squeeze the data volume
and improve the accuracy of data analysis. Currently, there are two main methods for
the dimensionality reduction of hyperspectral images data, i.e., feature selection and
feature extraction [39]. As shown in Figure 3, feature extraction includes the processes of
information synthesis, feature enhancement, and spectrum downscaling for each spectral
band, which converts the original spectral space into a low-dimensional space through a
specific mapping rule. There are various types of spectral feature extraction depending on
the mapping rules.

Photonics 2023, 10, x FOR PEER REVIEW 7 of 20 
 

 

soil composition analysis [38], which has provided a good alternative for excluding the 
moisture interference with soil reflectance. In practical cultural relic conservation, appro-
priate image correction methods should be used for different acquisition scenarios to pro-
vide reliable data for the subsequent processing. For ground-based hyperspectral imaging 
techniques, the standard whiteboard method is the most commonly used approach for 
image correction in cultural relic conservation. Additionally, some techniques do not take 
the effect of light sources on reflectance correction into account. This is mainly due to the 
fact that the small size of the object in close-range imaging makes it easier to form ideal 
diffuse reflectance conditions, thereby reducing the influence from the non-uniform light 
source. However, in conservation by remote sensing, cultural relics like grottoes and 
tombs are usually large and immovable, which requires the use of a large-scale artificial 
light source for hyperspectral imaging, and consequently makes it difficult to create ideal 
diffuse reflection conditions. Generally, in accordance with the spatial distribution of the 
light source, it can be divided into three different types, namely, the double-point light 
source, the multi-point light source, and the linear light source. In practical applications, 
it has been found that the light intensity of the double-point light source decreases with 
the increase of the distance from the center of the light source. The variation of light in-
tensity greatly affects the accuracy of reflectance correction. Nevertheless, most conven-
tional reflectance correction methods have not taken this factor into consideration, which 
causes a certain error in reflectance correction. Therefore, improving the accuracy of con-
ventional reflectance correction methods is urgently demanded. 

3.3. Hyperspectral Data Dimensionality Reduction 
With the feature of “uniting image and spectrum”, hyperspectral images can provide 

spectral information in tens to hundreds of bands for each pixel, which greatly increases 
the amount of data, but also brings in information redundancy. Hence, it is essential to 
reduce the data dimensionality of the acquired hyperspectral images, so as to streamline 
the information redundancy while retaining the information of important feature-sensi-
tive bands of cultural relics. Appropriate dimensionality reduction can squeeze the data 
volume and improve the accuracy of data analysis. Currently, there are two main methods 
for the dimensionality reduction of hyperspectral images data, i.e., feature selection and 
feature extraction [39]. As shown in Figure 3, feature extraction includes the processes of 
information synthesis, feature enhancement, and spectrum downscaling for each spectral 
band, which converts the original spectral space into a low-dimensional space through a 
specific mapping rule. There are various types of spectral feature extraction depending on 
the mapping rules. 

Hyperspectral 
image

1 2 5( , ,... )F x x x

1x
2x
3x
4x
5x

Feature space
1Y

2Y

 
Figure 3. Hyperspectral image feature extraction. 

As a basic feature extraction method for hyperspectral data, principal component 
analysis (PCA) is based on an orthogonal linear transformation, allowing to map the data 
into a new coordinate space in accordance with the distribution of information compo-
nents. The variance of the data is used to evaluate the content of information. Therefore, 
the variance of the corresponding principle components can be expressed as 

T(z )  ,  1,2,...i i iVar a a i p= =   (6)

Here, ai is the i-th transform vector, ∑ is the covariance matrix of the original data, and zi 
is the i-th principal component of the low-dimensional space. 

Figure 3. Hyperspectral image feature extraction.

As a basic feature extraction method for hyperspectral data, principal component
analysis (PCA) is based on an orthogonal linear transformation, allowing to map the data
into a new coordinate space in accordance with the distribution of information components.
The variance of the data is used to evaluate the content of information. Therefore, the
variance of the corresponding principle components can be expressed as

Var(zi) = aT
i ∑ ai , i = 1, 2, . . . p (6)

Here, ai is the i-th transform vector, ∑ is the covariance matrix of the original data, and zi is
the i-th principal component of the low-dimensional space.

Thereafter, the selective PCA method was proposed in [40], which can accurately
predict the object’s feature information and map it to a component. Unfortunately, this
method is less effective for the non-obvious spectral features. A PCA-based spectral
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feature extraction method was proposed in [41], which has exhibited good performance
in the hierarchical classification of urban manmade objects. The limitation of the PCA
method is that its information-amount-based mapping process cannot deal with the noise
very well; hence, the result will be significantly deviated as the images contain complex
noise components.

Minimum noise fraction (MNF) is another popular hyperspectral feature extraction
method. Unlike the PCA method, the MNF method ranks the components according to
the image quality, which can be measured by the noise fraction. Then, the noise fraction is
expressed as

NF =
aTSNa
aTSa

(7)

where a is the transformation matrix, SN is the covariance matrix of the noise, and S is the
covariance matrix of the original data.

The MNF method effectively solves the problem arising in PCA that the image quality
decreases as the noise distribution is non-uniform. However, the conventional MNF
transform estimates the covariance matrix of the noise in the spatial domain, where it
is difficult to eliminate the influence of errors. Therefore, an optimized maximum noise
fraction (OMNF) method estimating the covariance matrix of the noise in the spectral
domain is proposed in [42]. It can be easily obtained from Figure 4 that the accuracy of
data classification with the OMNF method is better than that of the conventional MNF
one. Recently, the MNF transform has been utilized to extract blurred seals in calligraphy
and painting [43]. However, the seals in the hyperspectral images at 300–1000 nm were
still blurred with direct MNF transform. To improve the clarity, the hyperspectral image at
350–1000 nm was firstly segmented into 400–600 nm and 500–850 nm bands, and then the
MNF transform was performed separately. It has been shown that the images of both the
400–600 and 500–850 nm bands became much clearer compared to those of the 350–1000
nm band, which indicates that selecting the appropriate band before the MNF transform
can be helpful in image processing.
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As another important method for dimensionality reduction, spectral feature selection
requires selecting a simplified subset of the spectral space that contains the main feature of a
specific object, as shown in Figure 5. In multi-target recognition, the feature space should be
able to represent the features of the corresponding object to the maximum extent possible,
so as to distinguish it from others. Feature selection aims to select a subset of bands that



Photonics 2023, 10, 1104 9 of 19

retains as much original information as possible and improves image differentiability; thus,
it can be regarded as a combinatorial optimization problem, with the criterion for evaluating
band combinations being the evaluation function. As the most important constituent of
the feature selection algorithm, the evaluation function directly determines the quality of
band selection.
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Depending on whether a priori information of the feature spectrum is needed in
establishing the evaluation function, the feature selection algorithms can be classified into
two categories, namely, supervised and unsupervised methods. Unsupervised methods
are suitable for application scenarios lacking a priori information on feature classes, and
generally use the amount of information as the evaluation criterion for band selection.
Generally, parameters of the evaluation function in unsupervised methods include the
information entropy, the first-order spectral derivative, the second-order spectral derivative,
the number of bands, and others [44,45]. An unsupervised band selection method for
hyperspectral remote sensing images based on the spatial spectral genetic algorithm was
proposed in [46]. This method can effectively select a subset of bands with low redundancy
and high resolution, eventually weakening the “curse of dimensionality”. As feature class
information is available, supervised band selection algorithms can effectively retain the
bands with class information, thereby improving the classification accuracy of hyperspectral
images. Supervised algorithms generally use separability [47] and minimum estimated
abundance covariance [48] as the evaluation criteria.

4. Cultural Relic Conservation Enabled by Hyperspectral Imaging

Hyperspectral imaging can provide both spatial image and spectral information of the
measured object, then identify and classify the object according to the spectral characteristics
of different matters. Therefore, cultural relic conservation enabled by hyperspectral imaging
has been widely used to identify and analyze pigments, murals, ancient paintings, and
calligraphy. In this section, the application of hyperspectral imaging to different cultural
relics and the related methods are discussed in detail.

4.1. Pigment Identification

After years of aging and damage, most surviving cultural relics require the restora-
tion of their pigments. As an important basis for restoration, pigment identification can
determine the composition of pigments of cultural relics through analysis. Conventional
pigment identification mainly relies on chemical analysis, which is time-consuming and
labor-intensive, and its destructive sampling may cause irreversible damage to the cultural
relics. For instance, using X-ray irradiation can reveal the elements and chemical com-
positions of the pigment, but acquiring the pigment samples immediately damages the
cultural relics [49,50]. Hence, identifying the compositions of pigments without damage is
increasingly demanded in cultural relic conservation. Hyperspectral imaging is one of the
safest and most reliable detection techniques. Its feature of “uniting image and spectrum”
makes it applicable to the acquisition of cultural relic images, which has great advantages
in pigment identification. Therefore, hyperspectral imaging has been gradually used for
pigment identification in cultural relic conservation.

In hyperspectral pigment identification, spectral curves of mineral pigments are
usually compared with the spectral curves of standard pigment for spectral characteristic
matching, so as to identify the compositions of mineral pigments [51]. In the study of
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mural pigments in the Jokhang Temple in Lhasa [52], images of both the standard and
mural pigments are collected by a hyperspectral camera, then the reflection spectral curves
are obtained using the endmember extraction function in the ENVI software. Figure 6
sketches the wavelength of the characteristic peaks and the corresponding reflectance. It
can be seen that pigments of the same type have closely similar characteristic peaks in a
specific wavelength. Some pigments lack an obvious characteristic peak in their spectral
curves. For instance, indigo has two peaks at ~840 nm and ~960 nm, respectively, with
non-obvious changes in reflectance around these two wavelengths, as shown in Figure 7.
Fortunately, it can be obtained that the reflectance curve of indigo increases most rapidly
around ~730 nm and ~910 nm, which can be the peaks in the first-order derivative; hence,
the first-order derivative of the reflectance curve can be used to identify the compositions.
Table 3 summarizes the locations of the characteristic peaks and first-order derivative
peaks of the reflectance curves of various standard pigments, which are consistent with
the acquired mural pigments. Finally, X-ray fluorescence spectroscopy is used to detect
the chromogenic elements of the pigments, and the accuracy of the hyperspectral pigment
identification is verified by the detection.
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Table 3. Locations of the characteristic peaks of the reflectance and its first-order derivative curves of
various standard pigments.

Pigment Color

Hyperspectral Standard Pigments Test Results

Characteristic Peak Location of
the Reflectance Curve (nm)

Characteristic Peak Location of First-Order
Derivative of the Reflectance Curve (nm)

Azurite Blue ~450/~460 /
Ultramarine blue Blue ~450 ~720

Indigo Blue / ~730/~910
Malachite Green ~530 /

Emerald green Green ~495 /
Gamboge Yellow / ~535
Orpiment Yellow / ~495

Lead chrome yellow Yellow / ~530
Realgar Orange / ~565

Plumbum rubrum Orange / ~450/~620
Lead tetroxide Orange / ~575/~720

Shellac Red / ~600/~735
Cinnabar Red / ~615

Ferric oxide Red / ~590/~710
Rouge Red / ~670/~685/~705

Previous investigations tended to identify mineral pigments by matching their spectral
curves with the spectral libraries of standard pigments [53], such as the INFRA-ART open
access spectral library from Europe and the United States Geological Survey standard
spectral library [16]. However, some of the mineral pigments have not been collected in the
standard spectral libraries and their spectral curves are unknown. To identify pigments
rapidly without using the standard pigment libraries, the hyper-spectrum of red pigments
of cultural relics is discussed in [54], and ten red mineral pigments are selected for the
study. The normalized spectral indexes of the ten pigments are calculated based on the
characteristics of the spectral curves, which can build a distinction model for each red
pigment. This method performs well with high recognition accuracy, speeding up the
extraction of pigment information by simple exponential operations, which shows practical
significance for the rapid and accurate identification of pigments in cultural relics without
the standard pigment library. However, it has only investigated a number of red pigments;
hence, it is of interest to explore whether the method is also suitable for other pigments.
It is worth noting that the same mineral pigment in different physical forms may exhibit
different spectral reflectance properties. In [55], five commonly used mineral pigments
on thangkas were selected for the study. By analyzing the spectral characteristics of the
same mineral pigment in the forms of powder, blended bone gum, and fabric color card,
it is found that the overall reflectance of the blended bone gum pigment decreases, while
the spectra of the powder and the fabric color card were much closer, with a difference
of only around 1920 nm. Hence, the mineral pigment powder can be directly used to
analyze thangka pigments. In addition, there are spectral characterization studies based on
composite pigments [56,57]. In a word, hyperspectral imaging is widely used in pigment
identification, and will be further utilized in a large number of application scenarios.

4.2. Grottoes and Murals

Grottoes and murals contain rich historical knowledge and ancient religious culture.
However, owing to years of aging, with the involvement of natural and human factors, the
conservation of grottoes and murals has been less optimistic. Generally, diseases of grottoes
and murals include pigment layer peeling, salt efflorescence, soot damage, cavitation, cracks,
mildew, and others. Hence, using appropriate techniques to detect, mark, and repair the
damaged parts of grottoes and murals is highly demanded in cultural relic conservation. The
weathering of the surface of grottoes and murals is an important indicator of the health of
the rock. However, visual observation cannot accurately describe the degree of weathering,
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and artificially marking the disease requires a large number of professional staff and a great
deal of time [58]. To improve the efficiency of disease investigations, a series of methods to
characterize the degree of rock weathering, such as the spreading resistance method [59]
and ultrasonic transmission wave method [60], have been proposed. Unfortunately, the
above methods also cause damage to the grottoes and murals.

Image classification is applied in state-of-the-art disease labeling in grottoes. In a study
of the weathering status of grottoes [61], the spectral data of the weathered sandstone are
measured by hyperspectral imaging, and the average reflectance is observed in the sensitive
band of 900–920 nm. In the statistical results, weathering areas have a higher reflectance than
intact areas. If the average reflectance is higher or lower than 0.58, the area is considered as
a strong or slight weathering area, respectively. The technical diagram is shown in Figure 8.
The spectral data of different areas also reveal that parts restored with modern cement do not
have characteristic peaks in the sensitive band; thus, hyperspectral imaging can also be used
to identify the artificially restored parts. Furthermore, the types of minerals on the surface
of salt-weathered and dust-weathered areas are different, thereby requiring precise criteria
for evaluating the degree of weathering. An intelligent method for evaluating the surface
weathering of grottoes based on the random forest algorithm has been proposed in [62],
as shown in Figure 9. Firstly, spectral data of complex weathering areas are acquired by
using the multispectral technique. Then, the grottoes are classified into four classes, namely,
strong salt weathering, weak salt weathering, micro salt weathering, and dust accumulation,
by using the random forest algorithm. It has been shown that the prediction accuracy can
reach 98.49%, which greatly improves the accuracy of weathered areas recognition.

Murals contains more color information than grottoes, which means that there is more
hidden information for mining. In [14], the PCA method is used to analyze a mural in
Pompeii, which shows the potential of hyperspectral imaging to highlight hidden details.
Original hyperspectral images are firstly compressed into 10 new images by performing
PCA, then the false color images are obtained by combining the 1st, 2nd, and 3rd PCA
images in the RGB color channels. Specifically, the false color images can highlight the
ancient decorative elements that are no longer visible in murals. On the other hand, the
integrality of pigments is a major criterion for evaluating damage to the murals. In par-
ticular, irreparable damage is caused to the murals as the pigment layer peels. Therefore,
it is crucial to identify and label the pigment layer peeling disease in mural conservation.
Currently, machine learning is widely used for the identification and labeling of pigment
layer diseases. The performance of four neural network algorithms for the pigment layer
disease identification of the Mogao Caves is compared in [63]. According to the result,
deep belief networks (DBNs) exhibit the best prediction performance under the strip noise
condition compared with PLSR, PCA + SVM, and PCA + ANN. Compared with the other
three models, DBN can exhibit the minimum RMSE of 0.2482, as well as the highest R-
square of 0.5409 that is at least 4% higher than that of the other models. In conventional
evaluation criteria, the number of diseases, size of the disease area, and other factors are
used to reflect the severity of diseases, which has intuitiveness and limitations. In contrast,
the comprehensive multi-index criterion can significantly improve classification accuracy
over the method using single spectral information [13]. An extraction method for mural
diseases based on encoder–decoder architecture has been proposed in [64]. It set up a mod-
ified U-Net network, which can preserve a part of the low-dimensional features through
pyramid pooling. By comparing the modified U-Net network with the original one, it
can be seen that the extraction accuracy is improved effectively, verifying the feasibility
and superiority of the low-dimensional feature fusion network in identifying the pigment
layer peeling disease. Moreover, hyperspectral image processing is also inspired by the
application of neural networks in digital image processing. Compared with the digital
images, the hyperspectral images contain spectral information. Hence, it deserves further
exploration to combine the spectral information and the spatial information. Previous
studies utilized the dual-channel dilated convolutional neural network [65], the multiple-
kernel-based classifiers [66], the weighted joint collaborative representation [67,68], and
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the three-dimensional dilated convolution residual neural network [69] methods for hyper-
spectral image classification. It is found that hyperspectral image classification algorithms
based on the fusion method may become popular in the future [70], while how to effectively
combine the multidimensional information to improve the classification efficiency and
accuracy will be a significant problem that needs to be solved.
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4.3. Painting and Calligraphy

The main diseases of calligraphy and paintings include unclear text, blurred seals, un-
clear lines, and blurred faces. Hyperspectral imaging is suitable for the study of calligraphy
and paintings, since it can identify information that is difficult to distinguish with the eyes,
and can be also used for image enhancement and implicit information extraction.

There are quite a few investigations focusing on the hyperspectral recognition of
paintings and calligraphy. In a case of Chinese painting and calligraphy “Sanqiutu” [71],
the PCA method is used for information extraction, and 11 areas containing implicit
information in the painting are captured with the analysis of spectral curves. Furthermore, a
Qing Dynasty painting by Zhang Shibao is analyzed using the MNF method [72]. According
to the analysis results, the image of the painting in MNF-Band 7 has a prominent response
on the seal, while its image in MNF-Band 2 can highlight the ink line information of human
figures. As shown in Figure 10, the image of the painting in MNF-Band 2 clearly presents
the hidden information on the clothes after image enhancement processing. Meanwhile,
the MNF method has also been used in the study of Tribute Envoys of the Song Dynasty [73].
Experimental results show that the MNF images can highlight the red parts like clothes
and seals in the painting, and emphasize the cracks and repairs. In addition, MNF is used
for the image enhancement of blurred seals in family genealogy, which can enhance the
legibility and reading accuracy of the genealogical seals [74].
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methods for hyperspectral image classification. It is found that hyperspectral image clas-
sification algorithms based on the fusion method may become popular in the future [70], 
while how to effectively combine the multidimensional information to improve the clas-
sification efficiency and accuracy will be a significant problem that needs to be solved. 

4.3. Painting and Calligraphy 
The main diseases of calligraphy and paintings include unclear text, blurred seals, 

unclear lines, and blurred faces. Hyperspectral imaging is suitable for the study of callig-
raphy and paintings, since it can identify information that is difficult to distinguish with 
the eyes, and can be also used for image enhancement and implicit information extraction. 

There are quite a few investigations focusing on the hyperspectral recognition of 
paintings and calligraphy. In a case of Chinese painting and calligraphy “Sanqiutu” [71], 
the PCA method is used for information extraction, and 11 areas containing implicit in-
formation in the painting are captured with the analysis of spectral curves. Furthermore, 
a Qing Dynasty painting by Zhang Shibao is analyzed using the MNF method [72]. Ac-
cording to the analysis results, the image of the painting in MNF-Band 7 has a prominent 
response on the seal, while its image in MNF-Band 2 can highlight the ink line information 
of human figures. As shown in Figure 10, the image of the painting in MNF-Band 2 clearly 
presents the hidden information on the clothes after image enhancement processing. 
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Hyperspectral imaging can uncover hidden information that has not been captured by
previous equipment. As depicted in [8], databases from pulse-compression thermography
(PuCT) and hyperspectral imaging can be merged together to inspect hidden information
in paintings. PuCT is suitable for detecting splittings, cracks, and voids in the multi-layer
structure by analyzing the painting’s thermal response via a thermal camera. Hyperspectral
imaging is able to provide information concerning both pigments and pentimenti. It
can be seen from the post-processing that the defected/hidden object detection can be
further improved by using PCA and independent component analysis (ICA) on the original
hyperspectral images and PuCT images [8]. The pentimenti are visible in both the first
and third PCA, as well as in the first ICA, while the second PCA is able to show the brush
strokes of the artist around 1480 nm. Therefore, by integrating the results obtained from
PuCT and hyperspectral imaging, it is possible to build a satisfactory database on the
hidden information of paintings, with its structure diagram shown in Figure 11.
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In 2005, the POLA Museum of Art conducted a study on Picasso’s painting “Mother
and Child by the Sea”. With X-ray imaging, the hidden female figure at the bottom of the
painting can eventually be discovered, presumably a result of painting directly onto an
older painting. In 2020, “Mother and Child by the Sea” is hyperspectrally analyzed [75].
According to its hyperspectral image, there are French newspaper texts printed onto
the painting. These residual texts mainly resulted from using newspaper as the outer
protection during the transportation of paintings, as shown in Figure 12. Then, the date
of the newspaper is determined to be 18 January 1902, proving that “Mother and Child by
the Sea” was completed around January 1902, unlike the previous common understanding
that Picasso completed the painting after returning to Barcelona in 1901. This study shows
the ability of hyperspectral imaging to uncover hidden information, which can help us to
refine doubts left in history, and is also important for studying historical social activities.
Hence, applications of hyperspectral imaging in cultural relic conservation may also bring
breakthroughs in the study of history.
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of all, the data dimensionality of hyperspectral images is very large. Without proper data
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dimensionality reduction, the available information is extremely limited, and consequently
influences the performance of imaging. In practical applications, although the data dimen-
sionality reduction methods are applied, there is still much redundant spectral information.
Such a huge volume of data will make data processing heavily inefficient. Hence, more
efficient data dimensionality reduction methods are still highly demanded in future investi-
gations. Most significantly, data dimensionality is supposed to be reduced in accordance
with the sensitive bands of different cultural relics, thereby trying to eliminate the spectral
reflectance information that is irrelevant to the spectral differentiation analysis. Therefore,
in further studies, more attention should be paid to the locations of the sensitive bands of
various cultural relics.

Subsequently, spectral libraries are currently an important tool for analyzing the
hyperspectral imaging data of cultural relics. However, due to the diversity of cultural
relics, spectral libraries of cultural relics like pigments still need to be improved. The
open access database from Europe, INFRA-ART Spectral Library, currently contains the
spectral information of 819 pigment samples and keeps periodically updating. In the
library, the Fourier transform infrared spectrum, Raman spectrum, short wavelength
infrared reflectance spectrum, and XRF spectrum of pigments are available for free. Using
these convenient spectral libraries can provide great assistance to research. On the other
hand, not only spectral libraries of different kinds of cultural relics are essential, but also
spectral data of the same kind from different periods are needed. By studying the spectral
characteristics of cultural relics in different periods, the approximate time of the production
of cultural relics can be rapidly obtained. Additionally, attention should be paid to spectral
analysis without spectral libraries. In fact, it is really difficult to establish spectral libraries
in some areas. Hence, performing spectral analysis without spectral libraries will remove
the comparison process and greatly reduce the effort.

Moreover, some large outdoor cultural relics are severely affected by sunlight during
the image capture process, making it very difficult to correct the image. The standard white-
board method performs well in most cases subjected to uniform illumination. However,
it cannot restore the shadow information of three-dimensional cultural relics subjected to
intensive sunlight. Therefore, a feasible way is to print a 3D model of the cultural relic and
take an image under the same lighting conditions as the whiteboard input for correction.
A 3D model can well restore the reflectance of the cultural relic image under the effect of
sunlight, but it should be noted that, since the source image and the whiteboard image
are acquired from the cultural relic and the model, respectively, the correction algorithm,
which is the calculation of image data from each pixel, requires a high degree of overlap
between the location information of the two images. How to scale the two images to the
same size is a significant problem, and more attention should be focused on how to use the
hyperspectral camera to acquire equal-scale images of cultural relics and their 3D models,
so as to reduce the error in data correction.

Ultimately, the conservation of cultural relics based on hyperspectral imaging requires
deeper and more detailed investigations, and the combination of chemical analysis, Raman
spectrum analysis, and other technical means can mutually support the experimental
results and improve the accuracy of analysis.

6. Conclusions

This paper summarizes the imaging features, data processing methods, and appli-
cations in cultural relic conservation based on hyperspectral imaging, which has been
found with high feasibility and unique advantages. Meanwhile, considering the difficulties
of the conventional methods, the idea of improving the data dimensionality reduction
and creating a standard spectral database for hyperspectral cultural relic conservation is
proposed, so as to provide a reference with realistic significance. The non-contact and
non-destructive hyperspectral imaging offers a safer solution for cultural relic conservation,
and its property of “uniting image and spectrum” can enable to observe a great deal of
hidden information.
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