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Abstract: The so-called arbitrary decomposition of a given Mueller matrix into a convex sum of non-
depolarizing constituents provides a general framework for parallel decompositions of polarimetric
interactions. Even though arbitrary decomposition can be performed through an infinite number
of sets of components, the nature of such components is subject to certain restrictions which limit
the interpretation of the Mueller matrix in terms of simple configurations. In this communication,
a new approach based on the addition of some portion of a perfect depolarizer before the parallel
decomposition is introduced, leading to a set of three components which depend, respectively, on the
first column, the first row, and the remaining 3 × 3 submatrix of the original Mueller matrix, so that
those components inherit, in a decoupled manner, the polarizance vector, the diattenuation vector,
and the combined complementary polarimetric information on depolarization and retardance.
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1. Introduction

Mueller polarimetry nowadays has an immense variety of applications in science,
engineering, remote sensing, etc. Once a Mueller matrix M is measured, the analysis of
the information provided by the sixteen real elements of M constitutes a critical stage,
in which different procedures are applied, including the identification of descriptors of
diattenuation, polarizance, retardance, and depolarization, as well as methods for the
serial and parallel decompositions of M into simpler components. In particular, so-called
arbitrary and characteristic decompositions [1–3] constitute powerful tools that provide
sets of peculiar parallel constituents that are susceptible to specific interpretations.

Nevertheless, the scope of potential components with prescribed features is limited by
mathematical restrictions that rely on the fact that the coherency matrix C [4], a positive
semidefinite Hermitian matrix that is biunivocally associated with the given M (that is, M
determines C unambiguously and vice versa, see Equation (4)), does not always satisfy the
property rankC = 4, but its rank can take integer values in the interval 1 ≤ rankC ≤ 4 [5,6].
Recall that rankC equals the number of independent parallel components of M [1,3].

In this work, a new composition-decomposition approach is presented in which, prior
to the application of a specific parallel decomposition, the measured M is combined with a
portion of a perfect depolarizer, of which the associated normalized Mueller matrix has the

diagonal form
ˆ

M∆0 = diag (1, 0, 0, 0) [6]. Due to the simple structure of
ˆ

M∆0, which corre-
sponds to polarimetric white noise [7], the composed matrix inherits all the anisotropies
exhibited by M. Analogously to what occurs in some image diagnostic techniques, where
certain contrast agents or colorants are added to the sample in order to improve the images,
in the present case, a fully isotropic element is added with the aim of extending the scope
of decompositions, which allows certain featured representations to be obtained.

The decompositions dealt with in this communication are focused on identifying sets
of three constituents of which the Mueller matrices have the simplest possible structure,
regardless of the fact that they are, in general, depolarizing.
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The structure of the present communication is organized as follows. The main notions
necessary for the development of the new approach are presented in Section 2; Section 3
describes the formulation of the parallel composition of a given Mueller matrix M and a
perfect depolarizer; Section 4 deals with the introduction of the homogeneous extended
form of M and its decomposition, where the constituents exhibit equal mean intensity
coefficients and are analyzed from the mathematical, geometric, and physical points of view;
Section 5 describes an alternative extended decomposition of M where the constituents,
being of similar nature to those of the homogeneous extended decomposition, exhibit
different mean intensity coefficients, and have even simpler forms; Section 6 is devoted to
the analysis of the extended decompositions for the particular case in which M lacks either
polarizance or diattenuation; and the obtained results are discussed in Section 7.

2. Theoretical Background

The transformation of polarized light by the action of a linear medium (under fixed
interaction conditions) can always be represented mathematically as s′ = Ms where s
and s′ are the Stokes vectors that represent the states of polarization of the incident and
emerging light beams, respectively, whereas M is the Mueller matrix associated with this
kind of interaction, which can always be expressed as [8–10]:

M = m00
ˆ

M,
ˆ

M ≡
(

1 DT

P m

)
 m ≡ 1

m00

m11 m12 m13
m21 m22 m23
m31 m32 m33


D ≡ (m01,m02,m03)

T

m00
, P ≡ (m10,m20,m30)

T

m00


(1)

where mij (i, j = 0, 1, 2, 3) denote the elements of M; the superscript T indicates transpose;
m00 is the mean intensity coefficient (MIC), i.e., the ratio between the intensity of the
emerging light and the intensity of incident unpolarized light; D and P are the diattenuation
and polarizance vectors, with absolute values D (diattenuation) and P (polarizance); and m
is the normalized 3 × 3 submatrix associated with M, which provides the complementary
information on retardance and depolarization properties.

Regarding the ability of M to preserve the degree of polarization (DOP) of totally
polarized incident light, a proper measure is given by the degree of polarimetric purity of M
(also called the depolarization index) [11], P∆, which can be expressed as

P∆ =

√
D2 + P2 + 3P2

S
3

=

√
2P2

P
3

+ P2
S

[
PP ≡

√
D2 + P2

2

]
, (2)

where PP is the so-called degree of polarizance, or enpolarizance, and PS is the polarimetric
dimension index (also called the degree of spherical purity), defined as [6,12,13]

PS ≡
‖m‖2√

3

‖m‖2 ≡
1

m00

√√√√ 3

∑
k,l=1

m2
kl

, (3)

with ‖m‖2 being the Frobenius norm of m.
The maximal degree of polarimetric purity, P∆ = 1, is exhibited uniquely by nonde-

polarizing (or pure) media (i.e., media that do not decrease the degree of polarization of
totally polarized incident light), whereas P∆ = 0 is characteristic of perfect depolarizers,
with the associated Mueller matrix M∆0 = m00diag (1, 0, 0, 0). The maximal value of PS,
PS = 1, implies P∆ = 1 with PP = 0 (pure and nonenpolarizing media), which corresponds
uniquely to retarders (regardless of the value of m00, i.e., regardless of whether they are
transparent or exhibit certain amount of isotropic attenuation), the minimal polarimetric
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dimension index, PS = 0, corresponds to media exhibiting m = 0. The maximal enpolar-
izance, PP = 1, implies P∆ = 1 and corresponds to perfect polarizers, whereas the minimal,
PP = 0, is exhibited by nonenpolarizing interactions (either pure or depolarizing) [12,14].

In general, two kinds of decompositions of a Mueller matrix can be performed, namely,
serial decompositions (through products of Mueller matrices) and parallel decompositions
(through weighted sums of Mueller matrices) [6]. Furthermore, both decompositions can
be combined, leading to serial-parallel decompositions [15].

Parallel decompositions, under the scope of which the new approach is developed,
consist of representing a Mueller matrix as a convex sum of Mueller matrices. The physical
meaning of parallel decompositions is that the incoming electromagnetic wave splits into a
set of pencils that interact, without overlapping, with a number of material components that
are spatially distributed in the illuminated area, and the emerging pencils are incoherently
recombined into the emerging beam.

Thus, the concept of parallel (or additive) composition of Mueller matrices underlies
the very concept of the Mueller matrix and obeys certain specific rules; in particular, the
coefficients of the Mueller components in the sum should be positive and should add up
to one (convex sum) [1,3]. This property is directly linked to the covariance criterion for
Mueller matrices, namely, given a Mueller matrix M, its associated Hermitian coherency
matrix C (M) is positive and semidefinite. The explicit expression of C (M), in terms of the
elements mij of M, is [4]:

C(M) =
1
4



m00 + m11
+m22 + m33

m01 + m10
−i(m23 −m32)

m02 + m20
+i(m13 −m31)

m03 + m30
−i(m12 −m21)

m01 + m10
+i(m23 −m32)

m00 + m11
−m22 −m33

m12 + m21
+i(m03 −m30)

m13 + m31
−i(m02 −m20)

m02 + m20
−i(m13 −m31)

m12 + m21
−i(m03 −m30)

m00 −m11
+m22 −m33

m23 + m32
+i(m01 −m10)

m03 + m30
+i(m12 −m21)

m13 + m31
+i(m02 −m20)

m23 + m32
−i(m01 −m10)

m00 −m11
−m22 + m33


(4)

The passivity constraint (natural linear polarimetric interactions do not amplify the
intensity of light) is completely characterized by the inequality m00(1 + Q) ≤ 1 [16,17],
where Q ≡ max (D, P). Thus, m00 ≤ 1/(1 + Q), and therefore media exhibiting nonzero
polarizance or diattenuation (called enpolarizing media) necessarily feature m00 < 1,
whereas the limit m00 = 1 corresponds to transparent Mueller matrices, which have the
general form

M ≡
(

1 0T

0 m

)
(5)

By combining the covariance and passivity criteria, physical Mueller matrices are
characterized by the ensemble criterion, which means that a given 4 × 4 real matrix X is a
Mueller matrix if and only if it can be expressed as convex sum of pure and passive Mueller
matrices, which is equivalent to saying that C (X) (which, by construction, is a Hermitian
matrix) is positive and semidefinite (i.e., the four eigenvalues of C (X) are nonnegative),
and, in addition, X satisfies the passivity condition x00(1 + Q) ≤ 1 [16].

Some additional concepts and descriptors that will be useful for further developments
and discussions are briefly reviewed below.

Leaving aside systems exhibiting magneto-optic effects, the Mueller matrix that repre-
sents the same linear interaction as M, but with the incident and emergent directions of the
light probe interchanged, is given by [18,19]:

Mr = diag(1, 1,−1, 1) MT diag(1, 1,−1, 1), (6)

consequently, D (Mr) = P (M) and P (Mr) = D (M), showing that D and P share a
common nature related to the ability of the medium to enpolarize (i.e., to increase the
degree of polarization of) unpolarized light incoming in either the forward or reverse
directions [1,20]. Note that D, P, and other quantities considered below (when applied to
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the reverse Mueller matrix), which are defined based on square averages of some Mueller
matrix elements, are insensitive to magneto-optic effects (which only affect the signs of
certain elements of M).

A fundamental concept related to Mueller matrices is their classification in terms of the
auxiliary matrix N ≡ GMTGM (with G ≡ diag (1,−1,−1,−1)). If N is diagonalizable (i.e.,
there exists an invertible matrix A such that A−1NA is diagonal), then M can be written in
the type-I normal form [21–28]

M = MJ2 M∆d MJ1, (7)

where MJ1 and MJ2 are pure Mueller matrices, and M∆d (called the type-I canonical Mueller
matrix) has the form

M∆d = diag(d0, d1, d2, εd3) [0 ≤ d3 ≤ d2 ≤ d1 ≤ d0 ε ≡ detM/|detM|] (8)

M∆d is a diagonal Mueller matrix representing an intrinsic depolarizer [6,10]. Observe
that pure Mueller matrices are always of type-I, in which case M∆d coincides with the
identity matrix [6].

On the other hand, when N is not diagonalizable, M is type-II and it can always be
written in the type-II normal form [28]

M = MJ2 M∆nd MJ1

M∆nd ≡


2a0 −a0 0 0
a0 0 0 0
0 0 a2 0
0 0 0 a2

 [0 ≤ a2 ≤ a0]
(9)

where MJ1 and MJ2 are nonsingular pure Mueller matrices, and M∆nd is called the type-II
canonical Mueller matrix [28].

Leaving aside the MIC, the complete physical information contained in a generic
Mueller matrix M can be represented geometrically by means of the pair of ellipsoids E∆P
and E∆D generated by M and Mr, respectively. The canonical depolarizer M∆ (with M∆
representing either M∆d or M∆nd, depending on whether M is type-I or type-II) is fully
characterized by its associated canonical ellipsoid E∆. The use of the three characteristic
ellipsoids E∆P, E∆D, and E∆ leads to a complete and significant geometric view of the
properties of M [29].

Consider now the following modified singular value decomposition of the submatrix
m of M,

m =mRO mA mRI[
m−1

Ri = mT
Ri, detmRi = +1 (i = I, O)

mA ≡ diag(a1, a2, ε a3), a1 ≥ a2 ≥ a3 ≥ 0, ε ≡ detm/|detm|

]
(10)

where the nonnegative parameters (a1, a2, a3) are the singular values of m (taken in de-
creasing order), so that

MRi =

(
1 0T

0 mRi

)
(i = I, O) (11)

are orthogonal Mueller matrices (representing respective transparent retarders). The arrow
form MA(M) of M is then defined as [30]

MA(M) ≡MT
ROM MT

RI = m00

(
1 DT

A
PA mA

)
mA ≡ mT

ROm mT
RI = diag(a1, a2, ε a3)

a1 ≥ a2 ≥ a3 ≥ 0, ε ≡ detm/|detm|
DA = mRID, PA = mT

ROP

 (12)
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and contains up to ten nonzero elements. The corresponding arrow decomposition of M is
defined as

M = MRO MAMRI (13)

Observe that the diattenuation and polarizance vectors of M are recovered from those
of MA through the respective transformations D = mT

RIDA and P = mROPA, which
preserve the absolute values of the transformed vectors and are determined by the entrance
and exit retarders MRI and MRO of M.

3. Parallel Compositions of a Given Mueller Matrix and That of a Perfect Depolarizer

In order to enable decompositions of a Mueller matrix M for which the components
exhibit certain essential properties of M in a decoupled and simple manner, the extended
form of M is built by adding to M an appropriate proportion of a perfect depolarizer M∆0.

Given a Mueller matrix M (depolarizing or not), it is always possible to build the
depolarizing Mueller matrix

M′ = qm00
ˆ

M + (1− q)m00
ˆ

M∆0 = m00

(
1 qDT

qP qm

)
, (0 < q < 1) (14)

This transformation can also be expressed as follows in terms of the coherency matrices

C′ ≡ C (M′),
ˆ
C ≡ C (

ˆ
M), and

ˆ
C∆0 ≡ C (

ˆ
M∆0) = I/4 (with I being the identity matrix),

C′ = qm00
ˆ
C + (1− q)m00(1/4) I, (0 < q < 1) (15)

Obviously, rank
ˆ
C∆0 = 4, and, since q > 0, together with the fact that the rank of a

sum of positive semidefinite Hermitian matrices is greater than or equal to the rank of the
addend with largest rank, the coherency matrix C′ necessarily satisfies rankC′ = 4.

Consequently, depending on the value of q, which represents the portion of M with
respect to the whole composed matrix, the resulting matrix admits certain parallel de-
compositions which are not realizable for M itself. In particular, as will be shown in the
next section, q = 1/3 constitutes a critical value that ensures the realizability of a parallel
decomposition of M′ into three components with very simple structures depending on P, D,
and m, respectively, regardless of the value of rankC. Such a decomposition is not possible,
in general, when q > 1/3, whereas q < 1/3 leads to similar parallel decompositions but

with an additional component that is proportional to
ˆ

M∆0 with the respective coefficient
1− 3q.

4. Homogeneous Extended Decomposition of a Mueller Matrix

In this section, we consider general Mueller matrices with nonzero polarizance and
diattenuation ((P > 0, D > 0). The cases where P = 0 or D = 0 will be dealt with in
Section 6.

Taking q = 1/3 in Equation (14), the resulting matrix is

MH(M) =
1
3

(
m00

ˆ
M
)
+

2
3

(
m00

ˆ
M∆0

)
= m00

(
1 DT/3

P/3 m/3

)
(16)

which will be called the homogeneous extended form of M, where the term homogeneous
is used to note that the MICs (m00) of both components are equal to that of M, which is
consistent with the name coined for arbitrary decompositions where all components have
equal MICs (m00) [3].
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It is straightforward to prove that MH(M) can always be expressed as the following
parallel combination of three Mueller matrices

MH(M) = 1
3 Mm + 1

3 MP + 1
3 MD,

Mm ≡ m00

(
1 0T

0 m

)
, MP ≡ m00

(
1 0T

P 0

)
, MD ≡ m00

(
1 DT

0 0

)
,

(17)

where m, P, and D appear isolated within respective components. The above decomposition
will be called the homogeneous extended decomposition of M, which should be interpreted as
a parallel composition of media represented by Mm, MP, and MD with equal MICs (m00)
and respective portions (or cross sections) equal to 1/3 (i.e., the intensity I of the incident
light probe is shared among the three components with equal intensities I/3).

When applied to the arrow form MA(M), and in accordance with Equation (12), the
homogeneous extended decomposition takes the simplified form:

MH(MA) =
1
3 MmA + 1

3 MPA + 1
3 MDA

MmA = MT
ROMm MT

RI = m00diag(1, a1, a2, εa3)

MPA = m00MT
RO

(
1 0T

P 0

)
= m00

(
1 0T

mT
ROP 0

)
= m00

(
1 0T

PA 0

)
MDA = m00

(
1 DT

0 0

)
MT

RI = m00

(
1 DTmT

RI
0 0

)
= m00

(
1 DT

A
0 0

)


(18)

In this case, the physical information held by M is parameterized through the following
sixteen parameters: the MIC,m00, of M; the three angular parameters determining the
entrance retarder MRI ; the three angular parameters determining the exit retarder MRO;
the polarizance vector P of M; the diattenuation vector D of M; and the three diagonal
elements (a1, a2, εa3) of mmA.

The specific properties of each of the components of the homogeneous extended
decomposition are analyzed in the following subsections.

4.1. Nonenpolarizing Component

The 3 × 3 submatrix m of the nonenpolarizing component, Mm, coincides with that
of M. Thus, by considering the procedure used to define the arrow form MA(M) [30], m
can be written as in Equation (10), m = mRO mA mRI , with mA = diag (a1, a2, ε a3), and
therefore Mm can be expressed through the following dual retarder transformation [31]
(which coincides with the normal form of Mm):

Mm=m00MRO
ˆ

M∆mMRI ,
[

ˆ
M∆m = diag(1, a1, a2, ε a3)

]
(19)

where
ˆ

M∆m is the normalized Mueller matrix of an intrinsic depolarizer, while the entrance
and exit equivalent retarders, MRI and MRO, respectively, coincide with those of M.

The eigenvalues (in decreasing order) of the coherency matrix Cm associated with
Mm are

λm0 = m00(1 + a1 + a2 + |a3|),
λm1 = m00(1 + a1 − a2 − |a3|),
λm2 = m00(1− a1 + a2 − |a3|),
λm3 = m00(1− a1 − a2 + |a3|).

(20)

Note that the above eigenvalues coincide with the diagonal elements of the coherency
matrix C associated with M. Furthermore, since M is a Mueller matrix, C is positive and
semidefinite, and therefore its diagonal elements are necessarily nonnegative; consequently,
the eigenvalues λmi of the Hermitian matrix Cm are nonnegative, showing that Cm is a
proper coherency matrix and consequently Mm is a Mueller matrix.
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The integer parameter rm ≡ rankCm can take values in the interval 1 ≤ rm ≤ 4 depend-
ing on the nature of the interaction represented by M. Thus, from the point of view of the
arbitrary decomposition [3], Mm has a number rm of parallel pure components. Moreover, since
PP(Mm) = 0, the only source of polarimetric purity of Mm is PS(Mm) = P∆(Mm) = PS(M).

The passivity of the starting M entails the passivity of Mm, that is, m00(1 + Q) ≤ 1
⇒ m00 ≤ 1 , where Q ≡ max (D, P). Observe also that Equation (19) shows that Mm is
always a type-I Mueller matrix.

It has been shown that any Mueller matrix admits a meaningful geometric represen-
tation by means of the three corresponding characteristic ellipsoids, namely, the forward
and reverse ellipsoids, together with the canonical ellipsoid [29]. In the case of Mm, its
characteristic ellipsoids adopt the simple forms shown in Figure 1.
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Figure 1. Characteristic ellipsoids of the nonenpolarizing component Mm of the extended form of
a Mueller matrix M: (a) forward ellipsoid E∆P(Mm); (b) canonical ellipsoid E∆(Mm), of which the
semiaxes a1, a2, a3 (with a1 ≥ a2 ≥ a3) are aligned with the Poincaré axes S1, S2, S3, respectively; and
(c) reverse ellipsoid E∆D(Mm).

All three characteristic ellipsoids are centered (the center of the ellipsoid coincides
with the origin of the Poincaré sphere) and have the same shape, with semiaxes a1, a2, a3
(a1 ≥ a2 ≥ a3). The symmetry axes of the canonical ellipsoid E∆(Mm) are aligned to
the respective axes S1, S2, S3 of the Poincaré sphere. Both forward and reverse ellipsoids,
E∆P(Mm) and E∆D(Mm), are rotated by the respective effects of MRI and MRO.

Degenerate cases occur when a3 = 0 with a2 > 0 (the characteristic ellipsoids be-
come ellipses), a2 = 0 with a1 > 0 (straight segments), and a1 = 0 (single point), which
corresponds to the trivial limiting case of the zero Mueller matrix.

4.2. Enpolarizing Components

As for the components MP and MD, their associated coherency matrices CP and CD
have the following respective sets of eigenvalues:

CP →
{

λP+ = m00(1 + P)/4 (double)
λP− = m00(1− P)/4 (double)

CD →
{

λD+ = m00(1 + D)/4 (double)
λD− = m00(1− D)/4 (double)

(21)

which are nonnegative because the conditions P ≤ 1 and D ≤ 1 are always satisfied by any
Mueller matrix M [11].

Thus, CP can have either two or four parallel pure components (two when P = 1
and four when P < 1), and the same happens for CD depending on whether D = 1 (two
parallel pure components) or D < 1 (four parallel pure components).
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As occurs with component Mm, the passivity of M implies the passivity of both MP
and MD.

Moreover, both MP and MD are type-I singular Mueller matrices, which is evident
when they are expressed as the following respective serial decompositions:

MP = MPMR
ˆ

M∆0, MD =
ˆ

M∆0MRMD,

MP = m00

(
1 PT

P mP

)
, MD = m00

(
1 DT

D mD

)
,

mK ≡
√

1− K2I3 +
1−
√

1−K2

K2 K⊗KT
[

K = P, D
K=P, D

]
,

(22)

where MP and MD represent respective normal diattenuators defined based on vectors P and
D [10,32–34], MR represents an arbitrary retarder (which plays no role in the definitive forms
of MP and MD), ⊗ stands for the Kronecker product, and I3 is the 3 × 3 identity matrix.

Since MP and MD are singular, their characteristic ellipsoids are given by single
points [35]. In particular, as shown in Figures 2 and 3, the canonical and reverse ellipsoids
of MP, as well as the forward and canonical ellipsoids of MD, are single points located in
the center of the Poincaré sphere, whereas the forward ellipsoid of MP and the reverse
ellipsoid of MD are given by single points located within or on the surface of the Poincaré
sphere depending on whether K < 1 or K = 1 (K = P, D), respectively.
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Figure 2. The characteristic ellipsoids of the polarizing component MP of the homogeneous extended
form of a Mueller matrix M are given by single points (the three semiaxes are zero-valued): (a) forward
ellipsoid, E∆P(MP), which lies on the surface of the Poincaré sphere if and only if P = 1; (b) canonical
ellipsoid E∆(MP); and (c) reverse ellipsoid E∆D(MP).
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Figure 3. The characteristic ellipsoids of the polarizing component DM  of the homogeneous ex-

tended form of a Mueller matrix M are given by single points (the three semiaxes are zero-valued): 
Figure 3. The characteristic ellipsoids of the polarizing component MD of the homogeneous extended
form of a Mueller matrix M are given by single points (the three semiaxes are zero-valued): (a) forward
ellipsoid E∆P(MD); (b) canonical ellipsoid E∆(MD); and (c) reverse ellipsoid, E∆P(MD), which lies
on the surface of the Poincaré sphere if and only if D = 1.
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5. Extended Decomposition of a Mueller Matrix

As in Section 4, we consider here general Mueller matrices with nonzero polarizance
and diattenuation (P > 0, D > 0). The cases where P = 0 or D = 0 will be dealt with in
Section 6.

As an alternative to the homogeneous extended form of M, the MIC of the perfect
depolarizer added to M can be taken as m00(P + D)/2 (instead of m00), so that the extended
form of M is defined as

ME(M) = 1
3 m00

ˆ
M + 2

3

[
m00(P+D)

2

] ˆ
M∆0 = 1

3 m00

(
1 + P + D DT

P m

)
[P > 0, D > 0]

(23)

Note that, since P, D ≤ 1, the MIC of the perfect depolarizer, m00(P + D)/2, is smaller
than that of the perfect depolarizer in the homogeneous extended form, m00.

The extended decomposition of M is then defined as

ME(M) = 1
3 Mm + 1

3 M ˆ
P
+ 1

3 M ˆ
D

,

Mm ≡ m00

(
1 0T

0 m

)
, M ˆ

P
≡ m00P

(
1 0T

ˆ
P 0

)
, M ˆ

D
≡ m00D

1
ˆ

D
T

0 0

,[
ˆ
P = P/P,

ˆ
D = D/D

]
.

(24)

Here, unlike the homogeneous extended decomposition, the polarizing and diat-

tenuating components exhibit respective polarizance and diattenuation vectors,
ˆ
P and

ˆ
D,

having necessarily maximal absolute values
∣∣∣∣ ˆ
P
∣∣∣∣ = ∣∣∣∣ ˆ

D
∣∣∣∣ = 1, and consequently the coherency

matrices C ˆ
P
= C (M ˆ

P
) and C ˆ

D
= C (M ˆ

D
) have the following respective sets of eigenvalues:

C ˆ
P
→
{

λP+ = m00/2 (double)
λP− = 0 (double)

C ˆ
D
→
{

λD+ = m00/2 (double)
λD− = 0 (double)

(25)

so that rankC ˆ
P
= rankC ˆ

D
= 2.

In accordance with this property, both the forward ellipsoid of M ˆ
P

and the reverse ellip-

soid of M ˆ
D

are given by single points that are located on the surface of the Poincaré sphere.

The structure of the components of the extended decomposition is even simpler than
that of the homogeneous one. In particular, M ˆ

P
and M ˆ

D
can be interpreted by means of the

following respective two-component parallel compositions:

M ˆ
P
= 1

2 m00P

 1
ˆ
P

T

ˆ
P

ˆ
P×

ˆ
P

T

+ 1
2 m00P

 1 −
ˆ
P

T

ˆ
P −

ˆ
P×

ˆ
P

T

,

M ˆ
D
= 1

2 m00D

 1
ˆ

D
T

ˆ
D

ˆ
D×

ˆ
D

T

+ 1
2 m00D

 1
ˆ

D
T

−
ˆ

D −
ˆ

D×
ˆ

D
T

,

(26)

where the nondepolarizing components of M ˆ
P

and M ˆ
D

correspond to respective perfect polar-

izers (i.e., media that fully polarize light entering either in the forward or reverse directions).
Note also that, as with the homogeneous extended decomposition, the passivity of the

three components is ensured by the passivity of M itself.
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The extended decomposition of the arrow form MA(M) has the simple form

ME(MA) =
1
3 MmA + 1

3 M ˆ
PA

+ 1
3 M ˆ

DA
,

MmA = MT
ROMm MT

RI = m00diag(1, a1, a2, εa3),

M ˆ
PA

= (m00P)MT
RO

(
1 0T

ˆ
P 0

)
= (m00P)

(
1 0T

mT
RO

ˆ
P 0

)
= (m00P)

(
1 0T

ˆ
PA 0

)
,

M ˆ
DA

= (m00D)

1
ˆ

D
T

0 0

MT
RI = (m00D)

1
ˆ

D
T

mT
RI

0 0

 = (m00D)

1
ˆ

D
T

A
0 0

.


(27)

6. Extended Decompositions of Matrices Lacking Polarizance or Diattenuation

The extended decompositions introduced in Sections 4 and 5 apply to Mueller matrices
with nonzero polarizance and diattenuation (P > 0 and D > 0). When P = 0 or D = 0,
the required ratio between the perfect depolarizer M∆0 and the starting M for a well-
defined extended form of M, without an excess of M∆0, changes with respect to the case
where P > 0 and D > 0. Appropriate particular forms of extended decompositions are
analyzed below, which, together those dealt with in Sections 4 and 5, provide a complete
case analysis.

When P > 0 and D = 0 (nondiattenuating Mueller matrices, denoted as MD=0), the
extended decompositions of M take the following forms, where the denominator of the
coefficients (polarimetric cross sections) equals the number of components (two):

MH(MD=0) =
1
2 m00

ˆ
M + 1

2 m00
ˆ

M∆0 = m00

(
1 0T

P/2 m/2

)
= 1

2 Mm + 1
2 MP,

ME(MD=0) =
1
2 m00

ˆ
M + 1

2 (m00P)
ˆ

M∆0 = 1
2 m00

(
1 + P 0T

P m

)
= 1

2 Mm + 1
2 M ˆ

P
.

(28)

Analogously, when P = 0 and D > 0 (nonpolarizing Mueller matrices, denoted as
MP=0),

MH(MP=0) = 1
2 m00

ˆ
M + 1

2 m00
ˆ

M∆0 = m00

(
1 DT/2
0 m/2

)
= 1

2 Mm + 1
2 MD,

ME(MP=0) = 1
2 m00

ˆ
M + 1

2 (m00D)
ˆ

M∆0 = m00

(
(1 + D)/2 DT/2

0 m/2

)
= 1

2 Mm + 1
2 M ˆ

D
.

(29)

The Mueller matrices Mm, MP, M ˆ
P

MD M ˆ
D

of the components in the above equations

have the forms defined in Equations (17) and (24).
In the case of a nonenpolarizing Mueller matrix Mm (P = D = 0), it directly has the

form of the nonenpolarizing component and therefore its extended form coincides with
itself (i.e., the corresponding coefficient for the added perfect depolarizer is zero).

7. Discussion

The extended representation of a given Mueller matrix M involves its convex sum
with a perfect depolarizer M∆0, which does not exhibit any anisotropy (or polarimetric
preference). Consequently, the anisotropies inherited by the extended representations
MH(M) and ME(M) are precisely those of M. Furthermore, for any given M, both MH(M)
and ME(M) are biunivocally related to M through simple expressions. In fact, the m, P,
and D of MH(M) are none other than those of M, whereas the structure of ME(M) is given

by m,
ˆ
P,

ˆ
D, P, and D (with P = P

ˆ
P and D = D

ˆ
D).

Furthermore, the extended forms MH(M) and ME(M) in Equations (16) and (23)

involving
ˆ

M∆0, of which the associated coherency matrix is C∆0 = I/4, ensure that the
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respective coherency matrices CH(M) and CE(M) satisfy rankCH(M) = rankCE(M) = 4,
which extends substantially the scope of parallel decompositions of the extended forms in
comparison to those directly applicable to M, and makes it possible to obtain the extended
decompositions considered in Sections 4–6.

It is remarkable that all Mueller matrices Mm, MP, MD, M ˆ
P

, and M ˆ
D

of the constituents

of the extended forms of M are type-I, and are therefore free from the intricate structure
exhibited by type-II Mueller matrices [28,36].

Due to their simplicity, the extended forms and decompositions of any given Mueller
matrix M can be straightforwardly interpreted regardless of its structural complexity. When
the arrow form of M is considered, the analysis becomes even simpler because in that
case, once the entrance and exit retarders have been decoupled from M, Mm becomes
diagonal [37].

An interesting limiting situation is that corresponding to pure Mueller matrices, of
which the general structure adopts the form [38]

MJ = MRL2 MRL0

(
m00

ˆ
MDL0

)
MRL0 MRL1, (30)

where MRL1 and MRL2 are equivalent (entrance and exit) linear retarders (each depending
on two angular parameters), MRL0 represents a horizontal linear retarder (depending

on a single parameter), and
ˆ

MDL0 is the normalized Mueller matrix of a normal [32–34]
horizontal linear diattenuator which only depends on the polarizance-diattenuation D of
MJ (recall that pure Mueller matrices necessarily satisfy P = D [39]).

ˆ
MDL0 =


1 D 0 0
D 1 0 0
0 0

√
1− D2 0

0 0 0
√

1− D2

 (31)

Therefore, the extended components of the arrow form m00
ˆ

MDL0 of MJ are given by

Mm = m00


1 0 0 0
0 1 0 0
0 0

√
1− D2 0

0 0 0
√

1− D2

,

MP = m00


1 0 0 0
D 0 0 0
0 0 0 0
0 0 0 0

, MD = m00


1 D 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

M ˆ
P
= m00


1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

, M ˆ
D
= m00


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

.

(32)

Coming back to general Mueller matrices (depolarizing or not), observe that since the
extended representation applies to any Mueller matrix without restriction, the following

question may arise: given an arbitrary set of normalized matrices of the form
ˆ

Mm,
ˆ

MP,

and
ˆ

MD, is the 4 × 4 matrix
ˆ
X retrieved as

ˆ
X = 3MH − 2

ˆ
M∆0 from

ˆ
MH = (1/3)

ˆ
Mm+

(1/3)
ˆ

MP + (1/3)MD in Equation (17) a (normalized) Mueller matrix? The answer is
negative, as evidenced by taking, for instance, the following set of matrices:
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ˆ
Mm ≡


1 0 0 0
0 x 0 0
0 0 x 0
0 0 0 x

 (0 ≤ x < 1),
ˆ

MP ≡


1 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

,
ˆ

MD ≡


1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, (33)

for which
ˆ
X does not satisfy the covariance conditions (i.e., it is not a Mueller matrix)

because its associated coherency matrix C(
ˆ
X) has, at least, a negative eigenvalue.

8. Conclusions

The Mueller matrices obtained through certain parallel combinations of a given
Mueller matrix M and a perfect depolarizer are always susceptible to be submitted to
respective kinds of parallel decompositions named the homogeneous extended decomposition
and the extended decomposition, the components of which have very simple structures which
are directly inherited from the anisotropies exhibited by M.

The parallel composition of M and a perfect depolarizer, with appropriate convex
coefficients, only affects the MIC (mean intensity coefficient) of the resulting composed
matrix, but it is the key for M to be interpreted in terms of the properties of the components
of the corresponding extended decompositions. In particular, two components can be
straightforwardly determined from the polarizance and diattenuation vectors of M, respec-
tively, whereas the third component depends exclusively on the 3 × 3 submatrix m of M,
which encompasses the remaining polarimetric information. That is to say, once the infor-
mation on polarizance and diattenuation has been decoupled and allocated to respective
parallel components, the structure of the remaining nonenpolarizing component allows for
the recovery of the complete polarimetric information (including the depolarization and
retardance properties) held by M.

In summary, any Mueller matrix M (depolarizing or nondepolarizing) is susceptible
to being represented, uniquely, through the extended representations MH(M) and ME(M),
and admits respective extended decompositions where the structural properties of M
appear decoupled in a very simple manner and encoded into separate components.
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