
Citation: Lin, X.; Hu, F.; Chi, N.

Enhanced Performance of a Cascaded

Receiver Consisting of a DNN-Based

Waveform-to-Symbol Converter and

Modified NN-Based DD-LMS in CAP

Underwater VLC System. Photonics

2023, 10, 79. https://doi.org/

10.3390/photonics10010079

Received: 10 December 2022

Revised: 5 January 2023

Accepted: 5 January 2023

Published: 10 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Article

Enhanced Performance of a Cascaded Receiver Consisting of a
DNN-Based Waveform-to-Symbol Converter and Modified
NN-Based DD-LMS in CAP Underwater VLC System
Xianhao Lin 1,2,3 , Fangchen Hu 1,2,3 and Nan Chi 1,2,3,*

1 Key Laboratory for Information Science of Electromagnetic Waves (MoE), Fudan University,
Shanghai 200433, China

2 Shanghai Engineering Research Center of Low-Earth-Orbit Satellite Communication and Applications,
Shanghai 200433, China

3 Shanghai Collaborative Innovation Center of Low-Earth-Orbit Satellite Communication Technology,
Shanghai 200433, China

* Correspondence: nanchi@fudan.edu.cn

Abstract: Underwater visible light communication (UVLC) based on LEDs has become a competitive
candidate, which is able to provide high data rates, low latency and low cost for next-generation
wireless communication technologies. However, it is still challenging to achieve high-speed com-
munication because of bottleneck problems such as bandwidth limitation and linear and nonlinear
distortions. Traditional Deep-learning Neural Network (DNN)-based waveform-to-symbol converter
is verified to be an effective method to alleviate them, but impractical due to high complexity. To
achieve a better tradeoff between communication performance and computation complexity, a cas-
caded receiver consisting of a DNN-based waveform-to-symbol converter and modified Neural
Network (NN)-based decision-directed least mean square (DD-LMS) is then innovatively proposed.
With fewer taps and nodes than the traditional converter, the front-stage converter could mitigate the
majority of Inter-Symbol Interference (ISI) and signal nonlinear distortions. Then modified NN-based
DD-LMS is cascaded to improve communication performance by reducing phase offset, making re-
ceived constellation points more concentrated and closer to standard constellation points. Compared
with the traditional converter, the cascaded receiver could achieve 89.6% of signal Vpp dynamic range
with 12.4% of complexity in the 64APSK UVLC system. Moreover, the ratio of signal Vpp dynamic
range and total trainable parameters is 1.24 × 10−1 mV, while that of the traditional converter is
1.95 × 10−2 mV. The cascaded receiver used in 64APSK UVLC systems is experimentally verified to
achieve enhanced performance, thus as a promising scheme for future high-speed underwater VLC.

Keywords: underwater visible light communication (UVLC); neural network (NN); waveform-to-
symbol converter; DD-LMS

1. Introduction

With the exploration of marine resources and the increase of human underwater
activities, the demand for efficient underwater communication has increased significantly.
At present, the most widely applied means of underwater wireless communication is
acoustic technology, which still suffers from low data rate, high signal attenuation, high
latency and severe multipath effect. As for radio frequency (RF) which is commonly used
in our daily life, it is not very suitable for underwater communication due to the high
attenuation of RF waves in seawater. Another way is utilizing fiber optic to implement
long-range and high-speed underwater communication. However, it is not flexible enough
for increasingly diverse underwater applications because of the requirement of a physical
cable connection between transmitters and receivers. Therefore, underwater visible light

Photonics 2023, 10, 79. https://doi.org/10.3390/photonics10010079 https://www.mdpi.com/journal/photonics

https://doi.org/10.3390/photonics10010079
https://doi.org/10.3390/photonics10010079
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/photonics
https://www.mdpi.com
https://orcid.org/0000-0002-7836-0810
https://orcid.org/0000-0003-4966-3844
https://doi.org/10.3390/photonics10010079
https://www.mdpi.com/journal/photonics
https://www.mdpi.com/article/10.3390/photonics10010079?type=check_update&version=1


Photonics 2023, 10, 79 2 of 17

communication (UVLC) has aroused wild attention and is considered an alternative or
complement to the underwater communication technologies mentioned above [1–3].

Visible light communication (VLC) is an emerging wireless communication technol-
ogy with several advantages such as large transmission capacity, high security, low cost,
anti-electromagnetic interference and license-free [4–6]. Considering the relatively low
attenuation window of seawater in the blue-green portion of the electromagnetic spec-
trum, VLC has great potential to provide a high data rate and low latency within a short
range [1,2]. There are two kinds of commonly used VLC transmitters, which are based on
laser diodes (LDs) and light-emitting diodes (LEDs). LDs enable longer-range transmission
in point-to-point scenarios due to their high power density but require strict alignment
between transmitters and receivers. Compared with LDs, LEDs have a larger divergence
angle, which allows for more short-range applications, including point-to-point and point-
to-multipoint scenarios [7]. In this paper, we focus on UVLC systems based on LEDs which
have become a promising candidate for underwater communication.

Despite the many significant advantages of UVLC systems based on LEDs mentioned
above, the bottleneck problems it faces cannot be ignored. The limited bandwidth of LEDs,
various noises, and linear and nonlinear distortions largely restrict the communication
performance of UVLC systems [6]. The modulation bandwidth of commercially available
LEDs is usually several megahertz (MHz) [8], which has become one of the main factors
limiting the development of high-speed VLC systems. Due to the bandwidth limitation
of LEDs and other optoelectronic devices, the received signals suffer from serious linear
distortion, thus interfering with the correct demodulation and decoding. When the band-
width of the transmission signals exceeds the effective bandwidth of VLC systems, the
bandwidth limitation behaves as a strong low-pass filter, which will compress the signal
spectrum, resulting in serious inter-symbol interference (ISI). Furthermore, the signals’
nonlinear effects will severely deteriorate communication performance, which results from
the nonlinearity of devices’ optoelectronic characteristics, distortions caused by amplifiers
and so on. When the transmitting power is very high and the channel is complex, nonlin-
earity will become the main challenge restricting the systems’ performance, especially for
underwater applications, which usually require considerable transmitting power.

To alleviate these bottleneck problems, advanced modulation formats are proposed,
including carrier-less amplitude and phase (CAP) modulation [9], adaptive bit loading
Orthogonal Frequency Division Multiplexing (OFDM) [10] and Nyquist single carrier
(N-SC) modulation [11]. To further improve communication performance, Geometrically-
shaping (GS) technology [12] was proposed to increase Euclidean distance between the
constellation points and decrease Peak-to-Average Power Ratio (PAPR) by optimizing
the constellation distribution. For example, APSK, which is one kind of GS constellation
point, has been adopted by the second-generation digital video broadcasting specifica-
tion for satellite (DVB-S2) and approved by the consultative committee for space data
systems (CCSDS) [13,14]. Besides, post-equalization algorithms based on advanced dig-
ital signal processing (DSP) are proposed to mitigate linear and nonlinear distortions.
At present, linear time-frequency domain equalization technology based on least mean
square (LMS) [15], recursive least square (RLS) [16], direct decision least mean square
(DD-LMS), zero-forcing [17] and other algorithms have been utilized in VLC systems,
effectively eliminating linear distortion. In terms of nonlinear distortions, a series of non-
linear equalizers have also been proposed, such as Volterra series-based and Polynomial
based algorithms [18].

Recently, artificial intelligence algorithms, especially neural networks (NN), are emerg-
ing as effective techniques to deal with nonlinear problems. Due to NN’s universal approx-
imation theorem, it is commonly used as a post-equalization algorithm in VLC systems.
In [19], a Gaussian kernel-aided deep neural network (GK-DNN) equalizer was utilized to
compensate for the high nonlinear distortion of underwater PAM8 VLC channels. In [20],
Lu et al. proposed a memory-controlled deep LSTM neural network post-equalizer for
PAM-based VLC systems. In [21], a nonlinear resilient learning post-equalizer named
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TFDNet was proposed. It exploits time-frequency image analysis, which considers the time
and frequency domains simultaneously and is effective in tackling nonlinear distortions
in UVLC systems. Except for equalizers, DNNs were recently used as a waveform to
symbol converter, which could replace conventional demodulation, post-equalization, and
down-sampling at the receiving end. In [22], a sparse data-to-symbol neural network
(SDSNN) receiver is proposed for UVLC based on nonorthogonal multi-band CAP to
mitigate ISI and inter-channel interference (ICI). In [23], a Neural-network-based waveform
to symbol converter (NNWSC) can directly convert the received multiband CAP waveform
into quadrature amplitude modulation (QAM) symbols to simultaneously handle the ISI
and ICI in a fiber-mmWave system. In [24], a DNN-based waveform to symbol decoder
with three hidden layers was utilized in UVLC systems and achieved better communication
performance than a traditional receiver. Moreover, neural networks are now becoming
more and more popular in channel estimation [25] and end-to-end learning [26,27].

In this paper, we first construct and optimize a traditional DNN-based waveform-to-
symbol converter [24] to replace conventional demodulation, down-sampling and post-
equalization at the receiving end in 64QAM and 64APSK UVLC systems based on CAP
modulation. It is regarded as a benchmark that could increase signal Vpp dynamic range by
104% (from 250 mV to 511 mV) for 64APSK and 181% (from 180 mV to 506 mV) for 64QAM
with 7% FEC of 3.8 × 10−3 as a BER threshold, compared with traditional CAP receiver.
However, it comes at the cost of the high complexity of 26,210 trainable parameters. To
achieve a better tradeoff between communication performance and computation complexity
which is represented by total trainable parameters, we then innovatively propose a cascaded
receiver consisting of a DNN-based waveform-to-symbol converter and modified NN-
based DD-LMS. With fewer taps and nodes than the traditional converter, the front-stage
converter could still mitigate the majority of ISI and signal distortions. Then modified NN-
based DD-LMS is cascaded to improve communication performance by reducing phase
offset, making received constellation points more concentrated and closer to standard
constellation points. Compared with the traditional converter, the cascaded receiver could
achieve 89.6% of signal Vpp dynamic range with 12.4% of complexity in the 64APSK UVLC
system. Moreover, the ratio of signal Vpp dynamic range and total trainable parameters is
1.24× 10−1 mV, while that of the traditional converter is 1.95× 10−2 mV. It is experimentally
validated that the cascaded receiver using 64APSK is an effective method to enhance the
performance of UVLC systems based on CAP modulation.

2. Principle
2.1. Principle of CAP Modulation and Conventional CAP Receiver

CAP modulation is one kind of advanced multi-dimension and multi-level modu-
lation format, which achieves a high data rate and high spectral efficiency with limited
bandwidth [28,29]. CAP modulation can adopt any order m-QAM signal for flexible coding
to achieve high-order modulation, and FIR filters are used for pulse shaping, so its signal
bandwidth is close to the minimum bandwidth of Nyquist theory. Compared with tradi-
tional QAM and OFDM modulation, electrical or optical complex-to-real-value conversion
and discrete Fourier transform (DFT) are no longer required, which means that the system
complexity can be greatly reduced. Therefore, it is a promising modulation scheme for
bandwidth-limited and low-complexity required UVLC systems.

At the transmitting end, the original bit sequence is firstly mapped to M-order complex
symbols. When using GS technology, the mapping methods are different, thus obtaining
constellation points of different shapes. For example, 64QAM has square constellation
points, while 64APSK has four circles. Then, complex symbols are up-sampled according
to the minimum number of samples per symbol, which avoids spectrum aliasing. After
that, the symbols are separated into the in-phase and quadrature components, which are
represented by sI(t) and sQ(t) respectively. Finally, they are sent into a pair of orthogonal
shaping filters and added together to generate CAP-modulated signals that will be con-
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verted into analog signals through a digital-to-analog converter (DAC). The signals can be
expressed as

s(t) = sI(t)
⊗

f I(t)− sQ(t)
⊗

fQ(t) (1)

Here, ⊗ represents a convolution operation. f I(t) and fQ(t) are the corresponding im-
pulse response of orthogonal shaping filters in the time domain, which can be expressed as{

f I(t) = g(t) cos(2π fct)
fQ(t) = g(t) sin(2π fct)

(2)

In Formula (2), fc is the central frequency of shaping filters, which can be expressed as
fc = (1 + α)/2T + ∆ f . T, ∆ f , and α are the symbol period, frequency offset and roll-off
coefficient, respectively. g(t) is baseband impulse response which is usually root raised
cosine filter. It can be expressed as

g(t) =
T sin[π(1− α)t/T] + 4αt cos[π(1 + α)t/T]

πt
[
1− (1− (4αt/T))2

] (3)

At the receiving end, the received CAP waveform suffers from severe distortions
due to serious linear or nonlinear damage and noise interference. So linear or nonlinear
waveform-level equalization algorithms are usually utilized for a received signal after
being sampled and quantified by an oscilloscope, such as LMS [15] or Volterra series-based
algorithms [18] and so on. Then the signals pass through a pair of matched filters to obtain
the in-phase and quadrature components, which can be expressed as{

rI(t) = r(t)
⊗

mI(t)
rQ(t) = r(t)

⊗
mQ(t)

(4)

Here, mI(t) = f I(−t) and mQ(t) = fQ(−t) are corresponding impulse response of the
corresponding matched filters. I and Q signal are combined with being complex symbols
after matched filtering and down-sampling, which are actually received constellation points.
To further mitigate inter-symbol interference (ISI) and linear or nonlinear distortions,
symbol-level post-equalizations are widely applied, including zero-forcing, LMS, DD-
LMS, RLS, Volterra series and even neural network-based post equalization algorithms
mentioned above. Finally, the original bit data can be retrieved from de-mapping.

2.2. Principle of a Cascaded Receiver Consisting of a DNN-Based Waveform-to-Symbol Converter
and Modified NN-Based DD-LMS

Thanks to the artificial neural network’s universal approximation theorem, it is feasi-
ble to convert the received signal waveform with severe ISI and distortions into complex
symbols or constellation points directly by using a well-trained neural network [23]. It is
called a waveform-to-symbol converter that replaces conventional waveform-level equal-
ization, matched filtering, down-sampling, and symbol-level post-equalization. Compared
with conventional multi-stage processing at the receiving end, a DNN-based waveform-to-
symbol converter optimizes the receiver as a whole and achieves better performance due to
the powerful ability of a neural network to find out implicit relationships between received
waveforms and symbols [24]. However, the converter must be of large enough complexity
to convert received waveforms into symbols perfectly. To achieve a better tradeoff between
communication performance and computation complexity, a cascaded receiver consisting
of a DNN-based waveform-to-symbol converter and modified NN-based DD-LMS is pro-
posed in this paper. Although with fewer taps and nodes than traditional converter [24],
we will optimize in this paper the front-stage DNN-based waveform-to-symbol converter
could mitigate the majority of ISI and signal nonlinear distortions. Then modified NN-
based DD-LMS is cascaded to eliminate remaining ISI and distortions and improve signal
quality even further. Thus, the cascaded receiver could achieve excellent communication
performance with relatively low complexity.
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The schematic of the proposed algorithm is shown in Figure 1. At the transmitter
end, an original pseudorandom binary sequence is generated and then mapped to 64QAM
or 64APSK complex symbols using GS technology. The constellation points of 64QAM
are square, while those of 64APSK consists of four rings. These symbols are converted to
transmitted waveforms after CAP modulation. After traveling from transmitter to receiver,
the received signals have experienced severe inter-symbol interference (ISI) and distortions
due to bandwidth limitation of LED, various noises, and linear and nonlinear damages. The
transmitted and received signals are displayed in Figure 1, where the waveform distortions
can be observed both in the time domain and frequency domain, respectively.
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Figure 1. The schematic diagram of the UVLC system using the cascaded receiver. (a) shows the
details of the front-stage DNN-based waveform-to-symbol converter at the front stage. (b) shows the
details of the modified NN-based DD-LMS at the rear stage.

The received signals are then sent into a DNN-based waveform-to-symbol converter,
whose structure is shown in Figure 1a. It consists of one input layer with N nodes, three
hidden layers with n1, n2, and n3 nodes, respectively and one output layer with two nodes
that correspond to the real and imaginary parts of the output. Considering inter-symbol
interference, a sliding window is applied to received signals x(t). The jth slice can be
expressed as:

X(j) =
{

x
(

j− l − 1
2

)
, . . . , x(j− 1), x(j), x(j + 1), . . . , x

(
j +

l − 1
2

)}
(5)

where l is an odd number that represents the length of the sliding window. The step
size of the sliding window equals the number of up-sampling. For example, four times
up-sampling is adopted in this paper, so the step size would be set as four. Then each slice
will be calculated by three hidden layers in turns and connected to two output nodes to
produce the real and imaginary parts, respectively. The jth output can be expressed as:

yout(j) = [yr(j), yi(j)]T (6)

where yr(j) and yi(j) denote the real and imaginary parts of jth output. The relationship
between input and output can be expressed as:

yout(j) = W4 f
(

W3 f
(

W2 f
(

W1 f (X(j)) + b1
)
+ b2

)
+ b3

)
+ b4 (7)
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where W1, W2, W3 and W4 represent the weight matrices for each layer respectively, b1, b2,
b3 and b4 represent the bias, respectively. f (·) denotes the nonlinear activation function
(AF) Tanh(·), which could be expressed as [30],

Tanh(x) =
ex − e−x

ex + e−x (8)

After experiencing forward propagation, the minimum mean square error (MSE) is
employed as the loss function to calculate the difference between the predicted symbols
and transmitted symbols. The weight W and bias b can be obtained by the following
Equation (9),

W, b = argmin
W,b

1
m

m

∑
j=1
||ŷ(j)− yout(j)||2 (9)

where, ŷ(j) is the jth transmitted symbol, and yout(j) is the corresponding predicted symbol;
m is the number of all symbols in one batch. In this algorithm, we utilize Adam optimizer
and ReduceLROnPlateau, which is a commonly used strategy to adjust the learning rate.

The constellation points of 64APSK and 64QAM after the DNN-based waveform-to-
symbol converter are displayed in Figure 1. There are a lot of red points that represent
the wrongly decided symbols due to remaining ISI, linear and nonlinear distortions. Then
the real part yr(t) and imaginary part yi(t) of outputs are sent to the modified NN-based
DD-LMS algorithm after two slide windows, respectively. The kth input X∗(k) of NN-based
DD-LMS can be expressed as:

X∗(k) =
[

yr

(
k− M− 1

2

)
, yi

(
k− M− 1

2

)
, . . . , yr(k), yi(k), . . . , yr

(
k +

M− 1
2

)
, yi

(
k +

M− 1
2

)]T
(10)

where M is the length of the sliding window on the real or imaginary part, and 2M is the
input length NN-based DD-LMS. According to our experiments, the input length of 42
would be the best. Then input signals are multiplied by the weight matrix H and connected
to two output nodes that correspond to the real part y∗r (k) and imaginary part y∗i (k) of
output. The kth output can be expressed as,

y∗out = [y∗r (k), y∗i (k)]
T (11)

Therefore, the relationship between input and output can be given by,

y∗out(k) = HX∗(k) (12)

At the same time, y∗r (k) and y∗i (k) would be combined as a complex symbol and then
de-mapped according to the principle of minimum Euclidean distance. Here, the weight
matrix H, which is a 2-by-2M, could be updated by calculating the difference between the
output symbols and those obtained by de-mapping. An Adam optimizer is utilized for
intelligent adjustment of the learning rate, which contributes to outperforming traditional
DD-LMS. Notedly, modified NN-based DD-LMS is still a blind algorithm, which means
the initialization of weight matrix H should be carefully considered. To start with, the
intermediate input symbol will be chosen as output by setting the two middle elements of
H(h1,M and h2,M+1) as 1 and others as 0. So, the initial weight matrix H is given by,

H =

[
0, . . . , 1, 0, . . . , 0
0, . . . , 0, 1, . . . , 0

]
2×2M

(13)

As shown in Figure 1, the wrongly decided symbols have greatly decreased after the
modified DD-LMS. Therefore, a cascaded receiver consisting of a DNN-based waveform-
to-symbol converter and modified NN-based DD-LMS is proposed for UVLC systems.
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3. Setup

Figure 2 presents the experimental setup of a UVLC system using different receivers.
At the transmitting end, the input data is firstly mapped onto 64QAM or 64APSK using
GS technology. Then the modulation format of CAP is adopted. In the traditional CAP
encoder, the signals are up-sampled by four times to prevent the spectrum from aliasing.
Then the I and Q components pass through a pair of orthogonal square root raised cosine
(SRRC) filters after I/Q separation. The roll-off factor of SRRC is 0.205. The transmitted
signals are generated by adding together these two IQ signals and normalization. Next, the
digital signals are loaded into AWG (Tektronix AWG710) to convert to electrical signals.
The signals then pass through a hardware pre-equalizer (Eq.) which is used to compensate
for the frequency attenuation at high-frequency components [8]. After that, the signals are
amplified by an electrical amplifier (ZHL-2-8-s+) and coupled with a DC current through
the Bias Tee (Mini-Circuit ZFBT-4R2GW-FT+), which is used to drive the blue LED. Finally,
LED converts the electrical signals into optical signals that will be collimated into parallel
light by the lens. The light travels through a 1.2-m water tank and arrives at the receiver.
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Figure 2. Experimental setup of Underwater VLC system using different receivers. (a) shows the
overall setup of UVLC system in our experiments. (b) shows the details of traditional CAP encoder
at the transmitting end. (c) shows the details of traditional CAP decoder at the receiving end.

At the receiving end, the optical signals are detected by a PIN photodiode (Hama-
matsu 10784) which has a pair of differential outputs to suppress common mode noise. The
differential signal streams are then amplified by EAs, acquired by OSC (DSO9404A) and
synchronized to obtain received waveforms. Three different receivers are experimentally
compared. The first one is the traditional CAP decoder, including waveform-level equal-
ization, orthogonal filters, down-sampling, symbol-level equalization and normalization.
The second one is a traditional DNN-based waveform-to-symbol converter (DNN con-
verter) [24] that we optimize in this paper. It can find out the complex relationship between
received waveforms and symbols with a high-complexity neural network. The last one is
the proposed cascaded receiver consisting of a DNN converter with fewer taps or nodes
and NN-based DD-LMS proposed in this paper. The DNN converter at the front stage
could still handle the majority of ISI and nonlinear distortions. Then modified NN-based
DD-LMS is cascaded to mitigate remaining ISI and distortions and further improve signal
quality, thus achieving excellent performance with totally low complexity. Finally, the
original data could be extracted from GS-64QAM de-mapping.
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4. Experimental Results

In this section, we first construct and optimize a traditional DNN-based waveform-
to-symbol converter (DNN converter) in 64APSK and 64QAM UVLC systems. Based on
it, a cascaded receiver consisting of a DNN converter with fewer taps or nodes and an
NN-based DD-LMS algorithm is experimentally analyzed in detail.

Figure 3 shows the relationship between the taps of traditional DNN-based waveform-
to-symbol converter (DNN converter) and BER performance under different bias currents
and signal Vpp, with 7% FEC of 3.8 × 10−3 as a BER threshold. Taps refer to the number of
symbols corresponding to the input signal waveforms processed by the DNN converter at
one time. Furthermore, the taps determine the number of inter-symbol interferences that
the DNN converter can model. When the taps are less than 19, BER under different bias
currents and signal, Vpp decreases rapidly as taps increase because it is not large enough
to calculate the ISI. In this system, 19 taps allow a traditional DNN converter to achieve the
best BER performance, which is clearly described in Figure 3. Because of the four times
of upsampling, 19 taps mean that the input waveform length of the DNN converter is
76. However, as taps continue to increase, BER becomes worse. More taps lead to a more
complex structure of DNN, requiring bigger data sets to train. Because of limited training
data, overly complex networks cannot be trained better [19]. Therefore, there is a tradeoff
between taps and the number of training data. The taps of 19 would be the best in our
experiment. The constellation points of 19 under different bias currents and signal Vpp are
displayed in Figure 3i–iv.
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Figure 3. The relationship between BER performance and the taps of traditional DNN-based
waveform-to-symbol converter under different bias currents and signal Vpp. (i–iv) show the constel-
lation points of 19 taps under different bias currents and signal Vpp respectively.

Next, it is necessary to find the optimal structure of a traditional DNN converter.
Figure 4a–c shows the relationship between BER performance and the number of hidden
layers, nodes of each hidden layer, and the activation functions of traditional DNN con-
verter under different signal Vpp, respectively. The bias current is fixed at 150 mA, and
signal Vpp varies from 250 mV to 850 mV. In Figure 4a, the number of nodes in each hidden
layer is set as 32. The DNN converters with different hidden layers ranging from 1 to 5 all
outperform traditional CAP demodulation, especially in the high signal Vpp region. Thus,
DNN-based waveform-to-symbol converters are experimentally demonstrated to be an
effective scheme to improve the communication performance of UVLC systems. When the
number of hidden layers increases from 1 to 3, the corresponding BER decreases. This is
because the DNN converter requires a large enough complexity to fit the nonlinearity and
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perfectly convert the signal waveforms into the corresponding symbols. As the number
of hidden layers increases from 1 to 3, the DNN converter becomes more complex and
fits the relationship between input and output more fully. However, as the number of
hidden layers continues to increase from 3 to 5, the BER performance has not been further
improved but has deteriorated somewhat. Because three hidden layers are sufficient to fit
the nonlinear relationship between input and output, and no more layers are required. In-
stead, more hidden layers consume more computing resources and may lead to overfitting.
Therefore, the number of hidden layers is chosen as 3. In Figure 4b, the DNN converter
has three hidden layers with n1, n2, n3 nodes respectively, so it is referred to as DNN
(n1, n2, n3). The BER performance of DNN (32, 32, 16), DNN (96, 64, 32), DNN (96, 96, 96)
and DNN (128, 128, 128) are shown, compared with traditional CAP demodulation. DNN
(96, 96, 96) achieves better performance than DNN (32, 32, 16) and DNN (96, 64, 32) due
to greater complexity. Instead, DNN with too complex a structure easily leads to overfit-
ting, which could be verified by DNN (128, 128, 128). In Figure 4c, the effects of different
activation functions (Sigmoid, ReLU and Tanh) and no activation functions (None) have
been investigated. The DNN converter with the activation function of Tanh has the best
performance, then ReLU and Sigmoid. The DNN converter with no activation function
has the worst performance that is similar to traditional CAP demodulation. Therefore, the
DNN-based waveform-to-symbol converter we optimize has three hidden layers with 96,
96 and 96 nodes, and Tanh is employed as the activation function.
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Figure 4. The relationship between BER performance and (a) the number of hidden layers;
(b) nodes of each hidden layer; (c) the activation functions of traditional DNN converter under
different signal Vpp.

Figure 5 presents the relationship between the BER performance of different taps and
epochs during training, with 7a % FEC of 3.8 × 10−3 as a BER threshold. The bias current
is 150 mA, and the signal Vpp is set as 550 mV. When the epoch is less than 200, the BER
of the DNN converter decreases below the threshold rapidly. As the epoch continues to
increase, BER drops slowly and converges gradually. It can be seen that the BER using a
DNN converter with the taps of 19 is lower than 11 and 27 when training is finished, which
is consistent with the results in Figure 3. Figure 5i–iv displays the constellation points
obtained by the DNN converter with the taps of 19 when the epoch is 2, 50, 100, and 500,
respectively. As the epoch increases, the constellation points become more and more clear
and distinguishable.

Then the effects of the DNN converter on BER in 64QAM or 64APSK UVLC systems
under different bias currents and signal Vpp are investigated, compared with traditional
CAP demodulation. The results are presented in Figure 6, where the dynamic range of
signal Vpp and bias current is circled by a black line of 2.0× 10−3 FEC threshold. The bias
current varies from 70 mA to 170 mA, and the signal Vpp varies from 250 mV to 750 mV.
Comparing Figure 6a with Figure 6c, it can be seen that 64APSK systems work mainly
in the higher current region where signals suffer from severe nonlinearity, which means
that 64APSK is more advantageous to resist nonlinearity and it could obtain higher SNR
in the circumstances of strong attenuation in UVLC systems. The DNN converter could
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significantly extend the dynamic range both in 64APSK and 64QAM systems, especially in
high signal Vpp region, because of its powerful ability to handle nonlinearity. However,
in low signal Vpp region, BER performance using a DNN converter is similar to that
using traditional CAP demodulation in 64APSK or 64QAM systems. This can be predicted
because when signal Vpp is relatively low, noise plays a dominant role in the deterioration
of communication performance, and the neural network is proven to be almost unable to
handle it.
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In order to analyze the effects of the DNN converter, more specifically, the BER versus
different signal Vpp for 64APSK and 64QAM UVLC systems under the bias current of
150 mA is demonstrated in Figure 7, compared with traditional CAP demodulation. In
terms of traditional CAP demodulation (black curves in Figure 7a,b), the BER decreases
as the increase of signal Vpp when it is smaller than 450 mV due to the enhancement of
SNR. When it is larger than 450 mV, the BER versus signal Vpp has an opposite tendency
because of nonlinear distortions. Thus, the signal Vpp dynamic range of signal Vpp is
250 mV for 64APSK and 180 mV for 64QAM with 7% FEC of 3.8 × 10−3, respectively.
The communication performance is significantly improved by using DNN converter (red
curves in Figure 7a,b), as the signal Vpp dynamic range enlarges by 104% (from 250 mV
to 511 mV) for 64APSK in Figure 7a and 181% (from 180 mV to 506 mV) for 64QAM in
Figure 7b. Meanwhile, the Q factor of 950 mA biases current increases by 3.12 dB for
64APSK and 2.96 dB for 64QAM, compared with traditional CAP demodulation. It is
experimentally verified that the DNN converter has obvious advantages over traditional
CAP demodulation in the nonlinear region, thus more suitable for UVLC systems.

We also measured the Q factor for 64APSK and 64QAM UVLC systems at different
bit rates under the optimal bias voltage and signaled Vpp with 7% FEC of 3.8 × 10−3 as a
BER threshold. The performance of the DNN converter is in comparison with traditional
CAP demodulation in Figure 8. As expected, the DNN converter could achieve greater
communication capacity. To be specific, the highest bit rate is 3.23 Gb/s in the 64APSK
system utilizing DNN converter and 3.09 Gb/s in 64QAM system, which is 125 Mb/s
and 50 Mb/s faster than traditional CAP demodulation, respectively. 64APSK using the
DNN converter is experimentally proved to be a promising scheme for future high-speed
UVLC systems.
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At this point, the traditional DNN-based waveform-to-symbol converter we optimize
is obtained. However, it is of high complexity to sustain the pressure of mitigating ISI,
linear and nonlinear distortions, which is not expected for the implementation of UVLC
systems. In order to achieve a better tradeoff between communication performance and
computation complexity, we innovatively propose a cascaded receiver consisting of a DNN-
based waveform-to-symbol converter and an NN-based DD-LMS algorithm. The DNN
converter at the front stage is generated by appropriately reducing the taps or the nodes of
hidden layers of the DNN converter we optimize above. It could still mitigate the majority
of ISI and distortions of received signals. Then, a modified NN-based DD-LMS is utilized
for further improving the quality of complex symbols (constellation points) produced by the
DNN converter at the front stage. Thus, the algorithm could achieve similar performance
to the traditional DNN converter we optimize but with much lower complexity.
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Figure 8. BER versus different Bit rate for 64APSK and 64QAM UVLC systems. (i,ii) show the
constellation points of DNN converter and CAP demodulation in 64APSK UVLC systems when data
rate is 3.15 Gb/s, respectively. (iii,iv) show the constellation points of DNN converter and CAP
demodulation in 64QAM UVLC systems when data rate is 3.15 Gb/s, respectively.

In order to investigate the effects of modified NN-based DD-LMS on constellation
points, we first pay attention to an important metric, which is phase offset. It is the average
phase offset of each constellation point’s class compared with standard constellation points.
The results of 64APSK and 64QAM systems are shown in Figure 9a,b, respectively. The
bias current is fixed at 150 mA, and signal Vpp varies from 250 mV to 950 mV. Based on the
traditional DNN converter we optimize above, the front-stage DNN converter is obtained
by reducing the taps from 19 to 11 and the nodes of three hidden layers from 96 to 32.
As can be seen from Figure 9, the phase offsets after the front-stage DNN converter are
still high due to remaining ISI and distortions. Fortunately, the phase offsets could be
significantly reduced by modified NN-based DD-LMS, which indicates the improvement of
communication performance. Figure 9i,ii show the movement vector of each constellation
points’ center after NN-based DD-LMS for 64APSK and 64QAM systems when signal Vpp
is 550 mV, respectively.

Photonics 2023, 10, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 9. Phase Offset of DNN (32, 32, 32) with taps of 11 for (a) 64APSK; (b) 64QAM UVLC systems 
under different signal Vpp. (i) (ii) show the movement vector of each constellation points’ center 
after NN-based DD-LMS for 64APSK and 64QAM systems when signal Vpp is 550 mV, respectively. 

In addition to phase offset, we measured the average distance between the received 
constellation points’ center and standard constellation points. Moreover, a new metric 
named “Average Cluster Sum of Square” (ACSS) is proposed to represent how concen-
trated the received constellation points are. The smaller ACSS is, the more concentrated 
the received constellation points are. ACSS can be expressed as, 

Average Cluster Sum of Square(ACSS) = 164 1𝑛 𝒀 − 𝒖  (14) 

where 𝒀  denotes the 𝑖  point of 𝑗  constellation points class and 𝒖  denotes the cen-
ter of 𝑗  constellation points class. The results of DNN (32, 32, 32), DNN (64, 64, 64) and 
DNN (96, 96, 96) with the taps of 11 are shown in Figure 10. The average distances and 
ACSS under different signal Vpp for 64APSK UVLC systems are demonstrated in Figure 
10a,b, respectively. It can be seen that after using NN-based DD-LMS, the average distance 
and ACSS both become smaller almost under every signal Vpp, which indicates that sym-
bol decision would be more accurate after modified DD-LMS. The details of the 64 con-
stellation points’ class for the 64APSK system are shown in Figure 10i,ii, where blue and 
brown columns represent the results of the front-stage DNN converter with or without 
NN-based DD-LMS, respectively. The experimental results are similar for the 64QAM sys-
tem, which are provided in Figure 10c,d. 

Figure 9. Phase Offset of DNN (32, 32, 32) with taps of 11 for (a) 64APSK; (b) 64QAM UVLC systems
under different signal Vpp. (i,ii) show the movement vector of each constellation points’ center after
NN-based DD-LMS for 64APSK and 64QAM systems when signal Vpp is 550 mV, respectively.

In addition to phase offset, we measured the average distance between the received
constellation points’ center and standard constellation points. Moreover, a new metric
named “Average Cluster Sum of Square” (ACSS) is proposed to represent how concentrated
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the received constellation points are. The smaller ACSS is, the more concentrated the
received constellation points are. ACSS can be expressed as,

Average Cluster Sum of Square(ACSS) =
1
64

64

∑
j=1

(
1
nj

nj

∑
i=1

∣∣∣∣Yij − uj
∣∣∣∣2) (14)

where Yij denotes the ith point of jth constellation points class and uj denotes the center of
jth constellation points class. The results of DNN (32, 32, 32), DNN (64, 64, 64) and DNN
(96, 96, 96) with the taps of 11 are shown in Figure 10. The average distances and ACSS
under different signal Vpp for 64APSK UVLC systems are demonstrated in Figure 10a,b,
respectively. It can be seen that after using NN-based DD-LMS, the average distance and
ACSS both become smaller almost under every signal Vpp, which indicates that symbol
decision would be more accurate after modified DD-LMS. The details of the 64 constellation
points’ class for the 64APSK system are shown in Figure 10i,ii, where blue and brown
columns represent the results of the front-stage DNN converter with or without NN-based
DD-LMS, respectively. The experimental results are similar for the 64QAM system, which
are provided in Figure 10c,d.
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Figure 10. (a) The average distance between the center of received constellation points’ class and
standard constellation points for 64APSK systems; (b) ACSS for 64APSK systems; (c) the average
distance for 64QAM systems; (d) ACSS for 64QAM systems.

In summary, NN-based DD-LMS could improve communication performance by
reducing phase offset, making constellation points more concentrated and closer to standard
constellation points. Then the communication performance of the cascaded receiver we
proposed is presented in Figure 11a–d with 7% FEC of 3.8 × 10−3 as a BER threshold,
compared with traditional CAP demodulation and typical DD-LMS. Figure 11a shows that
in 64APSK UVLC systems, the BER of using a DNN converter is much lower than traditional
CAP demodulation in the high-power region. The red line represents the traditional DNN
converter we optimize, and it achieves the best communication performance. When
reducing the taps from 19 to 11, the communication performance becomes worse due to
remaining ISI and signal distortions, in which the dynamic range is 475 mV. After using
typical DD-LMS or NN-based DD-LMS, BER performance is enhanced. Furthermore,
using modified NN-based DD-LMS could achieve better performance than typical DD-
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LMS due to the usage of Adam optimizer. In Figure 11b, cascaded receivers consisting
of DNN converters with different complexity and NN-based DD-LMS are investigated in
64APSK systems. The traditional DNN converter we optimize has the largest dynamic
range of 511 mV. When reducing the taps from 19 to 11, the dynamic range of the DNN
converter with NN-based DD-LMS is 497 mV. Continuing to reduce the complexity, the
BER performance is slightly worse. The dynamic range of signal Vpp is 481 mV for DNN
(64, 64, 64) with NN-based DD-LMS and 458 mV for DNN (32, 32, 32) with NN-based
DD-LMS. The trend is similar for 64QAM in Figure 11c,d.

Photonics 2023, 10, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 11. BER of different decoders versus different signal Vpp for (a) 64APSK; (b) 64APSK; (c) 
64QAM; (d) 64QAM. 

The BER performance and trainable parameters that represent the complexity of dif-
ferent receivers for 64APSK and 64QAM systems are compared in Tables 1 and 2, respec-
tively. Ratio* represents the ratio between signal Vpp dynamic range (mV) and total train-
able parameters. In Table 1, the traditional DNN converter we optimize, which points to 
DNN (96, 96, 96) with taps of 19, has a maximum signal Vpp dynamic range of 511 mV 
and maximum trainable parameters of 26,210 at the same time in 64APSK systems. In or-
der to make a better tradeoff between communication performance and computation com-
plexity, a cascaded receiver consisting of a DNN converter and NN-based DD-LMS is uti-
lized. The complexity of a DNN converter varies greatly with the number of nodes, but 
that of NN-based DD-LMS is fixed at 84. As the nodes of each hidden layer reduce from 
96 to 32, the dynamic range of the cascaded receiver slightly reduces from 497 mV to 458 
mV (from 97.3% to 89.6% of maximum), but the complexity greatly reduces from 23,222 
to 3702 (from 88.6% to 14.1% of maximum). The ratio of signal Vpp dynamic range and 
complexity increases from 2.14 × 10−2 mV to 1.24 × 10−1 mV, while that of traditional DNN 
converter is 1.95 × 10−2 mV. Notably, DNN (32, 32, 32) with NN-based DD-LMS and taps 
of 11 could achieve 89.6% of signal Vpp dynamic range with 14.1% of complexity, which 
experimentally verifies the effectiveness of the proposed algorithm. It can be seen that the 
conclusions are similar in the 64QAM system in Table 2. However, the tradeoff between 
communication performance and computation complexity is worse than 64APSK. To be 
specific, as the nodes reduce from 96 to 32, the signal Vpp dynamic range reduces from 
451 mV to 382 mV (from 89.1% to 75.5%), and the complexity greatly reduces from 23,222 
to 3702 (from 88.6% to 14.1%). The ratio of signal Vpp dynamic range and complexity 
increases from 1.94 × 10−2 mV to 1.03 × 10−1 mV, while that of the traditional converter is 
1.93 × 10−2 mV. Therefore, the proposed algorithm is experimentally validated to be an 
effective receiver to make a better tradeoff between communication performance and 
computation complexity than traditional DNN converter, especially in UVLC systems us-
ing 64APSK modulation format. 

  

Figure 11. BER of different decoders versus different signal Vpp for (a) 64APSK; (b) 64APSK;
(c) 64QAM; (d) 64QAM.

The BER performance and trainable parameters that represent the complexity of
different receivers for 64APSK and 64QAM systems are compared in Tables 1 and 2,
respectively. Ratio* represents the ratio between signal Vpp dynamic range (mV) and total
trainable parameters. In Table 1, the traditional DNN converter we optimize, which points
to DNN (96, 96, 96) with taps of 19, has a maximum signal Vpp dynamic range of 511 mV
and maximum trainable parameters of 26,210 at the same time in 64APSK systems. In
order to make a better tradeoff between communication performance and computation
complexity, a cascaded receiver consisting of a DNN converter and NN-based DD-LMS
is utilized. The complexity of a DNN converter varies greatly with the number of nodes,
but that of NN-based DD-LMS is fixed at 84. As the nodes of each hidden layer reduce
from 96 to 32, the dynamic range of the cascaded receiver slightly reduces from 497 mV
to 458 mV (from 97.3% to 89.6% of maximum), but the complexity greatly reduces from
23,222 to 3702 (from 88.6% to 14.1% of maximum). The ratio of signal Vpp dynamic range
and complexity increases from 2.14 × 10−2 mV to 1.24 × 10−1 mV, while that of traditional
DNN converter is 1.95 × 10−2 mV. Notably, DNN (32, 32, 32) with NN-based DD-LMS
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and taps of 11 could achieve 89.6% of signal Vpp dynamic range with 14.1% of complexity,
which experimentally verifies the effectiveness of the proposed algorithm. It can be seen
that the conclusions are similar in the 64QAM system in Table 2. However, the tradeoff
between communication performance and computation complexity is worse than 64APSK.
To be specific, as the nodes reduce from 96 to 32, the signal Vpp dynamic range reduces
from 451 mV to 382 mV (from 89.1% to 75.5%), and the complexity greatly reduces from
23,222 to 3702 (from 88.6% to 14.1%). The ratio of signal Vpp dynamic range and complexity
increases from 1.94 × 10−2 mV to 1.03 × 10−1 mV, while that of the traditional converter
is 1.93 × 10−2 mV. Therefore, the proposed algorithm is experimentally validated to be
an effective receiver to make a better tradeoff between communication performance and
computation complexity than traditional DNN converter, especially in UVLC systems
using 64APSK modulation format.

Table 1. Comparison of different receivers in 64APSK UVLC system.

Modulation
Format Network Structure

Trainable
Parameters

(DNN Converter)

Trainable
Parameters
(DD-LMS)

Total
Trainable

Parameters

Trainable
Parameters

Rate

Dynamic
Range
(mV)

Dynamic
Range
Rate

Ratio *
(102 mV)

64APSK
Taps = 19, DNN

(96, 96, 96)
w/o NN DD-LMS

26,210 / 26,210 100% 511 100% 1.95

64APSK
Taps = 11, DNN

(96, 96, 96)
w/NN DD-LMS

23,138 84 23,222 88.6% 497 97.3% 2.14

64APSK
Taps = 11, DNN

(64, 64, 64)
w/NN DD-LMS

11,330 84 11,414 43.5% 481 94.1% 4.21

64APSK
Taps = 11, DNN

(32, 32, 32)
w/NN DD-LMS

3618 84 3702 14.1% 458 89.6% 12.4

Ratio * represents the ratio of dynamic range and trainable parameters.

Table 2. Comparison of different receivers in 64QAM UVLC system.

Modulation
Format

Network
Structure

Trainable
Parameters

(DNN Converter)

Trainable
Parameters
(DD-LMS)

Total
Trainable

Parameters

Trainable
Parameters

Ratio

Dynamic
Range
(mV)

Dynamic
Range
Ratio

Ratio *
(102 mV)

64QAM
Taps = 19, DNN

(96, 96, 96)
w/o NN DD-LMS

26,210 / 26,210 100% 506 100% 1.93

64QAM
Taps = 11, DNN

(96, 96, 96)
w/NN DD-LMS

23,138 84 23,222 88.6% 451 89.1% 1.94

64QAM
Taps = 11, DNN

(64, 64, 64)
w/NN DD-LMS

11,330 84 11,414 43.5% 420 83.0% 3.68

64QAM
Taps = 11, DNN

(32, 32, 32)
w/NN DD-LMS

3618 84 3702 14.1% 382 75.5% 10.3

Ratio * represents the ratio of dynamic range and trainable parameters.

5. Conclusions

To alleviate bottleneck problems of high-speed underwater VLC systems, we construct
and optimize a DNN-based waveform-to-symbol converter to replace conventional demod-
ulation, down-sampling and post-equalization at the receiving end in 64APSK and 64QAM
UVLC systems based on CAP modulation. The DNN converter optimizes the receiver as
a whole rather than separately. It is regarded as a benchmark that could increase signal
Vpp dynamic range by 104% (from 250 mV to 511 mV) for 64APSK and 181% (from 180 mV
to 506 mV) for 64QAM with 7% FEC of 3.8 × 10−3 as a BER threshold, compared with
traditional CAP decoder. The highest bit rate is 3.23 Gb/s in 64APSK systems utilizing
the DNN converter we optimize and 3.09 Gb/s in 64QAM systems, which is 125 Mb/s
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and 50 Mb/s faster than the traditional CAP decoder, respectively. However, it comes at
the cost of high computation complexity of 26,210 total trainable parameters. To make a
better tradeoff between communication performance and computation complexity, a cas-
caded receiver consisting of a DNN-based waveform-to-symbol converter and a modified
NN-based DD-LMS algorithm is innovatively proposed. With fewer taps and nodes of
hidden layers than the benchmark converter, the front-stage DNN converter could mitigate
the majority of ISI and signal nonlinear distortions. Then modified NN-based DD-LMS
is cascaded to improve communication performance by reducing phase offset, making
received constellation points more concentrated and closer to standard constellation points.
Compared with the benchmark converter, the cascade receiver could achieve 89.6% of the
signal Vpp dynamic range with 12.4% of complexity or 94.1% of the signal Vpp dynamic
range with 43.5% of complexity in the 64APSK UVLC system. Furthermore, the ratio of
signal Vpp dynamic range and total trainable parameters is up to 1.24 × 10−1 mV, while
that of the benchmark converter is 1.95 × 10−2 mV. The cascaded receiver used in 64APSK
UVLC systems is experimentally validated to achieve enhanced performance between com-
munication performance and computation complexity, regarded as a promising scheme for
future high-speed underwater VLC.
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