
Citation: Fei, T.; Zhai, S.; Zhang, J.;

Lu, Q.; Zhuo, N.; Liu, J.; Wang, L.;

Liu, S.; Jia, Z.; Li, K.; et al. 3 W

Continuous-Wave Room

Temperature Quantum Cascade

Laser Grown by Metal-Organic

Chemical Vapor Deposition.

Photonics 2023, 10, 47. https://

doi.org/10.3390/photonics10010047

Received: 16 November 2022

Revised: 27 December 2022

Accepted: 28 December 2022

Published: 3 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

photonics
hv

Communication

3 W Continuous-Wave Room Temperature Quantum Cascade
Laser Grown by Metal-Organic Chemical Vapor Deposition
Teng Fei 1 , Shenqiang Zhai 1,*, Jinchuan Zhang 1,*, Quanyong Lu 2, Ning Zhuo 1, Junqi Liu 1,3 , Lijun Wang 1,3,
Shuman Liu 1,3 , Zhiwei Jia 1, Kun Li 1, Yongqiang Sun 1, Kai Guo 1 and Fengqi Liu 1,3

1 Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of
Sciences, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices,
Beijing 100083, China

2 Beijing Academy of Quantum Information Sciences, Beijing 100193, China
3 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences,

Beijing 100049, China
* Correspondence: zsqlzsmbj@semi.ac.cn (S.Z.); zhangjinchuan@semi.ac.cn (J.Z.)

Abstract: In this article, we report a high-performance λ ~ 4.6 µm quantum cascade laser grown
by metal-organic chemical vapor deposition. Continuous wave power of 3 W was obtained from
an 8 mm-long and 7.5 µm wide coated laser at 285 K. The maximum pulsed and CW wall-plug
efficiency reached 15.4% and 10.4%, respectively. The device performance shows the great potential
of metal-organic chemical vapor deposition growth for quantum cascade material and devices.
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1. Introduction

In the mid-infrared region, quantum cascade lasers [1] (QCL) has proven to be a powerful
and versatile light source owing to their advantages in practicality including high power, wide
tunability, small size and easy operation. In recent years, great efforts have been devoted to de-
veloping device performance, in terms of low power consumption [2–4], high efficiency [5–9]
and high power [10,11]. The increasing demands of infrared countermeasures and the rapid
development in long-range free-space communication [12,13] have served as major drivers to
improve the power of quantum cascade lasers.

Since the first demonstration of QCL, molecular beam epitaxy (MBE) has mainly been
used for the growth of QCL cores [14,15]. The precise control of layer thickness and the
sharp interface in MBE are essential for the growth of ultrathin QCL layers. Previous efforts
have focused on practically important λ ~ 4.6 µm QCLs to avoid atmospheric absorption.
Room temperature watt-level power has been achieved so far. In particular, more than
3 W output power from a single facet was independently presented by two groups [16–18].
However, the cost of high-power QCLs chips is several orders of magnitude higher than
that of near-infrared semiconductor laser chips, in part due to the high cost of the molecular
beam epitaxy process [19]. Metal-organic chemical vapor deposition (MOCVD) is a well-
established technique to grow an optoelectronic structure in the industrial field. It has
the advantage of excellent uniformity and repeatability, but still poses challenges with
respect to the growth of QCL cores. Significant research has been made to improve the
performance of MOCVD-gown QCLs in the past two decades [20–23]. In 2010, Yu Yao
reported a continuum-to-continuum design. The reported room temperature power and
WPE reached 5 W and 23% in pulsed mode [24], which are comparable to the state-of-the-
art MBE-grown QCLs. However, the CW power dropped rapidly to only 1 W at room
temperature due to severe carrier leakage and backfilling. Most recently, record high power
of 2.6 W emitting at λ ~5 µm at 288 K have been demonstrated [7] by employing a variety
of active region materials of different compositions to suppress carrier leakage. However,
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the promotion of device performance comes at the cost of increasing growth difficulty. The
adopted 11 different compositions place higher requirements on material growth, which
also limits the efficiency of epitaxial growth. Despite the aforementioned achievements,
the power of MOCVD-grown QCLs is still less than MBE-grown QCLs. This is mainly
because the MBE system adopts an ultra-high vacuum environment, in which the interface
switching speed is fast. In addition, the concentration of background impurities is low.
In contrast, in the MOCVD system, the source gas flow is inevitably delayed during the
interface switching process [25]. A smoother interface and lower background impurities
contribute to the low interface roughness and low optical loss in MBE-grown QCLs [17].
However, we believe it is possible to obtain considerable high-quality material for MOCVD-
grown QCLs. We have recently achieved high-quality long-wave MOCVD-grown QCL by
carefully optimizing the growth conditions, particularly the growth interface [6]. QCLs
emitting at λ ~8.5 µm with a record high efficiency of 7.1% and 1 W CW power at room
temperature were demonstrated. Here, we follow our previous method and extend the
wavelength to the mid-wavelength. Combined with the dedicated energy band design, it is
reasonable to speculate that the performance of mid-wave MOCVD-grown QCLs can be
further improved.

In this paper, we report the growth and fabrication of 4.6µm strain-balanced In0.66Ga0.34As/
In0.36Al0.64As using low-pressure MOCVD. Based on the slightly diagonal single phonon
resonance design, a high-quality quantum cascade structure was obtained. An 8 mm-long,
7.5 µm-wide device was capable of delivering 5.8 W peak power in pulse mode (500 ns/2%) at
285 K. The threshold current density, slope efficiency and maximum WPE were 1.5 kA/cm2,
4.35 W/A and 15.4%, respectively. The CW power of the device reaches 3 W at 285 K with a
maximum WPE of 10.4%.

2. Materials and Methods

The laser core consisted of 40 periods of strain-balanced InGaAs/InAlAs quantum
well and barrier pairs based on the single phonon resonance (SPR) design similar to the
structure in Ref [26]. For the reference design, the upper lasing state is highly localized in
the first thin well, which enhances the coupling between the injector region and the upper
lasing state [14,27]. In addition, the optical transition is slightly diagonal, which increases
the lifetime of the upper state. Figure 1 shows a comparison between the reference design
and the one optimized. The thickness of the active region was slightly modified to target
the wavelength of 4.5µm. In addition, the compositions of Al in InAlAs and Ga in InGaAs
were changed to 0.64 and 0.34, respectively. As a result, the conduction band offset was
increased from 708 meV to 782 meV. Therefore, thermally activated leakage of electrons
from the upper laser level into the continuum can be suppressed. Another notable feature
is the increased energy difference between the upper lasing state (E4) and the excited state
(E5). The calculated energy difference E54 is increased from 70 to 91 meV.

The QCL structure presented in this article was grown on a 2-inch n-InP substrate
(S, 2E18) using a low-pressure (100 mbar) MOCVD with a close-coupled showerhead
(3 × 2”) reactor. The group III precursors were trimethylindium (TMIn), trimethylgallium
(TMGa), and trimethylaluminum (TMAl). The group V precursors were purified arsine
(AsH3) and phosphine (PH3). Silane (SiH4, 0.02% in H2) was used as the n-type dopant.
The total flow rate was 8 L/min. The growth temperature was read using a thermocouple
mounted under the graphite disk. Before growth, the InP(S, 2E18) substrates were loaded
into the chamber and deoxidized at 760 ◦C for 5 min in PH3 ambient. The growth was
initiated by the deposition of a 500 nm InP buffer layer followed by a 3 µm n-InP (4E16)
lower waveguide at 700 ◦C. Then, the temperature was increased to 720 ◦C to grow the
InGaAs/InAlAs laser core region. There were no growth interrupts at the interfaces of
InGaAs-to-InAlAs and InAlAs-to-InGaAs. The TMIn flow rate was kept constant during
InGaAs and InAlAs growth. Then, the temperature was decreased to 700 ◦C to grow a
3 µm InP upper waveguide (4E16) which was covered by a 1 µm InP cap layer (2E18).
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15 arc seconds. The observation of multiple satellite peaks at HRXRD indicates excellent 
in-plane uniformity in terms of layer thickness and chemical composition. To characterize 
the surface morphology of QCL, one piece of the wafer was etched by HCl to remove the 
upper InP waveguide. Figure 2b shows the surface image of the active core characterized 
by AFM (5 μm × 5 μm scan in contact mode). It can be seen that for such hundreds of 
strained quantum well/barrier pairs, step-flow growth is still achieved. The calculated 
surface root-mean-square (RMS) is only 0.15 nm. The average distance between different 
steps is 0.25 μm. 

Figure 1. Band diagrams of the referenced (a) and modified (b) designs at 75 kV/cm electric field.
The energy states marked with different colors are the excited state (E5), the upper state (E4), the
lower state (E3), the extracted state (E2) and the injected state (E1).

Once the wafer growth was achieved, the material was characterized by high-resolution
X-ray diffraction (HRXRD) and atomic force microscopy (AFM) to investigate the material
quality. Figure 2a compares the measured and simulated HRXRD results. The experimental
result is almost fully in line with the simulated one. Multiple high-order satellite peaks can
be clearly observed, with extremely sharp and narrow FWHM of about 15 arc seconds. The
observation of multiple satellite peaks at HRXRD indicates excellent in-plane uniformity in
terms of layer thickness and chemical composition. To characterize the surface morphology
of QCL, one piece of the wafer was etched by HCl to remove the upper InP waveguide.
Figure 2b shows the surface image of the active core characterized by AFM (5 µm × 5 µm
scan in contact mode). It can be seen that for such hundreds of strained quantum well/barrier
pairs, step-flow growth is still achieved. The calculated surface root-mean-square (RMS) is
only 0.15 nm. The average distance between different steps is 0.25 µm.
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The fabrication process of QCLs is as follows. One piece of the wafer was processed
into a double-channel geometry with a ridge of 16 µm to characterize the intrinsic physical
parameters of the wafer, for example, waveguide loss and modal differential gain. Another
piece of the wafer was processed into a buried hetero-structure (BH) configuration with
a ridge width of 7.5 µm as shown in the Appendix A, Figure A1. Firstly, the wafer was
patterned into stripes by using a 300 nm-thick SiO2 mask and wet-etched through the
active region into a double-channel geometry. The etchant is HBr:HNO3:H2O (1:1:10)
which is nonselective and isotropic. After etching and rinsing, Fe-doped semi-insulating
InP was selective-area regrown by MOCVD to planarize the channels. Then a SiO2 mask
was removed using a buffered oxide etch (BOE), and a new 300 nm-thick SiO2 layer was
deposited by plasma-enhanced chemical vapor deposition as an electrical isolation layer.
The current injection windows were opened on the top of the ridge by lithography. Besides,
top contact was made, including a Ti/Au layer by e-beam evaporation and a 5 µm-thick
Au layer by electroplating. The backside of the wafer was thinned down to 120 µm and
polished. An AuGeNi/Au layer was then evaporated as the bottom contact. The processed
wafer was annealed at 370 ◦C and cleaved into 8 mm bars. A high-reflectivity coating was
applied on the back facet with the front facet left uncoated. For packaging, the chips were
soldered epi-down on diamond submounts to improve the heat removal efficiency. Then
the submounts with chips were mounted on the copper heat sinks with indium solder
followed by wire bonding.

3. Results and Discussion

After device fabrication, testing was conducted by fixing the laser on a water-cooling
platform with a chip facet close to a calibrated thermopile detector. For pulsed measure-
ments, the voltage and pulsed width were measured using a voltage probe. The peak power
in pulsed operation (pulse width 500 ns, repetition 40 kHz) was calculated by dividing
average power by duty cycle (2%). The temperature was monitored by a thermistor and
controlled by a thermoelectric cooler (TEC). Figure 3a shows the pulsed power-current-
voltage (PIV) curves of QCL devices with 16-µm-wide and 2-, 4-, and 6-mm-long cavities.
The heat sink temperature is kept at 295 K. Figure 3b shows the threshold current density
dependence on mirror loss and inverse external quantum efficiency dependence on inverse
mirror loss. The internal quantum efficiency, waveguide loss, transparency current density
and differential gain were determined to be 60%, 0.66 cm−1, 1.5 kA/cm2 and 7.24 cm/kA.
The waveguide loss is three times smaller than in Ref [7], which means a loss in slope
efficiency can be negligible when the length is increased. Therefore, we can use longer
cavities to achieve better performance. However, this waveguide loss is slightly larger
than that of the state-of-the-art MBE-grown QCLs [8], implying that there is still room for
improvement in material quality. In addition, the modal differential gain is 2.7 times larger
than that in Ref [9], which features a diagonal design. The modal gain strongly depends on
the overlap between the upper laser level and the lower laser level. In diagonal designs,
increasing the lifetime of the upper laser level comes at the cost of lower differential modal
gain as in Ref [9]. The slightly diagonal design in this paper can increase the lifetime of the
upper laser level without much compromise on the differential gain.

Figure 4 shows the CW (solid lines) and pulsed (dash lines) PIV and WPE results
at 285 K. The AR-HR coated device emits to 3 W (5.8 W) with threshold current den-
sity Jth = 1.76 kA/cm2 (1.5 kA/cm2), slope efficiency ηs = 4 W/A (4.35 W/A), and
WPE = 10.4% (15.4%), for CW (pulsed mode) operation. The L-I curves (red lines) show
kink-free straight lines up to the saturation current, which indicates no mode hopping
occurred. The inset shows the laser spectrum of the device at room temperature. The
emission spectrum centered at 2160 cm−1 (4.6 µm) was obtained by Fourier transformed
infrared spectrometer (FTIR) in rapid scan mode with a resolution of 0.25 cm−1.
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Figure 5 shows the pulsed mode PIV results at different temperatures. As the tem-
perature increases, threshold current density increases and slope efficiency decreases as
expected. An experimental relationship can be established using the following equations:

Jth = J0 exp(T/T0)ηs = η0 exp(−T/T1)

where T is the heat sink temperature. The characteristic temperatures T0 and T1 in the
pulsed operation are identified to be 240 K and 264 K, respectively. Compared with previ-
ously reported QCLs in Ref [26], T0 and T1 are increased by 50 K and 124 K, respectively.
We attribute the increase to the larger spacing between the upper laser level and the ex-
cited state, and to the continuum. The high T0 indicates that the thermal backfilling is
significantly suppressed. Furthermore, the T0 of this device is comparable with that of the
previously reported muti-composition design QCLs in Ref [7], which features a higher E54
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of ~100 meV. The relatively low T1 can be improved by reducing the overlap between the
upper state E4 and the excited state E5, as described in Ref [9,27].
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Figure 6a shows the beam image at 1.9 A in CW operation. The transverse mode was
obtained by placing a pyroelectric camera 1.5 m away from the collimated chip. The beam
shape remains basically unchanged with some beam steering at the maximum current
density. This beam steering results from the onset of the first-order lateral mode at a high
injection current. Figure 6b shows the far field pattern at different currents. The far-field
pattern was obtained by fixing the device on a motorized rotation stage with 0.1◦ resolution
about 40 cm away from the mercury cadmium telluride detector. Furthermore, beam
steering was suppressed thanks to the temperature-insensitive design [28]. In addition, we
have measured the beam M2 at 1.5 A in CW mode as shown in Appendix B, Table A1. The
calculated beam M2 in the x-axis and y-axis direction are 1.146 and 1.045.
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In summary, we demonstrated high power 4.6 µm QCL using a single phonon reso-
nance design. Room temperature CW power up to 3 W with a maximum WPE of 10.4%
was obtained from an 8 mm-long, 7.5 µm-wide, AR-HR coated device. The device shows a
characteristic that the threshold current is insensitive to temperature changes. In addition,
the beam shape remains basically unchanged until the saturation current.
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Table A1 shows the relation between the width of light beam and distance.

Table A1. Relation between the width of light beam and distance.

Z/mm Dx/mm Dy/mm

300 3.04 2.57
500 3.24 3.02
700 3.57 3.55

1100 4.60 4.92
1300 5.25 5.84
1500 6.02 6.66

The corresponding fitted beam waist diameter and beam divergence (full angle) in
X-axis and Y-axis directions are as follows: Dx0 = 3 mm, Dy0 = 2.6 mm; θx = 2.1 mrad,
θy = 2.3 mrad; M2x = 1.146, M2y = 1.045.
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