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Abstract: Historically, the optical access network (OAN) plays a crucial role of supporting emerging
new services such as 4 k, 8 k multimedia streaming, telesurgery, augmented reality (AR), and virtual
reality (VR) applications in the context of Tactile Internet (TI). In order to prevent losing connectivity
to the current mobile network and Tactile Internet, the OAN must expand capacity and improve the
quality of Services (QoS) mainly for the low latency of 1 ms. The optical network has adopted artificial
intelligence (AI) technology, such as deep learning (DL), in order to classify and predict complex
data. This trend mainly focuses on bandwidth prediction. The software-defined network (SDN)
and cloud technologies provide all the essential capabilities for deploying deep learning to enhance
the performance of next-generation ethernet passive optical networks (NG-EPONs). Therefore, in
this paper, we propose a deep learning long-short-term-memory model-based predictive dynamic
wavelength bandwidth allocation (DWBA) mechanism, termed LSTM-DWBA in NG-EPON. Future
bandwidth for the end-user is predicted based on NG-EPON MPCP control messages exchanged
between the OLT and ONUs and cycle times. This proposed LSTM-DWBA addresses the uplink
control message overhead and QoS bottleneck of such networks. Finally, the extensive simulation
results show the packet delay, jitter, packet drop, and utilization.

Keywords: OAN; Tactile Internet (TI); deep learning (DL); SDN; LSTM-DWBA; QoS

1. Introduction

The transmission medium of the optical access network is optical fiber, the backbone of
today’s high-speed Internet with the replacement of the traditional copper wires. Globally
deployed optical access networks (OANs) meet the higher capacity, reliable, and more
secure transmission requirements of high-bandwidth demand video streaming and cloud
services in past decades. Mainly 10 Gbps-based fiber-to-the-home (FTTH) has become a
popular service in many cities in many countries, particularly the countries such as South
Korea, Japan, and China [1]. Further, the OAN plays a crucial role in the fiber-to-the-X
(FTTx) and industrial networks.

However, the recent emergence of Tactile Internet (TI) applications, such as telesurgery,
high-definition 8K UHD video streaming, autonomous vehicles, virtual and augmented
reality, online gaming, and many others present significant challenges to OANs when
it comes to providing services with an assured network resource provision, ultra-low
latency [2]. According to the Cisco virtual network forecast, by 2022, Internet video
traffic will account for 82% of all consumer Internet traffic, up from 73% in 2017 [3]. The
proliferation of new services, the unimaginable growth in Internet video traffic, and the
rapid development of the backbone network have all contributed to an intensification of
the bottleneck in the first and last mile of Internet connectivity. The next-generation optical
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access network developed by the IEEE 802.3ca 25 G and 50 G NG-EPON is a promising
solution for the above-presented problems [4]. Furthermore, NG-EPON is regarded as the
most attractive solution for removing the constraints of the optical network and providing
higher bandwidth, low latency, and support for stringent QoS requirements for a wide
variety of new and emerging applications (e.g., Tactile Internet and Internet of Things) [5].

NG-EPONs newly introduced a two wavelength channel to provide a higher band-
width capacity. It allows the operation of Ethernet passive optical networks (EPONs) to
be expanded to multiple channels of 25 Gb/s, enabling the transmission of data at the
following data rates downstream and upstream): 25/10 Gb/s, 25/25 Gb/s, 50/10 Gb/s,
50/25 Gb/s, 50/50 Gb/s, and 50/50 Gb/s. Furthermore, the channel bonding technique
is introduced to enable optical network units (ONUs) to combine multiple wavelength
channels for increased system throughput [6]. In addition, introduces a multi-channel
reconciliation sublayer (MCRS) that allows multiple media access controls (MACs) to in-
teract with multiple physical layers. The MCRS is the multipoint MAC control (MPMC)
sublayer for such PONs, which is responsible for the management, user registration, and
mainly for bandwidth allocation. The MPMC consists of the following two main protocols:
(1) multipoint control protocol (MPCP), responsible for arbitration of TDM-based access
to the point-to-multipoint (P2PM) medium; (2); channel control protocol (CCP), which is
responsible for querying and controlling multiple channels within Nx25G-EPON PHY [7].
IEEE classifies hybrid-EPON as a multi-scheduling domain (MSD), single scheduling do-
main (SSD), or wavelength agile (WA)-EPON for effective scheduling and bandwidth
utilization in next-generation EPON. It is dependent upon how wavelength and bandwidth
are allocated/managed by multiple channels in the single ONU or group of ONUs in the
dynamic wavelength bandwidth allocation (DWBA) mechanism. The MPCP is responsible
for timing and arbitrating the ONU transmissions. The second protocol is channel control
protocol (CCP), which is responsible for querying and controlling multiple channels within
Nx25G-EPON PHY. It is also more reliable and efficient than the old EPON system [6].

The main contribution of this paper is as follows:

1. We proposed the SDN-enhanced NG-EPON architecture and operations;
2. We propose a novel DWBA scheme that employs long-short term memory-dynamic

wavelength bandwidth allocation (LSTM-DWBA) for emerging Tactile Internet appli-
cations into the network;

3. We designed the LSTM-DWBA scheme as an offline scheduler with inter- and intra-
traffic scheduling mechanisms;

4. We build an LSTM model and train it into the bandwidth requests for the next cycle
based on the past cycle’s historical data;

5. The extensive simulation results LSTM-DWBA outperform the without prediction
DWBA scheme (normal DWBA) in terms the accuracy;

6. More specifically, the LSTM-DWBA scheme is reducing the bandwidth overhead and
improves the bandwidth utilization;

7. Furthermore, LSTM-DWBA can gain more users and tactile services in the network

Moreover, in this paper, we only predict the bandwidth demands for the next cycle
because we use traffic priority and burst traffic.

The remainder of this paper is organized in the following manner. Related work is
presented 2. The overview of LSTM architecture is presented in Section 3. The proposed
NG-EPON architecture is described in Section 4. Section 5 discusses the performance
evaluation and simulation. Section 6 brings our work to a conclusion.

2. Related Work

Today’s optical networks are required to provision bandwidth speedily and with
accurate bandwidth prediction in order to facilitate network resource utilization and
maintenance. Recently, ML techniques have been successfully used in the development of
optical access networks. AI is useful for tackling the latency problem of optical networks for
tactile applications due to its powerful modeling capabilities [8]. The network advancement
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of the SDN and graphics processing unit (GPU) and the cloud computing technologies
to used store and train the data computationally using machine learning models such as
deep learning architectures [9]. For example, ML-based predictive bandwidth allocation is
proposed for low-latency applications using the artificial neural network (ANN) models
proposed. An ANN model is used in the OLT to detect the ON and OFF periods of Internet
traffic in the next polling cycle of each ONU. Based on this prediction, the bandwidth
demand of waiting time is estimated [10]. The author of [11] proposed an AI-based
bandwidth allocation for human-to-machine (H2M) applications over the future access
networks, where Tactile Internet real-time haptic and feedback traffic traces are collected
and predicted to allocate the bandwidth. Recently, Theresal et al. proposed a GRU-
recurrent neural network (RNN)-based dynamic bandwidth allocation (DBA) scheme for
XG-PON as a pioneer in C-RAN network, which provides a better result in terms of latency,
packet loss, and jitter [12]. The GRU model is trained to predict the uplink latency in the
mobile fronthaul C-RAN network. Furthermore, we studied the ML/DL-based PON DBA
mechanism in [13–16].

The majority of the existing DL models for network traffic classification are based
on specific neural network architectures, namely, and recurrent neural networks (RNNs)
and their specific variants as follows: the LSTM work [17], and the gated recurrent neural
network (GRU) [15]. The author [18] proposes an innovative resource allocation framework
for virtualized network environments. AI techniques such as convolutional and LSTM
networks to allocate resources to improve performance and reduce cost. Some other
works classified the CNN/LSTM-based network traffic classification on IoT networks
in [19]. LSTMs solve the vanishing gradient problem by introducing specific core elements
(i.e., gates) that allow gradients to flow unchanged through the network during training.
As a result of their ability to effectually capture nonlinear long-term dependencies in
data sequences, LSTMs have emerged as a promising choice for a variety of time series
forecasting problems.

3. Overview of Long Short-Term Memory Architecture

Recurrent neural networks (RNNs) are used to recognize patterns in time series data.
Given the current and previous state, the latent state of the RNN at a time step t can
carry forward the memory to predict the next time step (t + 1) [20]. Further, RNN has
good performance in communication modeling of time-varying data and is suitable for
processing signals of optical fiber communication systems obtained in time series format.
LSTM networks are a special type of RNN capable of learning both short-term and long-
term dependencies. These networks work well on a variety of problems such as addressing
the vanishing and exploding gradient problems of conventional RNN [21,22].

The key state of the LSTM architecture is a set of memory blocks, as shown in Figure 1.
Each block contains a cell state, and adding and removing information to or from the cell
state is accomplished through gates. This consists of a pointwise multiplication operation
and a layer of a sigmoid neural network. The output of the sigmoid layer is between 0
and 1, with 0 indicating no information passing through and 1 indicating all information
passing through. The LSTM model starts when the long-term memory (LTM) and short-
term memory (STM) come through in time sequence t− 2 i.e., LTMt−2 and STMt−2 and
then, an event and an output are coming in and out of the LSTM, i.e., LTMt−1 and STMt−1,
passing to the next node, and so forth, thus keeping track of the LTM and STM. Note that
the following output of LTMt−1 and STMt−1 is the updated output from LTMt−2 and
STMt−2 and the prediction Outputt−1. The LSTM contains the following four gates: Learn
gate, the Forget gate, the Remember gate, and the Use gate.
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Figure 1. Architecture of LSTM.

The First gate is Learn gate will combine an STMt−1 and a current event (E), retaining
only the relevant information. The E represents the new input data to be predicted. The
Learn gate’s output is Ntit where:

Nt = tanh(Wn[STMt−1, Et] + bn) (1)

it = σ(Wi[STMt−1, Et] + bi) (2)

where learn matrix Nt and ignore factor it are multiplied together to generate the Learn
gate result.

Second, a forget gate is used to determine which information should be kept and
which should be forgotten. It takes previous long-term memory (LTMt−1) as input and
decides what information to keep and what to forget. The information from the previous
STMt−1 and current input E is passed through the sigmoid (σ) activation function. If the
value is closer to 0 means to forget, and closer to 1 means to retain the information. The
following Equation (3) are described as Forget gate.

ft = σ
(

W f [STMt−1, Et] + b f

)
(3)

where ft represent the forgot factor. The ft is multiplied with the previous LTMt−1 to
produce the Forget gate output.

Third, the Remember gate combines the LTM from the Forget gate and the STM from
the Learn gate. Therefore, the output of Remember gate is as follows:

LTMt = LTMt−1 . ft + Ntit, (4)

where Nt, it and ft are calculated in Equations (1)–(3).
Finally, the Use gate to combine vital information from previous LTM memory and

Previous STM memory to generate STM for the next and cell and output for the present
event. This gate will take what is helpful from the LTM and STM and update the STMt,
thus the output of the Use gate is UtVt, where

Ut = tanh(WuLTMt−1 . ft + bu) (5)

Vt = σ(STMt−1, Et + bv) (6)

where, is a dot product operation, Wn, Wi, Wu, Wf are weight values between the current
and previous hidden layers of Learn gate, Use gate, and Forget gate. bn, bu, bf are offset
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vectors between the current and previous hidden layers of Learn gate, Use gate, and Forget
gate. Ut, Vt is the output of the Use gate.

4. Proposed System Model

In this section we presented the Tactile Internet supported SD-NG-EPON architecture
and mechanisms.

4.1. Tactile Internet and Cloud-Based SD-NG-EPON Architecture and Operations

Recently, the demand for bandwidth has increased due to the global pandemic COVID-
19 and emerging new applications. Hence, we propose an SD-NG-EPON network archi-
tecture and DWBA mechanism to meet these requirements. Figure 2 shows the proposed
network architecture of Tactile Internet and cloud-based SD-NG-EPON. The architecture
consists of IEEE 802.3ca-based 25G Gb/s with a typical fiber range of 20 km between
the central software-defined optical line terminals (SD-OLT) and software-defined optical
network units (SD-ONUs). The EPON may comprise multiple stages, each stage separated
by a wavelength-broadcasting splitter/combiner or wavelength multiplexer/demultiplexer.
Channel bonding is an important feature for incremental speed increases of NG-EPON,
while also adding to its long lifespan. NG-EPON ONUs can work using two wavelength
channels simultaneously, which is totally different from traditional EPON ONUs. However,
to achieve the ultra-low end-to-end latency goal of the Tactile Internet, we consider placing
the tactile control server, media server, and cache server in the central office (CO), as seen
in Figure 2. For local H2M teleoperation, the distance between master and slave devices is
often only a few meters; therefore, wireless technologies such as 5 G, WiFi, or Bluetooth
can enable it. However, when remote H2M teleoperation scenarios are considered, such as
intra-PON master-slave devices (shown by the yellow aerow) and local-PON master–slave
devices (shown by the pink aerow), optical front/back-haul segments become important. In
this system, we divided it into three different services, i.e., application service, connection
service, and transport services [23].

Figure 2. Proposed high–level architecture of cloud–based SD–NG–EPON.

4.1.1. Application Services

This service is responsible for providing differentiated services to clients in order to
meet their needs. It is responsible for sending and receiving control information packets
from the client’s applications to the SDN controller. Through northbound API, the SDN
controller is able to communicate with clients (SDN management apps) (Northbound
application programming interface-NB-API). Through the NB-API, the SDN management
application will receive all feedback from client applications and provide it back to the
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SDN controller. Southbound API allows the controller to communicate with the SD-OLT
(SB-API).

The SDN controller and the SD-OLT manage the DWBA module and QoS services.
The dynamic bandwidth allocation (DBA) scheme is an offline approach is utilized. The
OLT may obtain all REPORT messages from the ONUs because the DBA offline method is
applied. The SDN controller is used to generate a network that is intelligently managed
and capable of supporting network slices for various technologies. In addition, the SDN
controller will transmit this information to the cloud-based ML engine (i.e., Google Cloud,
Amazon Web Services). The cloud-based ML will subsequently add this information to
the LSTM network, continuing the learning process. The LSTM model is able to recognize
and learn the profound numerical relationships of multistep time series, which gives it the
ability to forecast future network behavior with a high degree of accuracy based on the
granularity of historical network data. Finally, the DWBA module will provide efficient
packets. The SD-OLT has all the traffic patterns of each SD-ONUs, stores them in the ML
engine, and uses this data to improve the prediction model. All information such as traffic
patterns and ML engine are communicated to the SD-OLT by the SDN controller, which is
orchestrated in the SDN application [24] in the application services.

4.1.2. Connection Service

The SD-OLT has equipped with the two transceivers with the λ1 and λ2 wavelengths.
The SD-ONU links subscribers to the SD-OLT through two bonded transceivers.

4.1.3. Transport Service

These services integrate all application and connection services into a hybrid access
network. The SD-NG-EPON to adapt and support network slices across different systems,
applications, and vendors. SD-ONUs have two bonded transceiver channels to provide up
to 50 gb/s total transmission between SD-ONUs and SD-OLT.

4.2. LSTM–DWBA System Model

In SD-NG-EPON systems, SD-OLT, and SD-ONU communicated via the multipoint
control protocol (MPCP) messages such as REPORT and GATE. Each ONU sends a REPORT
message to the OLT every cycle time, containing the EF, TI, AF, and BE buffering queue
occupancies, which reflect end-user bandwidth demands. As a result, time slots are
provided to SD-ONUs by the SD-OLT in the next cycle using GATE messages; these time
slots are sized according to DWBA regulations. Figure 3 shows the proposed LSTM-DWBA
ML system model. The coming in traffic from users, the ONU REPORT message, and
the GATE message are essential factors in predicting the bandwidth demand for each
SD-ONU [5,25]. The first is based on ONUs intra-scheduling traffic, while the second and
third are used in the DBA algorithm and the network architecture and settings such as how
many wavelengths will be used, the maximum cycle time, etc.

Figure 3. ML system model.
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4.2.1. LSTM–DWBA Predictive Mechanism

In PON, Internet traffic can be seen as a time series that shows how much bandwidth
is being used in each cycle. So, predictive DWBA can be performed with any ML model
that can make predictions from one-time series to the next. The goal of using the LSTM ar-
chitecture in the DWBA mechanism is to predict the future bandwidth to be allocated based
on historical messages from SD-ONUs and SD-OLTs. The terms of historical messages, such
as GATE and REPORT message, i.e., the long-term history of ONU(s) REPORT messages,
i.e., LTM, the short-term or recent ONU(s) REPORT messages, i.e., STM and the current
ONU(s) REPORT messages, i.e., E. To predict the GATE message Et for ONU(s) at time
sequence t, the LSTM module will use the LTMt−1, and the STMt−1, so, the LTMt−1 and
STMt−1 will give a hint or estimate of the Expedited Forwarding (EF), Tactile Internet (TI),
Assured Forwarding (AF), and Best effort (BE) bandwidth. Moreover, these three pieces of
information, such as the LTMt−1, STMt−1, and the Et, will update the LTMt and the STMt
module. Figure 4 shows how the LSTM architecture works as part of the LSTM-DWBA
prediction mechanism.

Figure 4. LSTM architecture for DWBA prediction mechanism.

4.2.2. LSTM-DWBA Operations

The proposed LSTM-DWBA operation is based on LSTM time series prediction. The
main principle of Deep-DWBA is to use the predictions made by an ML model using the
past P REPORT to allocate bandwidth for the next future cycles without requiring any
report messages within those cycles. Thus, developing the predictive model using the
LSTM in every cycle would increase the DWBA calculation time and high computational
complexity. Therefore, we use the sliding learning windows based on historical observation.
As a result, the proposed LSTM-DWBA has the following two cycles: the initialized cycle
i1, i2, i3, . . . , in, and the prediction next cycle i + 1 In other words, the LSTM-DWBA can
predict the GATE message multistep based on the historical observations sliding window.
Therefore, idle time only exists when the LSTM prediction model is updated via the SDN
controller to improve the model’s accuracy. The LSTM-DWBA is based on the LSTM model,
which means it is constantly learning what is new and forgetting what is not. As a result,
the LSTM-DWBA improves day by day.
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Algorithm 1: LSTM Based-DWBA

N Number of ONUs
It ONU report message at the Ith cycle
Gt Number of grants received in the Ith cycle from OLT
Pj

t+1 Grant Assignment for next cycle

Êj
t+1

Number of GRANTs (bandwidth) arrive at the ONU in the next cycle predicted by
LSTM

P̂j
t+1 Pre-Grant Assignment for the Jth

Tr Tr is traffic type where Tr ∈ {EF, TI, AF, BE}
Input: Time series report message 1: It−(i+1), It−(i+2), It−1, It

: Time series Grant message 2: Gt−(i+1), it−(i+2), Gt−1, Gt

Output: Grant Assignment Pj
t+1 for next cycle

I. Prediction Phase
1. Calculate: =+

(
I(t−1) − B(t−1))

2. Get time series report 3: {Et−(i+1), Et−(i+2), Et−1, Et}
3. for (j = 1, j ≤ N, J++)

Êj,Tr
t+1 = ( f

(
Ej,Tr

t−(i+1), Ej,Tr
t−(i+2), Ej,Tr

t

)
4. End
II. Grant Assignment Phase
5. Input: Êj,Tr

t+1,+I j,Tr
t , Gj,Tr

t

6. P̂j
t+1 = Êj,Tr

t+1 +
(

I j,Tr
t − Gj,Tr

t

)
7. While (∑j P̂j,Tr

t+1 > Maxium bandwidth (grant) do

P̂j
t+1 −−

8. End
9. Pj,Tr

t+1 = P̂j,Tr
t+1

10. P̂j,Tr
t+1, Tr ∈ {EF, TI, AF, BE}

Moreover, the NG-EPON GATE and REPORT data files are stored in application
services in a cloud-based ML engine day by day. With the given event time Et at the store,
the data t − 1, and the initialize cycle i, shown in Figure 2, the cloud-based ML engine
performs predictive modeling and updates the LSTM-DWBA prediction model for dt
(predict and update time to the model) in the DWBA module via SDN controllers. Figure 5
depicts the timing diagram of the proposed LSTM-DWBA upstream scheduling. As shown
in Algorithm 1, each DBA cycle has one prediction phase and one grant assignment phase.
The Êj

t+1 LSTM predicts the range of grants that may be awarded to the ONU during the

next cycle in the prediction section. In the grant (i.e., bandwidth) assignment phase, P̂j
t+1,

the pre-grant assignment was computed as the sum of Êj
t+1 and It −Gt. If P̂j

t+1 exceeds the

maximum bandwidth (MB) the value of P̂j
t+1 is reduced by one until it is accommodated

by the MB. Finally, in the next cycle i+1, the predicted P̂j,Tr
t+1, bandwidth is allocated to each

traffic type Tr ∈ {EF, TI, AF, BE}. The bandwidth allocation for SD-ONUs in standard
DWBA upstream scheduling is calculated using the following formula [26,27]:

Bmin = RN .

(
Tmax

cycle

N

)
− G, (7)

where Bmin is to guarantee bandwidth for each SD-ONU, RN denotes the transmission
speed (bits/s), Tmax

cycle is the maximum cycle time, N is the number of SD-ONUs, and G
is the guard time. Consequently, although the requested timeslot size from an SD-ONU
exceeds the predefined Bmin, the SD-OLT only grants no more than Bmin. Moreover, the
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SD-OLT must wait for the report message from all SD-ONUs before starting to calculate
the bandwidth. Therefore, the idle time is calculated as follows [28].

Tidle = TDBA + RTT + TONU , (8)

where TDBA denotes the DBA calculation time and RTT denotes the round-trip time and
TONU is the processing of SD-ONU time (i.e., on receiving a GATE message). On the
contrary, in the proposed LSTM-DWBA scheduling, after the initialization steps, the OLT
directly sends the GATE message to all ONUs without waiting for the REPORT messages
from SD-ONUs for the next cycle, and so on. The proposed LSTM-DWBA will grant the
timeslots to each SD-ONU based on the predicted bandwidth from the LSTM model that
has been calculated in the cloud-based ML engine. In this way, the upstream REPORT
message overheads, and the guard time between SD-ONUs is eliminated, thus increasing
the efficiency of the DWBA upstream scheduling.

Figure 5. Prediction LSTM-DWBA upstream scheduling mechanism.

Therefore, the proposed LSTM-DWBA aims not only to improve QoS but also to
reduce the overhead associated with the control channel in the traditional grant/report
mechanism. The overhead introduced by the GATE and REPORT messages is referred
to as control channel overhead. The number of scheduled SD-ONUs and the cycle time
have an impact on this overhead. There are several other overhead components in NG-
EPON such as burst mode overhead, forward error correction (FEC) encoding overhead,
guard-band overhead, and so on [29]. Furthermore, the control message overhead increases
proportionally to the number of ONUs registered in a given EPON. Because more control
frames will be transmitted per unit of time, reducing the cycle time further increases the
observed control message overhead. To guarantee the delay for voice traffic in the access
network at 1.5 ms, the cycle time should be about 1 ms [26,30].

Control_Message_Overhead =
message_size× NONU

cycle_time× EPON_rate
, (9)

where message_size is the size of GATE or REPORT message, NONU is the number of
ONUs, i.e., the number of messages sent in one cycle time, and the EPON_rate is the EPON
transmission rate.

The proposed LSTM-DWBA can enhance the efficiency of upstream control overhead
because the OLT begins sending the GATE message (transmission windows) to all ONUs
in predictions cycle I + 1, without waiting for the REPORT message from ONUs, thus can
reduce the control overhead, specifically upstream control overhead. As a result, predicting
future bandwidth requirements is critical for ensuring the quality of service (QoS) of any
tactile service, such as Tactile VR video streaming and teleoperation.
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5. Performance Evaluation

To verify the effectiveness of the proposed system, we generate training data and
conduct extensive simulations using the OPNET simulator. In the proposed approach we
used 64 SD-ONU, and an SD-OLT with two wavelengths. The downstream/upstream
channel rate between the SD-OLT and SD-ONU was dynamically assigned as 1 or 25 Gbps.
The SD-OLT and SD-ONUs were uniformly distributed at 10–20 km apart, and the ONU
buffer size was 10 Mb, which is shared by the priority queues for the class of services (CoS).
To be more rigorous and realistic, bursty traffic is considered in our simulations. When a
buffer is fully occupied and a packet with the higher priority arrives, the lower priority
queue drops one or more packets to buffer a new packet. The maximum transmission cycles
were 1.0 ms and 1.5 ms, and self-similarity and long-range dependence were used as the
network traffic model for the TI, AF, and BE traffic, respectively, which generate high bursts
of TI, AF, and BE traffic with a Hurst parameter of 0.7. The TI traffic distribution is Pareto
and AF, BE packet traffic distribution is uniform and the packet size is between 64 and 1518
bytes, the model generated high-burst TI, AF, and BE traffic. The TI packet distribution
is considered Pareto because it is control/steering and sensor packets. According to this
bursty model, the resulting traffic is an aggregation of multiple streams each consisting
of alternating Pareto-distributed ON and OFF periods. Pareto d. The probability density
function of a generalized Pareto distribution can be expressed as follows [9]:

f (x) =
δµδ

xδ+1 , (10)

where δ location parameter and µ is the shape parameter. The measurements on actual
Ethernet traffic performed in estimate the Hurst parameter H for the Pareto distribution to
be 0.7 for moderate traffic. The δ and µ of the Pareto distributions forming the ON and OFF
periods are denoted as δon and δo f f , respectively. Further, we follow the shape and location
parameters according to ref. [9]. The traffic on the EF was based on a Poisson distribution
with a fixed packet size (70 bytes) [31]. The DWBA computation time is 10 µs to grant
the transmission timeslots on the SD-OLT and the guard time is set to 1 µs seconds to
avoid overlapping of two sequential timeslots of different SD-ONUs. The summary of the
simulation parameters can be seen in Table 1. To demonstrate the efficacy of high-priority
traffic management, the three scenarios depicted in Table 2 were developed and analyzed
with varying amounts of EF, TI, AF, and BE services. The traffic profiles are based on
Sandvine (applications traffic forecast) report three geographic regions were simulated [32].
They are as follows Asia-Pacific (APAC); Europe-Middle East-Africa (EMEA); AMERICA.
The traffic ratios of the LSTM-DWBA scheme were distributed as APAC S1-(10%, TI 6%,
AF34%, BE 50%), EMEA S2-(10%, TI 7.5%, AF 42.5%, BE 40%), and AMERICA S3-(10%, TI
9%, AF 51%, BE 30%).

5.1. Dataset

To evaluate the feasibility of the proposed LSTM-DWBA scheme, we generate traffic
data for the offline limited scheduling disciplines, which are the most extensively used
legacy disciplines for predictive DWBA schemes, in this work. Our approach does not
rely on a specific traffic arrival distribution (i.e., Poisson, Pareto, and Unform); rather, it is
meant to estimate user demand regardless of the traffic arrival distribution. Simulations
use Poisson and Self-Similar traffic, the most often used distributions in the literature. The
data set includes the following nine features: EF Report, TI Report, AF Report, BE Report,
EF Grant, TI Grant, AF Grant, BE Grant, and Cycle time. These were collected every 1.0
and 1.5 ms. This signifies that the observation was captured every 1 to 1.5 ms. Our dataset
as a whole is made up of 200.000 data point samples that were gathered at all of the various
network loads. This number of samples is substantial enough to construct robust LSTM
models that generalize well. The training dataset will comprise 80% of the rows from the
original data, while the validation dataset will account for the remaining 20%. The mean
and standard deviation are applied to the dataset to standardize it. Based on the historical
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past data of EF REPORT, TI REPORT, AF REPORT, and BE REPORT, the multi-Step model
forecasts a range of future values, namely, TI GATE and AF GATE. Therefore, the LSTM
multiple-step model forecasts a future sequence.

Table 1. Simulation parameters.

Parameters Value

Number of SD-ONUs 64

Number of wavelengths 2

Up/down link-rate 1–25 Gbps

SD-OLT/SD-ONU distance Uniform 10–20 km

Maximum transmission cycle time 1 ms, 1.5 ms

Guard time 1 µs

DWBA Computation time 10 µs

ONU Buffer Size 10 MB

EF Traffic distribution/Packet size Poisson/70 bytes

TI Traffic Distribution Pareto

AF, BE Traffic Distribution Uniform

TI, AF, BE Packet Size 64–1518

Table 2. Simulation scenario.

Regions Scenario EF% TI% AF% BE%

APAC

S1-
DWBA/LSTM-

DWBA
(10%:40 (15%)

50

10% 6% 34% 50%

EMEA

S2-
DWBA/LSTM-

DWBA
(10%:50 (15%)

40

10% 7.5% 42.5% 40%

AMERICA

S3-
DWBA/LSTM-

DWBA
(10%:60 (15%)

30

10% 9% 51% 30%

The proposed LSTM-DWBA uses two LSTM layers with a dense layer of 5000 to
forecast multi-steps. As the loss function, we use the mean squared error (MSE) between
the projected and actual EF Grant, TI Grant, AF Grant, and BE Grant. Root mean squared
propagation (RMSProp), Adam optimizer, gradient descent, and AdaGrad trained the
models. LSTM hyperparameters are also used to improve the performance. Therefore,
the optimal number of epochs to train our training dataset is 75 epochs. The TensorFlow
and Keras backends with Scikit-learn (Sklearn) machine algorithms generate and train our
LSTM regressors.

5.2. Result and Analysis

In this section, we analyze the performance of the proposed LSTM-DWBA (with
prediction) under a limited scheme and compare it to the performance of a typically limited
scheme (without prediction) for a number of traffic profiles. The effectiveness of the
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proposed system is evaluated based on the mean packet delay, jitter, system throughput,
and packet loss of the traffic.

5.2.1. Mean Packet Delay

Mean packet delay arises when packets arrive randomly at the ONU. Each packet
should wait for the suitable upstream transmission time slot before it can be transmitted.
This waiting period is known as the packet delay and is comprised of the polling delay,
granting delay, and queuing delay [33]. Figure 6 depicts packet delay versus different traffic
loads for the EF, TI, AF, and BE. The results demonstrate that with-prediction LSTM-DWBA
improves the accuracy of traffic estimation, which in turn contributes to the reduction
of delay compared to DWBA without prediction. Reduced packet delay is essential for
providing QoS, especially for applications requiring a flawless user experience, such as
Tactile applications. Using historical data, the LSTM-DWBA can reduce control message
overheads by properly forecasting the EF, TI, AF, and BE REPORT messages next steps in
advance. Moreover, EF, TI, and AF traffic delays are reduced by 1.0 ms compared to 1.5 ms,
but only for the BE traffic delay was only reduced the 1.5 ms compared to 1.0 ms because
of the reduced packet loss and improved bandwidth utilization.

Figure 6. Cont.
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Figure 6. Mean packet delay comparison in different traffic scenarios in 1.0 and 1.5 ms cycle time. (a)
EF (a1,a2), (b) TI (b1,b2), (c) AF (c1,c2), and (d) BE (d1,d2).

5.2.2. TI Jitter

Jitter is crucial for the temporal performance of the network, as high latency renders
interactive tactile applications useless, such as voice and two-way video teleconferencing.
Figure 7 shows the mean TI jitter of with prediction LSTM-DWBA and without prediction
LSTM-DWBA with different traffic loads. The TI jitter in LSTM-DWBA is improved for
all scenarios compared to the without-prediction DWBA. The jitter of S1, S2, and S3 in
LSTM-DWBA for TI traffic is less than 0.3%, indicating that TI packets are carried at almost
identical intervals so that users can have continuous communications.

Figure 7. TI Jitter performance.

5.2.3. System Throughput

Figure 8 shows the average system throughput with prediction LSTM-DWBA and
without LSTM-DWBA with different traffic loads with 64 SD ONUs. The system throughput
is defined as the sum of the data rates delivered to all network terminals. The system
throughput in the proposed scheme is the sum of the communication throughput between
ONUs and OLT and the local traffic throughput [34]. System throughputs are affected by
cycle time, unused residual, and guard time. Because the LSTM-DWBA can foresee multiple
steps, upstream overheads, such as guard time can be removed, resulting in increased
upstream bandwidth efficiency. The LSTM-DWBA system’s bandwidth consumption
reaches 160% whereas without prediction DWBA reaches 141% in 1.0 ms, as shown in
Figure 8a,b shows the 1.5 ms system bandwidth consumption reaches 179% whereas
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without prediction DWBA reaches 160%. Moreover, the system throughput is increased by
1.5 ms compared to 1.0 ms.

Figure 8. Overall system throughput.

5.2.4. Packet Loss

The packet loss is defined based on the traffic priority and buffer conditions and also
cycle time. The EF, TI, and AF packet losses of the proposed with perdition LSTM-DWBA
and without prediction DWBA were zero for all scenarios and traffic loads. BE packet
loss was nil for both the with prediction LSTM-DWBA and the without prediction DWBA
when the traffic load was less than 70%. To ensure the appropriate QoS performance in
high-traffic circumstances, the low-priority BE packets are dropped if the buffer is full, as
shown in Figure 9. In other words, when an ONU buffer is fully occupied and a packet with
the higher priority arrives, the lower priority queue drops one or more packets to buffer a
new packet. In addition, scenarios with a cycle time of 1.5 ms had a reduced packet loss
percentage because ONUs had more time to broadcast their buffered packets. Moreover,
Figure 9a 1.0 ms of all packet loss is higher than 1.5 ms because BE traffic has the lowest
priority in our DBA. Our traffic priority is EF, TI, AF, and BE. The DBA first satisfied the
higher-priority traffic (EF, TI, and AF); after that, it allocated the bandwidth to BE so it
could take the longer time slots. Our proposed prediction DWBA packet transmission
time slot was shorter BE traffic in 1.0 ms, and a packet loss of nearly 5% was achieved.
In addition, the mean packet delay (Figure 6d1) increased by nearly 800 ms. At the same
time, the packet loss in 1.5 ms is reduced below 1.2%, and the mean packet delay is also
reduced below 400 ms in Figure 6d2. Therefore, our analysis of packet loss shows that
packet loss is reduced and bandwidth utilization is increased as the cycle time increases. In
1.5 ms, our proposed DWBA reduces packet drop to less than 1.2%. In the event of heavy
traffic loads, the BE packet losses of the proposed LSTM-DWBA and DWBA were identical
across all scenarios and cycle periods, indicating that the proposed architecture will not
affect packet loss. In the event of heavy traffic loads, the BE packet losses of the proposed
LSTM-DWBA and DWBA were identical across all scenarios and cycle periods, indicating
that the proposed architecture will not affect packet loss.
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Figure 9. Overall system packet loss.

6. Conclusions

In this paper, we proposed an LSTM-DWBA scheme for SD-NG-EPONs-based tactile
applications that use LSTM-RNN to predict future SD-ONU bandwidth demands based on
past SD-ONU demands. Based on historical data, LSTM-DWBA can forecast future EF, TI,
AF, and BE bandwidth requirements. The proposed LSTM model achieved high accuracy
with a negligible MSE. The prediction-based LSTM-DWBA scheme reduced the control
message overhead and improved the QoS services of tactile applications. Moreover, the
results are demonstrated at 1.0 ms and 1.5 ms cycle times. Future work can use more ML
models to improve the network performance.
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