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Abstract: The efficient generation of high-order harmonic radiation has been a challenging task
since the early days of strong-field physics. An essential requirement to achieve efficient high-order
harmonic generation inside a gas medium is the phase matching of the high-order harmonic radiation
and the incident laser pulse. The dominant contribution to the wave–vector mismatch ∆k is associated
with the ionization probability of the medium. In this work, we derive two analytical formulas to
calculate the critical intensity of a general linearly polarized laser pulse that obey the phase-matching
condition ∆k = 0. The analytic formulas are valid in the tunneling regime (ADK model) and the
regime of the tunnel and multi-photon ionization (PPT model), respectively. We compare our results
to numerical computations and discuss the scaling of the critical intensity depending on the pulse
duration and the wavelength of a realistic incident laser pulse. The analytical approach demonstrated
in this work is highly accurate and can compete with the existing numerical computational methods
by an error of less than 1% and a decrease in the computation time of approximately 4 to 6 orders of
magnitude. This enables complex theoretical studies of the efficiency scaling in HHG or to consider
the effects of ground state depletion efficiently.

Keywords: critical intensity; high-order harmonic generation; phase matching; efficiency; strong
field physics; free-focusing regime; ADK; noble gases; ionization; nonlinear optics

1. Introduction

High-order harmonic generation (HHG) is an essential technique to produce coherent
ultra-short light pulses from tabletop-sized devices. The radiation from these devices can
be used in industry and in fundamental scientific research, which highlights them as a
promising source for a broad range of applications.

The macroscopic conversion efficiency of the high-order harmonic (HH) process is
on the order of 10−4 at 30 eV [1] down to 10−9 at 300 eV [2]. Specifically, the conversion
efficiency of HHG from near- to mid-infrared laser pulses decreases exponentially with
increasing wavelengths, which has been demonstrated in experimental and theoretical
work [3–5]. This low efficiency induced the interest of the strong-field community to find
specific experimental conditions that optimize the HH yield [6–10]. The highest experi-
mental conversion efficiencies can be achieved by simultaneously optimizing macroscopic
effects such as absorption [11], laser focusing [12,13], and phase matching [14–16].

Phase matching (PM) is one of the essential requirements to efficiently produce HH
radiation. Therefore, the phase velocity of the incident laser pulse and the generated HH
radiation need to match while propagating through the gas medium. The PM of complex
pulse structures, e.g., twisted light [16,17], is often relatively complicated; thus, linearly
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polarized laser pulses are advantageous to simplify the PM. Commonly used media for
the generation of HH radiation are isotropic noble gases, which are also the focus of
this work. The conventional approach of second or third-order harmonic generation of
using birefringence to phase-match the fundamental and harmonic beam cannot be used.
However, it can be shown that the contribution of plasma (free electrons + ions) and neutral
gas dispersion, the geometrical phase, and the intrinsic phase can be balanced to achieve a
transient phase-matching window [14].

In this work, we analytically investigate the PM conditions for a partially ionized
noble gas in the free-focusing regime that can be generalized to other geometries (e.g., tight
focusing or waveguide). We explicitly show that the critical peak intensity of a realistic
laser pulse depends inverse logarithmically on the pulse duration and, further, has a
nontrivial wavelength dependency associated with the refraction index. In the discussed
experimental setup, other PM contributions are nullified by each other. That enables
us to discuss an experimental setup under realistic conditions and demonstrate a newly
developed calculation technique. However, this calculation technique is not limited to a
specific experimental setup and may be adapted, e.g., in complex analytical or numerical
studies, where a numerically calculated ionization rate is not suited.

This paper is structured as follows: In Section 2, we derive the analytical formulas of
the critical field intensities for which PM is achieved at the peak of the incident laser pulse.
In more detail, in Section 2.1, we revisit the standard model of PM for HHG and specify
the PM condition of this work. In Section 2.2, we derive and discuss the formula of the
critical intensity in the tunneling regime. Section 2.3 generalizes the derived formula to the
intermediate regime where the tunnel and multi-photon ionization needs to be considered,
which incorporates many realistic scenarios. In Section 3, we compare our results with
numerical calculations and discuss the parameter range for which the developed method is
valid. Finally, we conclude our findings in Section 4. In the following, we use atomic units
(h̄ = e = me = 4πε0 = 1) unless stated otherwise.

2. Model and Method

In Figure 1, we can see a standard HHG setup with the incident laser pulse on the
left (orange-red) and the emitted HH radiation on the right (blue). This work focuses on
the linear propagation effects of the HH radiation and the incident laser pulse inside the
gas medium. In particular, we focus on the phase-matching of these light fields, which is
highlighted in Figure 1a by the dashed circle.

The medium consists of an arbitrary noble gas characterized by its ionization potential
Ip and orbital angular momentum quantum number ` of the respective atomic state. We
assume that the incident laser pulse is a paraxial linearly polarized plane wave propagating
in the z-direction (optical axis) that irradiates the gas target (free-focusing regime). The
optical axis is perpendicular to the target surface in the x-y plane while the target is centered
one Rayleigh range behind the focus of the incident laser pulse z = zR (not explicitly shown
in Figure 1a). Experimentally, this is done to favor the phase-matched generation of the
short trajectories [18]. In the free-focusing regime, the variation of the electric field strength
on the optical axis can be neglected for gas targets that are much thinner than the Rayleigh
range such that the atoms in the interaction region are affected by a constant field strength.
In the following Section 2.1, we use the SI unit system.
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Figure 1. (a) HHG-setup: laser pulse (orange-red), atomic targets (gray), generating medium (green),
high-order harmonic radiation (blue), gas-jet emitter (gray-black); and (b) critical ionization proba-
bility ηc (log scale) of commonly used noble gases with regard to the photon energy of the emitted
harmonics Eq at the fundamental laser wavelength of λ = 1000 nm.

2.1. Phase Matching of High-Order Harmonic Radiation

For a coherent build-up of the HH radiation, the wave–vector mismatch has to be
minimized, resulting in efficient HHG. The wave–vector mismatch is defined as

∆k = k(qω)− qk(ω), (1)

where the first term is associated with the HH radiation and the second with the incident
laser pulse. The wave–vector mismatch consists of four major contributions in the free-
focusing regime, as discussed in [19]

∆k = ∆katom + ∆kplasma + ∆kGouy + ∆kintrinsic ≡ 0, (2)

where ∆katom and ∆kplasma consider the mismatch associated with the neutral and ionized
atoms, respectively. The term ∆kGouy, on the other hand, denotes a geometric contribution
by the Gouy phase, and ∆kintrinsic describes the wave–vector mismatch related to the
intrinsic phase of the emitted photons. The Gouy wave–vector mismatch has a positive
contribution, whereas the intrinsic phase results in a negative contribution to the total wave–
vector mismatch. These two contributions nullify; eventually ∆kGouy + ∆kintrinsic ≈ 0, as
the target is centered one Rayleigh length behind the focus of the laser pulse [18,20,21]. This
leaves us with the atomic and plasma contributions that can be combined to an dispersion
mismatch as

∆kdisp = ∆katom + ∆kplasma,

⇒− q
ω

c0

ρ

Natm
∆δ

(
1− η

ηc

)
= 0, (3)

where ω is the frequency of the laser pulse, c0 is the speed of light in the vacuum, Natm is the
particle number at standard conditions, ρ is the particle density, and ∆δ = n0(ω)− n0(qω)
is the difference between the refractive indices of the laser pulse and the qth harmonic
under standard conditions. The respective refraction indices are calculated as in [22–24].
The ionization probability η denotes macroscopically the relative amount of atoms in an
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ionized state compared to the total number of atoms. Furthermore, ηc is the so-called
critical ionization probability that is defined as

ηc =

(
1 +

2πreNatmc2
0

ω2∆δ

)−1

, (4)

where re = e2/
(
4πε0mec2

0
)

is the classical electron radius. To fulfill (3), the term inside
the parentheses should vanish, which is fulfilled if the ionization probability matches the
critical ionization probability η = ηc in Equation (3). The critical ionization probability (4)
of commonly used noble gases is shown in Figure 1b for a fundamental laser wavelength
of λ = 1000 nm.

2.2. ADK Model: Critical Field Intensity

In this work, we investigate strong-field ionization in the context of phase-matched
high-order harmonic generation. Apart from solving the time-dependent Schrödinger
equation numerically, the YI model [25] does describe the strong-field ionization sufficiently
well. As HHG is known to operate in the regime of tunnel and multi-photon ionization, we
restrict our investigations to approximations of the YI model that incorporate the respective
ionization processes (ADK and PPT).

This section is separated into two parts. In the first part, we sketch the idea of a
solution that obeys Equation (3). The second part incorporates a detailed derivation as well
as a discussion of the applied approximations.

2.2.1. Critical Field Intensity as Phase Matching Condition

For a pulsed laser, it is impossible to fulfill Equation (3) in general because the ioniza-
tion probability increases monotonically over time. Therefore, the PM condition should be
achieved at the peak of the laser pulse, resulting in the highest number of ionized electrons.
The ADK ionization rate is defined as [20,26]

wADK(t) =
1

(2`+ 1)

`

∑
m=−`

wADK
m (t),

=
`

∑
m=−`

|Cn∗ l∗ |2Glm Ip

(2`+ 1)

(
2(2Ip)3/2

F(t)

)2n∗−|m|−1

e−
2(2Ip)3/2

3F(t) ,

≡
`

∑
m=−`

κm

(
F0

F(t)

)gm+1
e−

F0
F(t) , (5)

with the atomic species dependent factor κm = 3gm+1|Cn∗ l∗ |2Glm Ip(2`+ 1)−1, which defines
the time-independent amplitude of the ionization rate concerning the initial state of the
ionized electron. The parameters |Cn∗ l∗ |2 and Glm are defined in Equations (4.65) and (4.66)
in [20], respectively. Moreover, we define the terms

F0 =
2
3
(2Ip)

3
2 , and gm = 2n∗ − |m| − 2, (6)

as atom-specific constants, and the electric field of the laser pulse reads

F(t) = E0 f (t) cos(ωt), (7)

f (t) = e−4 ln(2)( t
τ )

2
. (8)
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Here, f (t) denotes a Gaussian envelope with a full-width half maximum pulse duration of
τ. The ADK ionization probability in the peak of the laser pulse then reads [20]

η = ηADK = 1− e−
∫ 0
−∞ wADK(t)dt. (9)

One can see the dependency of the ionization probability on the laser frequency ω, the
atomic ionization potential Ip, the pulse duration τ, and the peak intensity of the laser pulse
I =
√

E0. In the experimental setup, it is often not possible to adapt the atomic species
or the wavelength of the laser pulse to optimize these parameters with regard to the PM
condition (3). On the other hand, the intensity and the pulse duration can be controlled
relatively easily compared to other parameters. Following this idea, we can define the
critical intensity Ic of the laser pulse as a function of the wavelength, atomic species, and
pulse duration that fulfills (3) with

η(I, τ, Ip, λ) = ηc ⇒ η(Ic(τ, Ip, λ)) = ηc. (10)

Numerical algorithms are often used to find the critical intensity Ic from Equation (9)
that fulfills the phase matching condition in Equation (3). These algorithms integrate
the ADK ionization rate in Equation (5) (or PPT rate in (25)) for a given intensity and
iteratively optimize them until the intensity converges to the critical intensity I = Ic. In
other words, these algorithms have the temporal integration of Equation (9) inside a root-
finding algorithm. This algorithm can be computationally heavy because the numerical
integration needs to be executed for each iteration of the root-finding algorithm.

Within our analytical approach, which is in detail derived in Section 2.2.2, the critical
intensity of the ADK model Ic → I(0)c is approximated by

I(0)c (τ, Ip, λ) =

[
g0

F0
W0

(
− 1

g0

(
D0

τ

)1/g0
)]−2

, for g0 < 0, (11)

I(0)c (τ, Ip, λ) =

[
g0

F0
W−1

(
− 1

g0

(
D0

τ

)1/g0
)]−2

, for g0 > 0, (12)

D0 = 2
√

2 ln(2)
| ln(1− ηc)|

κ0
. (13)

where κm is defined below Equation (5) and g0 in Equation (6) with m→ 0. The Lambert W
function is denoted by Wi for its respective real branch with i ∈ {0,−1}. For all neutral
noble gases, except Xenon, the parameter g0 is smaller than zero such that Equation (11)
can be used for helium, neon, argon, and krypton, whereas Equation (12) can be used
for xenon. Note that the variables F0 and g0 depend only on the atomic species, whereas
D0 ∝ ln(1− ηc(λ)) depends on the wavelength of the incident laser pulse. The dependency
of the critical intensity on the laser pulse is therefore imprinted in the critical ionization
probability ηc → ηc(λ) and the pulse duration τ. The atomic-species dependent parameters
for the noble gases can be found in Table 1.

Table 1. List of atom-dependent parameters to calculate the critical intensity in Equations (11) and (12).

He Ne Ar Kr Xe

g0 −0.5122 −0.4114 −0.1417 −0.0283 0.1182

F0 1.6196 1.3303 0.8311 0.6958 0.5612

κ0 6.5714 6.4204 6.1200 6.0226 5.9116
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| ln(1− ηc(λ0))|
τ0

=
| ln(1− η0

c )|
τ0

≡ | ln(1− η1
c )|

τ1

⇒ τ1 = τ0
| ln(1− η1

c )|
| ln(1− η0

c )|
≈ τ0

η1
c

η0
c

for η0
c , η1

c << 1 (14)

Equation (14) denotes a condition for the pulse duration τ1 in which the critical intensity of
the incident laser pulse remains invariant while changing the parameters from λ0, τ0 →
λ1, τ1. The factor | ln(1− ηc)| is physically equivalent to the time-integrated ionization rate
at the peak of the laser pulse

| ln(1− ηc)| =
∫ 0

∞
dt wADK(t). (15)

If we reformulate Equation (14), we can find the following invariance relation:
The critical field intensity is invariant under a parameter change from (τ0, λ0) to

(τ1, λ1), if the relative time integrated ionization rate equals the relative pulse duration.

τ1

τ0
=

n1λ1

n0λ0
=

ln(1− ηc(λ1))

ln(1− ηc(λ0))
=

ln(1− η1
c )

ln(1− η0
c )

and if η1
c , η0

c << 1 ⇒ τ1

τ0
≈ η1

c

η0
c

(16)

Simplifying (11) and (12) even further reveals a simple scaling law of the critical intensity
for both positive and negative g0 [27].

I(0)c (τ, Ip, λ) ≈
[

g0

F0
ln

(
1
|g0|

(
D0

τ

)1/|g0|
)]−2

∝ F2
0 ln−2

(
D0

τ

)
⇒ I(0)c (τ) ∝ ln−2

(
| ln(1− ηc)|

τ

)
(17)

With this fairly simple scaling law, we are able to describe the general proportionality of
the critical intensity for all noble gases with respect to the pulse duration and the critical
ionization probability of a monochromatic Gaussian laser pulse.

To summarize, the critical intensity calculated in (11) depends on the incident laser
pulse via the pulse duration τ and, indirectly, on the wavelength of the laser pulse ηc(λ),
where it obeys the proportionality I(0)c ∝ ln−2( | ln(1−ηc)|

τ ). The wavelength dependency is
directly related to the critical ionization probability in which the refractive index is sensitive
to the wavelength of the incident laser pulse. The critical intensity does not significantly
depend on electrons ionized from states with the magnetic quantum number m = ±1. At
the same time, the dependency on the ionization potential Ip cannot be derived so easily.

2.2.2. Derivation of the Critical Intensity

In the following derivation, we make use of a number of approximations. All of these
approximations can be reduced to one of the following major assumptions.

1. F0/E0 >> 1: The ionization potential F0 ∝ I3/2
p is much larger than the peak ampli-

tude of the incident laser pulse E0.
2. n ' 10: The number of optical cycles of the laser pulse is sufficiently large.
3. m 6= ±1: Contributions to the ionization rate from atomic states with magnetic

quantum number m = ±1 can be neglected.

To derive the formula of Ic ≡ Ic(τ, Ip, λ) we focus on the temporal integration in (5)
and pull the summation over the magnetic quantum number m out of the integral.

1
2`+ 1

∫ 0

−∞
dt wADK

m (t) =
1

2(2`+ 1)

∫ ∞

−∞
wADK

m =
κm

2

∫ ∞

−∞
dt
(

F0

F(t)

)gm+1
e−

F0
F(t) (18)
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In the next step, we approximate the Gaussian envelope by assuming a parametric depen-
dency on the time such that the amplitude of the envelope is constant within each half cycle
t ∈

[
− T0

4 , T0
4

]
. This approximation is valid for a slowly varying envelope, which implies a

sufficiently large number of optical cycles.

1
2`+ 1

∫ 0

−∞
dt wADK

m (t) ≈κm

2

∞

∑
k=−∞

∫ T0/4

−T0/4
dt
(

F0

E0 fk cos(ωt)

)gm+1
e
− F0

E0 fk cos(ωt)

≈κm

(
F0

E0

)gm+1 ∞

∑
k=−∞

∫ T0/4

0
dt e
− F0

E0 fk cos(ωt) (19)

In the last line, we neglected the factor fk cos(ωt) in the denominator, as the dominant
contribution is associated with the argument of the exponential function. To integrate the
remaining expression, we further approximate the integral as

∫ T0/4

0
dt e
− F0

E0 fk cos(ωt) =
T0

2π

∫ π/2

0
dt e
− F0

E0 fk cos(x) ≈ T0

2π

∫ ∞

0
dt e
− F0

E0 fk
cosh(x)

,

⇒
∫ T0/4

0
dt e
− F0

E0 fk cos(ωt) ≈ T0

2π
K0

(
F0

E0 fk

)
, (20)

with the modified Bessel function of order zero K0

(
F0

E0 fk

)
. Using the series expansion of the

modified Bessel function for large x = F0
E0 fk

(K0(x) ≈
√

π
2x e−x), we obtain

1
2`+ 1

∫ 0

−∞
dt wADK

m (t) ≈T0κm

2π

(
F0

E0

)gm+1√π

2

(
F0

E0

)−1/2 ∞

∑
k=−∞

e
− F0

E0 fk . (21)

Note that the contributions of the envelope in the denominator are neglected. The remaining
summation can be executed as

∞

∑
k=−∞

e
− F0

E0 fk =
∞

∑
k=−∞

e−
F0
E0

e(ln(2)(k/n)2)
≈

∞

∑
k=−∞

e−
F0
E0

(1+ln(2)(k/n)2),

≈e−
F0
E0

∫ ∞

−∞
dk e−

F0
E0

ln(2)(k/n)2

= n
√

π

ln(2)

(
F0

E0

)−1/2
e−

F0
E0 ,

⇒
∞

∑
k=−∞

e
− F0

E0 fk ≈n
√

π

ln(2)

(
F0

E0

)−1/2
e−

F0
E0 . (22)

Here, we used the definition of the pulse duration as τ = nT0 for an integer number n
of optical cycles. Inserting (22) into (21) yields us an analytic formula of the ionization
rates with

1
2`+ 1

∫ 0

−∞
dt wADK

m (t) ≈ τκm

2
√

2 ln(2)

(
F0

E0

)gm

e−
F0
E0 . (23)

By inserting specific parameters, one can see that the contribution of the terms wADK
±1 are

low and can be neglected such that we can replace η → ηc and write (9) as

− ln(1− ηc) ≈
1

(2`+ 1)

∫ 0

−∞
wADK

0 (t)dt,(
F0√

Ic

)g0

e−
F0√

Ic =2
√

2 ln(2)
| ln(1− ηc)|

τκ0
≡ D0

τ
. (24)
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Solving this equation for the critical intensity Ic yields us the solution of (3) with the ansatz
(10) by

I(0)c (τ, Ip, λ) =

[
g0

F0
W0

(
− 1

g0

(
D0

τ

)1/g0
)]−2

, for g0 < 0,

I(0)c (τ, Ip, λ) =

[
g0

F0
W−1

(
− 1

g0

(
D0

τ

)1/g0
)]−2

, for g0 > 0.

D0 = 2
√

2 ln(2)
| ln(1− ηc)|

κ0
.

2.3. PPT: Critical Field Intensity

The analytical method to calculate the critical intensity discussed in the last section can
be extended to incorporate the mixed regime in which tunnel and multi-photon ionization
need to be considered simultaneously. This regime is usually well described by the PPT
model [20,28]. Unfortunately, the PPT ionization rates have a more complex dependency
on the laser intensity than the ADK rates. To proceed further, we apply a perturbative
approach. The applied technique is similar to the one demonstrated in Section 2.2 such that
we refer to the specific equations if necessary.

The PPT ionization rate is defined as

wPPT(t) =
1

(2`+ 1)

`

∑
m=−`

wPPT
m (t),

=
`

∑
m=−`

κm

(
F0

F(t)

)gm+1
e−

F0
F(t) g(γ)

× 4√
3π

1
|m|!

γ2

1 + γ2

(
1 + γ2

)(|m|+1)/2 ∞

∑
q≥qthr

Aq(ω, γ), (25)

with the unknown parameters defined in [20] next to Equation (4.64). To find an approxi-
mation of the critical intensity Ic → I(1)c concerning the PPT ionization rates, we assume
that the Keldysh parameter can be approximated (if γ ≈ 1) by the critical intensity of the
ADK rates such that

γ = ω

√
2Ip

Ic
≈ γ(I(0)c ) ≡ γ(0). (26)

Inserting γ(0) into (25) can then be written as

wPPT(t) ≈
`

∑
m=−`

κ
(0)
m

(
F(0)

0
F(t)

)gm+1

e−
F(0)0
F(t) , (27)

where we define

κ
(0)
m =

δl,|m| + δ`−1,|m|
|m|!

(
g(γ(0))

)−(gm+1)

× κm
4√
3π

(
γ(0)

)2

1 +
(
γ(0)

)2

(
1 +

(
γ(0)

)2
)(|m|+1)/2 ∞

∑
q≥qthr

Aq(ω, γ(0)), (28)

F(0)
0 =F0g(γ(0)). (29)
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The Kronecker deltas ensure a correct summation over the magnetic quantum number m
for ` ≤ 1. The total ionization rate (25) then results in

wPPT(t) =

κ
(0)
0

(
F(0)

0
F(t)

)g0+1

+ 2κ
(0)
1

(
F(0)

0
F(t)

)g1+1e−
F(0)0
F(t) ,

=

κ
(0)
0 + 2κ

(0)
1

(
F(0)

0
F(t)

)−1( F(0)
0

F(t)

)g0+1

e−
F(0)0
F(t) ,

≈

κ
(0)
0 + 2κ

(0)
1

(
F(0)

0

E(0)
0

)−1( F(0)
0

F(t)

)g0+1

e−
F(0)0
F(t) , (30)

κ(0) =

κ
(0)
0 + 2κ

(0)
1

(
F(0)

0

E(0)
0

)−1 (31)

⇒ wPPT(t) ≈κ(0)

(
F(0)

0
F(t)

)g0+1

e−
F(0)0
F(t) . (32)

In the first line of the equation, we made use of the inversion symmetry of the magnetic
quantum number in the PPT model such that wPPT

1 (t) = wPPT
−1 (t). From the second to

the third line, we assumed that the temporal contribution of the electric field F(t) in the
rectangular brackets is small. Furthermore, we assumed that the electric field strength

can be approximated sufficiently well by the critical electric field strength E(0)
0 =

√
I(0)c

calculated from the ADK ionization rates. One can see that the mathematical structure of
(32) is similar to the integrand in (18).

Using the calculation technique discussed in Section 2.2.2 yields the critical intensity
calculated by the PPT ionization rates as

I(1)c (τ, Ip, λ) =

 g0

F(0)
0

W0

− 1
g0

(
D(0)

τ

)1/g0
−2

, for g0 < 0, (33)

I(1)c (τ, Ip, λ) =

 g0

F(0)
0

W−1

− 1
g0

(
D(0)

τ

)1/g0
−2

, for g0 > 0. (34)

D(0) =2
√

2 ln(2)
| ln(1− ηc)|

κ(0)
. (35)

Note that we included the contributions for the magnetic quantum numbers m = ±1 such
that we only used Assumptions 1 and 2 expressed at the beginning of Section 2.2.2 to
analytically calculate the critical intensity within the PPT model. The scaling behavior of
I(1)c is more complex than the one of the critical intensity I(0)c (11), as F(0)

0 and κ(0) both

depend on the critical intensity I(0)c itself. Therefore, one may hardly see some general
scaling behavior. Nevertheless, because we applied a perturbative approach, the general
behavior should not differ strongly from the critical intensity I(0)c . This means that the
dependency on the intensity in κ(0) and F(0)

0 should be sufficiently small if the Keldysh
parameter obeys γ / 1.

If the Keldysh parameter is expected to fulfill γ ' 1, the method demonstrated in this
section can be applied again to increase the accuracy.

γ(I(0)c ) ≡ γ(0) → γ(I(1)c ) ≡ γ(1)

⇒ F(0)
0 → F(1)

0 ; D(0) → D(1) ; I(1)c → I(2)c (36)
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In fact, this procedure can be applied iteratively such that the ith iteration delivers the
(i + 1)th critical intensity as

I(i+1)
c (τ, Ip, λ) =

 g0

F(i)
0

W0

− 1
g0

(
D(i)

τ

)1/g0
−2

, for g0 < 0, (37)

I(i+1)
c (τ, Ip, λ) =

 g0

F(i)
0

W−1

− 1
g0

(
D(i)

τ

)1/g0
−2

, for g0 > 0. (38)

D(i) =2
√

2 ln(2)
| ln(1− ηc)|

κ(i)
. (39)

This procedure can be applied until the critical intensity has converged. Typically, a
convergence is achieved for i ∈ [2, 8], which in detail depends on the system itself (τ, Ip, λ).

3. Results and Discussion

In the following section, we discuss the accuracy of the derived analytical formulas
concerning the critical intensity and the closely related Keldysh parameter. Moreover, we
define the parameter space for which the formulas of the critical intensity are valid. To do
so, we define three methods to measure the error of our formulas

∆I(0)c =
|I(0)c − IADK

c |
IADK
c

, (40)

∆I(i)c =
|I(i)c − IPPT

c |
IPPT
c

, for i > 0, (41)

∆γ(i) =
|γ(i) − γPPT |

γPPT , for i > 0, (42)

where the first two errors indicate the modulus of the difference between the exact nu-
merical solution of the critical intensity (IADK

c and IPPT
c ) and their respective analytic

approximations I(0)c and I(i)c . The error of the Keldysh parameter is defined to demonstrate
the convergence of Equation (37). All calculations are performed for an HH photon energy
of 25 eV unless stated otherwise.

In the following discussion, we refer to the critical intensities of the ADK and PPT
models by (11) and (37), respectively. This restriction denotes a shorthand notation and
does not exclude the case for g0 > 0. Furthermore, different atomic species can be visually
distinguished by different line colors and different incident wavelengths by a respective
marker or line type.

3.1. Accuracy Critical Intensity: Tunnel Ionization (ADK)

We begin with a visual comparison of the critical intensity calculated analytically and
numerically. The critical intensity in Figure 2a is shown about the number of optical periods
n, which is proportional to the pulse duration n = τ/T0. Moreover, the wavelength of the
incident laser pulse is fixed as λ = 1000 nm and the atomic species is denoted by the line
color. The analytical results of Equation (11) are denoted by squares and the numerical
results are as a solid line.

Because the difference between the numerical and analytical results is hardly visi-
ble, we display the error (40) of the critical intensity I(0)c for a set of wavelengths λ =
1000, 2000, 3000 nm (line type) and noble gases (line color) in Figure 2b. It is quite remark-
able that the error is below 1% for all parameter configurations, especially if we consider
the number of approximations and assumptions we made in our derivation.
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He XeKrArNe

n in τ/T0

ΔIc 
 in %

(0)

x 40

λ=1000 nm
λ=2000 nm
λ=3000 nm

n in τ/T0

Analytic

Numeric

Ic in
W/cm2

(0)

a) b)

Figure 2. (a) The critical intensity (log scale) is calculated as a function of the pulse duration measured
in multiples of the optical period (log scale). The ionization rates are calculated within the ADK
model for a wavelength of λ = 1000 nm in neutrally charged noble gases (color). (b) Error of the
analytic solution compared to the numerical integration (log scale) depending on the pulse duration
(log scale) for wavelengths of λ = 1000, 2000, 3000 nm (line type) in neutrally charged noble gases
(line color).

The error is not significantly sensitive to the harmonic energy; thus, this error estimate
is valid for HH photon energies in the range from 25 eV to 200 eV. The upper limit of
our calculations is arbitrarily set to 200 eV, which can be seen in Figure 1b. Nevertheless,
the critical ionization probability remains fairly constant for the laser pulse parameters
discussed in this paper such that the upper limit can be easily extended to photon energies
of 2 keV.

One can see that the error of the critical intensity decreases with an increasing wave-
length of the incident laser pulse as well as exponentially decreases with an increasing pulse
duration. In addition, note that the error decreases with increasing ionization potential
for all noble gases, except for helium. Because helium in the ground state does not have
electrons in the p-orbital, the contributions of ionized electrons from bound states with
m = ±1 do not contribute to the numerical calculations compared to the other noble gases.

The accuracy of Equation (11) compared to a numerical computation can be seen for
various configurations in Table 2. Here, we show the shortest wavelength λmin and the
smallest number of optical periods nmin for which the error is smaller than ∆I(0)c . This
holds for n > nmin and λ > λmin, as the error decreases for increasing n and λ. As a brief
conclusion, the error of Equation (11) obeys

τ ≥ 20 fs , λ ≥ 800 nm , n ≥ 8 ⇒ ∆I(0)c ≤ 1.0%, (43)

and holds true for all noble gases. To compare the computation times, we fix the parameters
λ = 1000 nm, Ip = 15.76 eV (Ar: ` = 1), and ηc = 0.02 for a high-harmonic photon energy
of Eq > 100 eV. We compare the critical intensity for pulse duration of n = 20 τ/T0
and n = 100 τ/T0. The numerical computation is executed in the Julia programming
language [29] and uses the QuadGK package [30] for numerical integration and the NLsolve
package [31] for the root-finding algorithm. The resulting computation times are denoted
as tA(n) and tN(n) for the analytical and numerical computation, respectively. The average
computation times for n = 20 τ/T0 are tA(20) = 736 ns compared to tN(20) = 830 · 105 ns;
thus, the analytical method is roughly 105 times faster. For the pulse duration n = 100 τ/T0,
the analytical method is roughly 106 times faster with tA(100) = 725 ns compared to
tN(100) = 447 · 106 ns. Here, one can see the potential relevance for more advanced
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investigations that need to calculate the critical intensity many times. Overall, the ratio for
the computation times of the critical intensities, calculated from the respective PPT model,
is 104 to 105. This ratio is approximately one order of magnitude lower than the ratio for the
critical intensity in the ADK model, which may be explained by the iterative application of
the critical intensity Equation (37).

Table 2. Accuracy of the critical intensity in the ADK model (40). The table is showing the lower
limit of the parameters λmin, nmin, τmin ∝ λminnmin (wavelength, number of optical cycles, pulse

duration) for which the error of the critical intensity is smaller than ∆I(0)c . The error decreases for any
configuration of higher parameters. We fixed the HH photon energy to 50 eV such that the error of
the critical intensity remains roughly constant for higher photon energies and changes reasonably
slowly for lower photon energies, such as the critical ionization probability in Figure 1b.

Element λmin in nm nmin τmin in fs ∆I(0)
c

He 800 7 18.7 ≤1.0%
1600 10 53.4 ≤0.7%
3200 5 53.4 ≤0.6%

Ne 800 3 8.0 <0.01%
1600 3 16.0 <0.01%
3200 3 32.0 <0.01%

Ar 800 3 8.0 <0.5%
1600 3 16.0 <0.4%
3200 3 32.0 <0.3%

Kr 800 4 10.7 <0.7%
1600 4 21.4 <0.5%
3200 4 42.7 <0.4%

Xe 800 5 13.3 ≤1.0%
1600 5 26.7 ≤0.7%
3200 5 53.4 ≤0.5%

For wavelengths shorter than 800 nm, the ADK model is no longer valid. We proceed
further with the critical intensity calculated within the PPT model.

3.2. Accuracy Critical Intensity: Tunnel and Multi-Photon Ionization (PPT)

Going on to shorter wavelengths of the laser pulse leads us to the regime in which
tunnel and multi-photon ionization need to be considered simultaneously. In this regime,
the Keldysh parameter is on the order of one such that we need to calculate the critical
intensities with the PPT ionization model. We use Equation (37), where i increases with
increasing Keldysh parameter until the Keldysh parameter converges.

In Figure 3a, one can see the error of the critical intensity (37) for i = 2, similar to
Figure 2b. In contrast to Figure 2b, the error of heavy noble gases such as krypton and
xenon deviates from the exponential decrease with increasing pulse duration. In addition,
the error gets fairly large for long pulse durations. This unusual scaling of the error in
krypton and xenon is related to the number of iteration steps i in (37). Because the critical
Keldysh parameter γ

(i)
c is larger for small ionization potentials, as in the case of krypton and

xenon, the number of iterations needs to be larger as well. Figure 3b shows the convergence
of the Keldysh parameter with iteration step i on the x-axis and the error of the Keldysh
parameter on the y-axis. Here, we fixed the pulse duration to τ = 200T0. The iteration
step i = 0 calculates the Keldysh parameter by using the critical intensity of the ADK
model. The Keldysh parameter converges for increasing iteration steps i and wavelengths
of λ = 500, 750, 1000 nm (marker type) fairly quickly to an error of less than 1%.
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He XeKrArNe

ΔIc 
 in %

(2)

n in τ/T0

λ=500 nm
λ=750 nm
λ=1000 nm

a) b)

i

Δγ(i)

λ=500 nm
λ=750 nm
λ=1000 nm

Figure 3. (a) The error of the critical intensity (log scale) as a function of the pulse duration (log scale)
was calculated within the PPT model. The error is shown for wavelengths of λ = 500, 750, 1000 nm
(line type) in neutrally charged noble gases (line color). (b) Error of the Keldysh parameter (log
scale) for a pulse of n = 200 optical periods (FWHM) about the number of iterations i. The set of
wavelengths (marker style) and noble gases (line color) is the same as in a).

Similar to the critical intensity in the ADK model, the error is not significantly sensitive
to the energy of the HH photon, hence we can neglect it. The accuracy of the critical intensity
in the PPT model is shown for various configurations in Table 3. Overall the accuracy of
(37) obeys

τ ≥ 8.3 fs , λ ≥ 250 nm , n ≥ 10 ⇒ ∆I(i)c ≤ 2.5%, (44)

τ ≥ 8.6 fs , λ ≥ 515 nm , n ≥ 5 ⇒ ∆I(i)c ≤ 1.5%, (45)

τ ≥ 26.7 fs , λ ≥ 800 nm , n ≥ 10 ⇒ ∆I(i)c ≤ 1.0%, (46)

for all noble gases. Here, the computation time of the numerical integration is also 3 to 4
orders of magnitude higher than for our analytical approach (37). Note, the iteration step
parameter i is chosen such that the critical intensity is converged and is therefore not fixed.

3.3. Critical Intensity: Comparison ADK—PPT

As we have already discussed the accuracy of the critical intensities (11) and (37), in
this section, we focus on the interpretation of their respective results. In particular, we
focus on the general scaling of the critical intensity concerning the pulse duration and the
incident wavelength. Figure 4 shows two density plots of the critical intensity I(i)c (λ, τ)
(color scale) in which the variation of the wavelength is located on the horizontal axis and
the variation of the pulse duration on the vertical axis. Figure 4a,b show the critical intensity
of the ADK and the PPT model in argon, respectively. Specifically, the critical intensity
within the ADK model increases constantly with shrinking wavelength and pulse duration.
This is highlighted by the contour lines (solid) that denote parameter compositions (λ, τ)
with constant critical intensity. These lines represent the solutions of Equation (16) inserted
into I(i)c (λ, τ). The pulse duration scaling matches well with our analytic approximation in
Equation (17), whereas the wavelength scaling is related to the critical ionization probability
that does not show a closed form of its scaling. As noted before, Figure 4b shows the critical
intensity in the PPT model. First, let us focus on the dashed inset on the right side. Here, the
scaling of the critical intensity matches well with the ADK model such that the respective
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structure of the contour lines agrees. However, outside of the inset, the scaling changes
drastically. The deviation is remarkable, as the global scaling changes rapidly. The change
in the global scaling is visualized by the purple stars to the left of the dashed inset. The
position of these stars can be interpreted as follows.

Table 3. Accuracy of the critical intensity in the PPT model (41). The table is showing the lower
limit of the parameters with the respective wavelength λmin, number of optical cycles nmin, and the
resulting pulse duration τmin ∝ λminnmin for which the error of the critical intensity is smaller than

∆I(0)c . The iteration parameter i is not fixed and is chosen such that the critical intensity is converged.
We fixed the HH photon energy to 50 eV such that the critical intensity remains roughly constant for
higher photon energies and, thus, the change in the error for lower photon energies is reasonably
small.

Element λmin in nm nmin τ in fs ∆I(i)
c

He 250 5 4.2 ≤ 2.5%
515 5 8.6 < 1.5%
800 10 26.7 ≤ 1.0%

Ne 250 9 7.5 ≤ 2.5%
515 5 8.6 ≤ 1.5%
800 8 21.4 ≤ 1.0%

Ar 250 10 8.3 ≤ 2.5%
515 3 5.2 ≤ 1.5%
800 4 10.7 ≤ 1.0%

Kr 250 5 4.2 < 2.5%
515 3 5.2 < 1.5%
800 3 8.0 < 1.0%

Xe 250 3 2.5 < 2.5%
515 3 5.2 < 1.0%
800 3 8.0 < 1.0%

a)

  τ 
in fs

λ in nm

ADK-Model b)

λ in nm

PPT-Model Ic in 
W/cm

(8)

2

 τ 
in fs

Ic in 
W/cm

(0)

2

Figure 4. Density plots of the critical intensity in argon calculated within the ADK model (a), and
the PPT model for iteration step i = 8 (b). The critical intensity is shown for an incident wavelength
from λ = 200 nm to 2000 nm (log scale) and a pulse duration of τ = 40 fs up to τ = 2000 fs (log scale).
The inset in (b) denotes the parameter space for which the critical intensity calculated within the PPT
model scales similarly (approximately linear contour lines) to the critical intensity calculated by the
ADK model (a).

If we select an arbitrary pair of parameters (λ0, τ0) inside the dashed inset, then we
can constantly decrease the wavelength while keeping the pulse duration constant, which
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leads to a monotonic increase in the critical intensity. At a specific wavelength, the critical
intensity will not increase anymore but remains constant and will decrease afterward. The
purple star denotes the wavelength λ0 at which the intensity remains constant such that
it describes the transition between two separated regimes. In the first regime, the critical
intensity increases for decreasing wavelength; in the second, the critical intensity decreases
with decreasing wavelength. Even though the number of purple stars that are shown in
Figure 4b is finite, in general, they represent an infinite collection of points.

From a more pragmatic point of view, the purple stars denote the highest critical
intensity that can be applied to generate phase-matched high-order harmonics, for a given
pulse duration τ.

As noted above, the data shown in Figure 4b was computed by the analytical formula
of the critical intensity in the PPT model Equation (37). The computation time for this
1000× 1000 data grid (wavelength and the pulse duration) is, on average, 97 s. A numerical
algorithm as defined below Equation (10) would need the same computation, approximately
97 s · 104 = 270 h, or 11 days.

4. Conclusions

In this work, we demonstrated an approach to calculate the critical intensity of phase-
matched high-order harmonic generation analytically. The derived formulas are valid in the
tunnel ionization regime (ADK-model) and get extended to the intermediate regime of tun-
nel and multi-photon ionization (PPT model). The analytic formulas for the critical intensity
in both ionization regimes are highly accurate and can replace numerical computations
while benefiting from a decrease in the computation time of approximately 4 to 6 orders of
magnitude. We analyzed the accuracy of the developed approximations for the commonly
used parameter space of all noble gases and listed the errors for specific sub-spaces. In
addition, we discussed the analytic scaling properties of the critical intensity with regard to
the pulse duration and wavelength in the tunnel-ionization regime. Finally, we highlighted
the differences between the critical intensities in the respective ionization regimes and
displayed the suppression of this intensity in the intermediate ionization regime.

Overall, we demonstrated that the developed formulas of the critical intensity are
highly accurate and show a significantly decreased computation time compared to a
numerical solution.
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