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Abstract: A near-perfect narrow-band graphene-based absorber was fabricated using a resonant
system integrated with an asymmetric meta-grating at a wavelength of 1550 nm. By optimizing
the gap between the two grating strips, the absorption of monolayer graphene can be increased to
99.6% owing to the strong field confinement of the bottom zero-contrast grating (ZCG). The position
of the absorption spectrum could be adjusted by tailoring the grating period or the thickness of
the waveguide layer. Interestingly, absorption spectrum linewidth can be tailored by changing
the thickness of the spacer layer. The accidental bound states in the continuum (BICs) are then
demonstrated in the structure. Moreover, the designed structure realizes the dynamic adjustment of
the absorption efficiency at a specific wavelength, which has excellent potential in integrated optical
devices and systems.
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1. Introduction

Graphene is a promising two-dimensional material for ultrafast optoelectronic devices
owing to its unique photoelectric properties [1–4]. It is widely used in photodetectors [5–8],
modulators [9–13], tunable optical filters [14], polarizers [15], and sensors [16,17]. However,
the performance of graphene-based optoelectronic devices is limited by the low absorption
efficiency of monolayer graphene in the near-infrared (NIR) region [18,19]. Therefore, it is
essential to engineer light-graphene interactions in this region. Generally, some graphene-
based absorbers have been reported using dielectric or resonant metal structures, such as
Fabry–Perot cavities [20], metal gratings [21], resonant waveguide grating [22–25], photonic
crystals [26,27], and quasi-bound states in the continuum (quasi-BICs) resonance [28].

With the proposal of various types of graphene absorbers such as multi-band ab-
sorbers [29–31], broadband absorbers [32], and polarization-insensitive wide-angle metama-
terial absorbers [33], the dynamic control of graphene absorbers has become an important
issue. For instance, Wu et al. investigated the tunable near-infrared perfect absorption of
graphene with bandwidth ranging from 5.7 to 187.1 nm in the compound grating waveg-
uide structure supporting the quasi-BICs [34]. Xiao et al. proposed a two-port resonant
structure to achieve a significant bandwidth manipulation of the absorption bandwidth
from ultra-narrow to broadband by integrating graphene with a lossless photonic crystal
slab [35]. Zhang et al. designed a subwavelength grating coupled hybrid structure to
realize the dynamically switchable triple-band absorption enhancement of graphene [36].
In brief, most researchers have studied graphene absorbers using two approaches. One
approach involves identifying and proposing methods to enhance the absorption efficiency
of graphene, and the other involves studying the characteristics of the absorption spectrum
to improve the performance of the absorber.

Herein, we investigated the dynamic absorption tuning of monolayer graphene at
communication wavelengths with a dual-layer asymmetric meta-grating structure com-
prising a compound grating, spacer layer, and zero-contrast grating (ZCG). Monolayer
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graphene was embedded between the compound grating and the spacer layer. A nearly
perfect absorption with a bandwidth of 0.4 nm was achieved at 1550.6 nm because of
the strong localization ability of the ZCG to the light field in the designed structure. The
results show that changing the thickness of the spacer layer in the dual-layer asymmetric
meta-grating can control the linewidth of the absorption peak and can excite an accidental
BICs state which may occur in any structure but requires careful tuning of the parameters.
Furthermore, the position of the absorption peak can be adjusted by changing the thickness
of the grating waveguide layer and the grating period. More importantly, the absorption
efficiency of graphene can be dynamically adjusted according to the requirements of the
actual situation by changing its chemical potential. This research will be helpful for design-
ing graphene-based high-performance optoelectronic devices, such as optical detectors,
modulators, and optical switches, which also show great potential for realizing advanced
hybrid platforms in integrated optical systems.

2. Structure and Theory

Figure 1a shows a diagram of the proposed graphene absorber, which comprises
compound grating (top grating), monolayer graphene, SiO2 spacer layer, and ZCG (bottom
grating). Monolayer graphene was sandwiched between the top grating and the SiO2
spacer layer. The bottom grating was deposited on the back of the SiO2 spacer layer to
prevent the transmission of the incident light at 1550 nm. As a demonstration, the refractive
indices of Si and SiO2 were considered to be 3.47 and 1.44, respectively [37]. The structural
parameters were assumed as follows: dc = 430 nm, tg = 0.34 nm, dh = 355 nm, dg = 415 nm,
P = 696 nm, ds = 128 nm, g = 21 nm, w1 = 200 nm, w2 = 150 nm, and w3 = 430 nm. Here, the
input light was assumed to be TE-polarized at normal incidence. The structure is finitely
periodic in the x direction and uniform along the y direction.
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Figure 1. (a) Schematic of the near-perfect proposed graphene absorber. (b) Relationship between 

permittivity and chemical potential of graphene at 1550 nm. 
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Figure 1. (a) Schematic of the near-perfect proposed graphene absorber. (b) Relationship between
permittivity and chemical potential of graphene at 1550 nm.

Monolayer graphene was modeled as an ultrathin dielectric layer with a thickness of
tg = 0.34 nm. The material properties of graphene can be described by its surface conduc-
tivity, which can be obtained using the Kubo equation [38,39]:

σgra = σintra(ω) + σinter(ω)

= i e2kBT
π}2(ω+i2Γ)

{
µc

kBT + 2In
[
exp(− µc

kBT ) + 1
]}

+ i e2

4π} In
[

2|µc |−(ω+i2Γ)}
2|µc |+(ω+i2Γ)}

]
,

(1)

where σintra(ω) and σinter(ω) represent the intra- and inter-band transition conductivities,
ω is the angular frequency, e is the charge of an electron, } is the reduced Planck constant,
and kB is the Boltzmann constant. T = 300 K is the Kelvin temperature, Γ = 1/2τ is related
to the electron–phonon relaxation time τ, chemical potential of graphene µc = 0.3 eV,
Fermi velocity υF = 106 m/s, and carrier mobility µ = 104 cm2/(V·s) [40]. The relationship
between the surface conductivity σgra and the relative permittivity of monolayer graphene
can be expressed by the following formula: εgra = 1 + iσgra/ωε0tg, where ε0 is the vacuum
permittivity [41]. Figure 1b shows the relationship between the chemical potential and
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permittivity of the monolayer graphene at 1550 nm. The permittivity of graphene strongly
depends on its chemical potential, and the imaginary part of the permittivity decreases
sharply when the chemical potential is approximately 0.4 eV.

The proposed resonant system based on a dual-layer asymmetric meta-grating struc-
ture can be considered a single-port lossless resonator. According to coupled-mode theory
(CMT), the absorption efficiency of the proposed device can be calculated as follows [27,42]:

A =
4δγ

(ω−ω0)
2 + (δ + γ)2 , (2)

where γ and δ represent the external leakage rates and inherent losses of materials in
the proposed structure, respectively, and ω and ω0 represent the working frequency and
the central resonant frequency, respectively. When the intrinsic loss of the material is
equal to the external leakage rate, that is δ = γ, the system reaches the critical coupling
condition, and the total absorption of monolayer graphene can be realized at the resonant
frequency ω0.

3. Results and Discussion

Theoretically, maintaining δ = γ of the resonance is critical for achieving critical
coupling, and the intrinsic loss δ is almost constant. Therefore, controlling the external
leakage rate γ plays a key role in achieving critical coupling. We first demonstrate the
relationship between various structural parameters and the external leakage rate, and
the influence of the structural parameters on the absorption of the proposed structure.
Figure 2a shows the calculated absorption as a function of the wavelength for the proposed
structure as the gap g increases from 0 to 84 nm. The efficiency of the absorption peak first
increases gradually, owing to the enhanced excitation intensity of the resonant mode. For
g = 21 nm, the maximum light absorption of the monolayer graphene reached 99.6%. As g
further increased, the absorption efficiency became relatively weak, and the bandwidth of
the absorption peak gradually increased. To better explain the effect of the spacing g on the
entire resonant system, the phase diagrams at different g values were calculated, as shown
in Figure 2b. The sharp π-phase transition at g = 21 nm indicates that a critical coupling
condition is achieved [43,44]. A nearly perfect absorption peak with a bandwidth of 0.4
nm is achieved at 1550.6 nm, as shown in Figure 2c. We then compared the theoretical
results from the CMT with the simulation results from the rigorous coupled-wave analysis
(RCWA) and finite element method (FEM) methods. The total quality factory of the
entire structure can be expressed as QCMT = QδQγ/(Qδ + Qγ), where Qδ = ω0/2δ and
Qγ = ω0/2γ represent the intrinsic loss and external leakage, respectively. The fitted
δ = γ = 1.2477 × 1010 Hz was obtained when critical coupling occurred, and the value of
QCMT was 3876.5328.

By contrast, the total quality factor Q can be acquired from Q = λ0/FWHM, where
the full width at half maximum (FWHM) is only 0.4 nm at the resonant wavelength of
1550.6 nm. Thus, we obtained Q = 3876.5. The value of QCMT and Q are almost the same,
indicating that the theoretical results agree with the simulation results. To better explore the
physical mechanism of the narrow-band absorption peaks, Figure 2d shows the electric field
amplitude distribution of the designed structure on the x-z plane at a resonant wavelength
of 1550.6 nm. One can see that most of the electric field is concentrated on the bottom
grating of the designed structure. In other words, the strong localization ability of ZCG in
the designed structure significantly enhances the interaction between light and graphene.
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Figure 2. (a) Absorption spectra under different grating gaps g. (b) Phase change diagrams corre-

sponding to different g. (c) Comparison of the absorption spectrum obtained from the theoretical 
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Figure 2. (a) Absorption spectra under different grating gaps g. (b) Phase change diagrams corre-
sponding to different g. (c) Comparison of the absorption spectrum obtained from the theoretical
calculation and numerical simulation results. (d) Electric field distribution at the resonant wavelength
of 1550.6 nm.

Furthermore, we studied the dependence of the absorption spectrum on the spacer
layer thickness in the designed structure, as shown in Figure 3. The absorption map of
the proposed system for different spacer layers ds is shown in Figure 3a. The results show
that the absorption peak blue-shifts with increasing spacer thickness when the thickness
of the spacer layer is less than 100 nm. A near-perfect absorption spectrum is achieved
at the wavelength of 1550.6 nm when ds = 128 nm. However, the position of the absorp-
tion peak keeps unchanged when ds is greater than 150 nm. To further investigate this
phenomenon. We calculate the reflection spectra of the designed structure under different
ds, as shown in Figure 3b. One can see that the reflection spectrum at the wavelength of
1550.6 nm gradually disappears when ds gradually increased from 0 to 250 nm. Here, an
accidental BICs’ state that can occur in any structure but requires careful adjustment of the
parameters is excited [45]. In addition, the bandwidth of the absorption peak decreases
rapidly as ds increases from 0 to 300 nm. The FEM can rigorously calculate the eigenval-
ues of the structure, and the complex eigenvalues N can be described with the formula
N = Nreal − iNimag [46]. To further explain the regulation mechanism of spacer layer thick-
ness on the absorption spectra, we use the FEM to calculate the complex eigenvalue N of
the proposed structure without graphene at different ds, as shown in Table 1. The imaginary
part of the complex eigenvalue decreases with an increase in ds, and the real part increases
gradually and then remains unchanged. As a result, the complex eigenvalue plays a key
role in determining the absorption performance in the designed graphene absorbers with
difficult ds.
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Table 1. Complex eigenvalues N corresponding to different thicknesses of the spacer layer.

ds (nm) N Nreal/(2 × Nimag)

50 1.21441 × 1015 − 2.3160 × 1011i 2621.8
100 1.21473 × 1015 − 1.1039 × 1011i 5502.2
150 1.21479 × 1015 − 4.9016 × 1010i 12,393
200 1.21479 × 1015 − 2.0509 × 1010i 29,616

Subsequently, we studied the influence of waveguide thickness dh and grating period
P on the absorption spectra. According to Figure 4a, the central resonant wavelength
exhibits a red-shifts as dh varies from 335 to 375 nm. The absorption efficiency of the
proposed dual-layer asymmetric meta-grating structure is high, which differs from our
previous work [29]. Figure 4b shows the absorption spectra of the designed structure when
the period P increases from 666 to 726 nm. The results show that the absorption wavelength
shifts to the long-wave direction as the period increases because the successful excitation of
guided-mode resonance must satisfy the phase-matching condition [47]. Meanwhile, the
absorption spectrum maintained a high absorption efficiency when the period varied in
the range of 60 nm. The results in Figure 4 show that the spectral position of the absorption
peak can be controlled by tailoring the grating waveguide layer thickness or grating period.
The realization of adjustable and switchable functions that satisfy the requirements of
actual equipment has become the main direction of current research [48]. In our proposed
graphene absorber with a dual-layer asymmetric meta-grating structure, the resonant
wavelength can be adjusted by adjusting the thickness of the waveguide layer or grating
period, which meets the requirement of wavelength tunability.
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In the above analysis, we adjusted the absorption efficiency and the spectral position
of the absorption peak by changing the structural parameters. However, it is undesirable
to change the size of the absorber or further adjust the wavelength of the absorption
peak by refabricating a new structure for practical applications. The chemical potential
of graphene can be controlled by external gate voltage [49]. The relative permittivity
of graphene changes with the chemical potential as shown in Figure 1b. Therefore, the
influence of the chemical potential µc of monolayer graphene on the absorption response
of the structure was studied based on the tunable properties of graphene [50]. Figure 5a
shows that the absorption efficiency of the absorption peak can be flexibly tuned by
changing the chemical potential. The absorption efficiency and resonant wavelength
change simultaneously when the structural parameter g is changed. Here, a dynamic
adjustment of the graphene absorption efficiency is realized at a specific wavelength by
controlling the chemical potential µc. Figure 5b shows the absorption of graphene as a
function of µc at a wavelength of 1550.6 nm. When µc increases from 0.2 to 0.34 eV, the
absorption of graphene remains unchanged, and the corresponding modulation depth is
minimal [50]. When uc changes from 0.34 to 0.51 eV, the absorption efficiency of graphene
can be flexibly regulated, and the position of the absorption peak remains unchanged. As
µc increases from 0.51 to 0.8 eV, the absorption efficiency of graphene is finally modulated
to very close to zero. Moreover, according to reference [37], the absorption of graphene
can exhibit the characteristics of electrical switches when µc changes from 0.34 to 0.51 eV.
Among them, high absorption efficiency is marked as an “on” state, and low absorption
efficiency is marked as an “off” state. Unlike the wired control method, we can control the
driving signal in a noncontact manner by adjusting the optical signal with the designed
dual-layer asymmetric meta-grating structure, which shows great potential in integrated
optical systems [51].

Photonics 2023, 10, 14 6 of 9 
 

 

  
(a) (b) 

Figure 4. (a) Absorption spectra of the proposed structure with different waveguide layer thick-

nesses dh. (b) Absorption spectra of the proposed structure with different grating periods P. 

In the above analysis, we adjusted the absorption efficiency and the spectral position 

of the absorption peak by changing the structural parameters. However, it is undesirable 

to change the size of the absorber or further adjust the wavelength of the absorption peak 

by refabricating a new structure for practical applications. The chemical potential of gra-

phene can be controlled by external gate voltage [49]. The relative permittivity of gra-

phene changes with the chemical potential as shown in Figure 1b. Therefore, the influence 

of the chemical potential μc of monolayer graphene on the absorption response of the 

structure was studied based on the tunable properties of graphene [50]. Figure 5a shows 

that the absorption efficiency of the absorption peak can be flexibly tuned by changing the 

chemical potential. The absorption efficiency and resonant wavelength change simultane-

ously when the structural parameter g is changed. Here, a dynamic adjustment of the gra-

phene absorption efficiency is realized at a specific wavelength by controlling the chemi-

cal potential μc. Figure 5b shows the absorption of graphene as a function of μc at a wave-

length of 1550.6 nm. When μc increases from 0.2 to 0.34 eV, the absorption of graphene 

remains unchanged, and the corresponding modulation depth is minimal [50]. When uc 

changes from 0.34 to 0.51 eV, the absorption efficiency of graphene can be flexibly regu-

lated, and the position of the absorption peak remains unchanged. As μc increases from 

0.51 to 0.8 eV, the absorption efficiency of graphene is finally modulated to very close to 

zero. Moreover, according to reference [37], the absorption of graphene can exhibit the 

characteristics of electrical switches when μc changes from 0.34 to 0.51 eV. Among them, 

high absorption efficiency is marked as an “on” state, and low absorption efficiency is 

marked as an “off” state. Unlike the wired control method, we can control the driving 

signal in a noncontact manner by adjusting the optical signal with the designed dual-layer 

asymmetric meta-grating structure, which shows great potential in integrated optical sys-

tems [51].  

Wavelength (μm)
1.545 1.550 1.555 1.560
0

0.2

0.4

0.6

0.8

1.0

A
b
s
o

rp
ti
o
n

 μc  = 0.34 eV

 μc = 0.41 eV

 μc = 0.51 eV

 

0.2 0.3 0.4 0.5 0.6 0.7 0.8

Chemical potential (eV)

0

0.2

0.4

0.6

0.8

1.0

A
b
s
o

rp
ti
o
n

 
(a) (b) 

Figure 5. (a) Absorption spectra of designed structures under different chemical potentials μc. (b) 

Effect of chemical potential μc on the absorption efficiency at 1550.6 nm. 

1.52 1.54 1.56 1.58 1.60
0.0

0.2

0.4

0.6

0.8

1.0

A
b

s
o

rp
ti
o

n

Wavelength (μm)

dh = 335 nm

dh = 345 nm

dh = 355 nm

dh = 365 nm

dh = 375 nm

1.52 1.54 1.56 1.58 1.60
0.0

0.2

0.4

0.6

0.8

1.0

A
b
s
o
rp

ti
o
n

Wavelength (μm)

P = 666 nm

P = 681 nm

P = 696 nm

P = 711 nm

P = 726 nm

Figure 5. (a) Absorption spectra of designed structures under different chemical potentials µc.
(b) Effect of chemical potential µc on the absorption efficiency at 1550.6 nm.

4. Conclusions

In this study, using a dual-layer asymmetric meta-grating structure, we obtained a
narrow-band tunable graphene absorber in the communication band. The calculation
results show that the absorption ability of monolayer graphene is dramatic owing to the
strong localization ability of the ZCG at the bottom of the structure to the light field. By
adjusting the structural parameters of the grating, the designed graphene-based absorber
exhibited excellent wavelength tunability. Interestingly, accidental BICs can be realized
while adjusting the linewidth by changing the thickness of the spacer layer. Moreover,
based on the tunable properties of graphene, the proposed structure achieved a dynamically
tunable absorption efficiency at a specific wavelength after changing the chemical potential
of graphene. This research has great potential for application in high-performance optical
detection, modulation, sensing, and advanced integrated optical systems.
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