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Abstract- The log(ft) values of allowed B* decay between odd-A nuclei for 125<A<180
mass region are investigated. Single particle energies and wave functions are calculated
by making use of a deformed Woods-Saxon potential. The calculations are performed in
the framework of proton-neutron quasi particle random phase approximation (QRPA)
including the schematic residual spin-isospin interaction among the nucleons in the
particle hole channel. The calculations indicated that the results obtained through using
the yor=5.2/A"" are more in agreement with experimental observations.
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1. INTRODUCTION

After the observations of the Fermi resonance in 1960 [1], Fujita et al. [2-6] studied
this resonance theoretically and explained it through proton particle-neutron hole pair
model. This model was also applied for the Gamow-Teller transition and showed that
the existence of Gamow-Teller Resonance (GTR) observed first by Doering et al [7] is
similar to the origin of the Fermi resonance. For the calculations of the {§ decay rates of
the nuclei, “Gross Theory” developed by Takahashi et al. [8] was employed. But this
theory describes, because its statistical character, only the average properties of the 3
strength function and not the effects associated with shell structure. The macroscopic
model including the shell structures of nuclei in the {3 decay theory has been developed
by Hamomoto et al. [9], and Halbleib and Sorensen [10]. The Random Phase
Approximation (RPA) model developed by Halbleib and Sorensen has been improved
by other authors [11-19]. In this model, one first constructs a particle or quasi-particle
bases with a paring among like nucleons, and then solves the RPA or QRPA equation
with a schematic spin-isospin (for Gamow-Teller B decay) or isospin (for Fermi [
decay) residual interaction. The residual interaction mentioned above plays significant
role to explain the properties of the Gamow-Teller and Isobar Analogue Resonance
(IAS). As known the spin-isospin residual interaction includes free parameter yr, while
isospin residual interaction includes free parameter xp. The parameters are, in general,
obtained from experimental positions of IAS and GTR.

As spin-isospin residual interactions between nucleons plays important role for
explanation of the properties of GTR, this interaction has also effect on the f decay of
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odd nuclei [11,20,21], magnetic moment [22-24], the polarization of nuclear structure
process [23,25], and the double 8 decay matrix elements.

The X7 constants are in general obtained from the experimental values of GTR via
(n,p) and (3He,t) reactions. In order to establish an agreement between experimental
values of GTR positions in different mass region, different ygr's are used. For example,
for heavy nuclei (***Pb) yar=23/A MeV [26], in the region of Fe nuclei yar=15/A MeV
[16], in the region of neutron deficient Cs isotopes, Yor= 1.5+2 (N-Z)/A MeV [14] are
accepted. However Homma et al. [27] showed that yar=5.2/A%" MeV approach is valid
for ail mass region.

In this study, theoretical and experimental values of log(ft) of beta decay between
various odd mass nuclei are compared with each other, from which a value for the XGr
constant is determined. The deformed Woods-Saxon potential base was selected for
single particle base. The problem was solved in QRPA including the residual spin-
isospin interaction among the nucleons in the particle-hole channel.

2. MODEL HAMILTONIAN

Let us consider a system of nucleons in an axially symmetric average field
interacting via pairing and charge-exchange spin-spin forces. In this case, Hamiltonjan
of the system in single quasi-particle case is given as:

H, = HSQP + Ver. (1

Hsop is the single quasi-particle Hamiltonian and described by

HSQP = ;ES(T)‘ I.U*;r (t)'“s (T)“ng (T)'% (T)L ' (2)

where Eq(7) is the single quasi-particle energy of the nucleons and the 1sospin index T
takes the values n(p) for neutrons(protons), and al(e,) is the quasi-particle

creation(annihilation) operators. Vi, is residual charge-exchange spin-spin(GT)
interaction and given by the formula,

Vor = 2or 2,85 By, U=0%1, (3)
L
where

A
By =0, t,(), B;=(@. 4
i=}

The operator t,(t.) changes a proton (neutron) into a neutron(proton) and o, is the u
spherical component of the Pauli operator. In the quasi-particle representation, the B

operators are introduced
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B = Sld,, Dt +d, D, +5,C,, ~5,,CL . )

ap 0y np " np
np

by using the definitions from the Aygor et al.’s study [28] for the following quantities:

_ 1 | - T
= Emnwpupwp ’ an = Zmp—pan—p

prtl p=tl
;Iapp a-p ? C? m“‘;}aﬂ P pp ’ (6)
b, = (nﬂo ”p> pVas Bnp = 2<n|16““p>unvp

(n”o* "p> s E<n”0u“p>vnvp

where v, (u;) are occupation (unoccupation) amplitudes, which are obtained in the BCS
calculations, |n) and |p) are Nilsson single particle states, D = corresponds to quasi-

particle scattering operator,Cﬁp (Cnp) is two quasi-particle creation{annihilation)
operator for neutron- proton pair and satisfies the commutation rules:

I.Cnp’cJr J 8t1:16p;) * !.np’ J 0 (7)

Hence, the effective GT interactions in the quasi-particle space can be written as
follows:

Vor = Vee + Vi + Vop s a (3)
VCC = 2(X'GT Z(b iplcilp; - bﬂnpa CﬂlPx ) (bﬁzpzcﬂzpz - b“zpzcizpz )’ (9)
mpy
n2P2
VDD = 2%(3'1‘ Z(dﬂlpsD:IPI dﬁzm L] ) (dnz?anzpz d“z?zDizi}z )’ (10)
Py
Py
VCD = 2%[} Z {(dnlp!Dflipi + dnli’lD“ 19} ) (b“ﬁ?zcnzpz - bﬂzpzciipz )
Py ; (1n)
(b 1?1CI;P| - b“:lﬁc“lpz ) (d“ZPzDMPz + d“z?zDlepz )]

where V. is spin-isospin collective interaction. In these calculations, Vpp is neglected

because it only contributes to higher order terms. The Vep, which contains linear terms
in the quasi-particle scattering operator (Dy,p) is only needed for the odd-A transitions
between one quasi-particle states when the particle-phonon interaction is treated in first
order perturbation theory. Let us first consider the nuclei with even number. In this case,
Hamiltonian of the system can be written in the form of

H, =Hgp + Ve _ (12)
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In QRPA, collective 1" states in odd-odd nuclei are considered as one-phonon
excitations and described by

ll?i> - QHO> = Z(Irilpcflp _“Siﬂpcnv) ’ (i3)
np

where Q! is the neutron-proton QRPA phonon creation operator,|0) is the phonon

vacuum which corresponds to the ground state of an even-even nuclei and fulfilis
QJO} = () for all i. The two-quasi-particle amplitudes rf,p and s;p are normalized by:

Sl 7 -6, P =1 (14)

np

Employing the conventional procedure of RPA and solving the equation of motion,
lHSQ? +Vcc=Q3j §0>;(’31Q”0)’ (15)
we obtain the dispersion equation for the excitation energies oy of 1* states:
[+ %o a@)] [ xor Ao - Beor Bl F =0, (16)

where A((né),K(a)i) and B(w;) are given by

b’ b2 — b2 b?
A(mi) e 22{ np o+ np :l; A((Di) -~ 22[ =p + np i!
| Eop — | E

o~ 0 E +o w @ E o
(17)
B(w,)=2) b,b S
' W ®IE,~0o, B +o
n i np i
The two quasi-particle amplitudes then becomes
b, +L{w)b b, +L(w,)b
rﬁp:_ ng ( 1) np ]- i _ np ( 1) ap 1 (18)

* 8 — ]
En;} —0; '\Jz(wi) np Enp +; VZ(G),—)

where E,, = E, + E, is two-quasi particle energy for neutron-proton pair, L(w) is
defined as,

L(®,) = ._W__g(&l__, _ (19)

— -+ A{®,)

Lor
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and the normalization constant Z(w;) is determined from Eq.(14).

One of the quantities, which characterize the excited Gamow-Teller 1* states is the
probability of B* transitions from these states to neighbor even-even nuclei. The B*
transition amplitude from the even-even correlated ground state to 1" excited state in the
odd-odd daughter nucleus is given by:

(1)

i

Let us now examine the collective Gamow-Teller interaction for odd mass nuclei.
In this case using Eqgs. (13) and (20) Hamiltonian of the system in phonon
representation can be written in the form;

o*) =~¥'b,r, —b,sh, =M
np

— . : (20)
07) = Z bty = Doty =M
ap

B+

H =Hggp + ZXGTE(MTQI + M:Qx) (MjQJ + MJ_QE)

i

+ 26 3 la,D,, +4,D% )-(MrQ, +M;Q]) . @)

apj
+ 3 (M;Q) +M;Q, ) 0,0}, +3,D, )
Rpj
In the QRPA method, the wave function of the odd mass (with odd neutron) nuclei is
given by

¥ ) =01 [0) {Niagx,\ + Y RIPAK,IK, —Kp/Ian,)Q;'aIpxp}loy (22)

T,

where 1 is the total angular momentum and K is the projection of I on the nuclear
symmetry axis. It is assumed that wave function (22) is formed by superposition of one
quasi-particle, and three quasi-particle (one quasi-particle+phonon) states. The mixing

amplitudes N{'R and Rfj“lp are fulfilled by the normalization condition:
N P+ SR T =1 23)
il,
Solving the equation of motion,
ol Jo)= Wi 21, [0), el

the dispersion equation for excitation energies Wg‘x corresponding to states given in
Eq. (22) is obtained as
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(0, M7 43, M

Wl —EBE . =43 : (25)
ol fo BZ W!{.Kn —‘wi _Eipxp
The mixing amplitudes Rilj“Ip are in the form of
2%0d, M +d, M) '
RI = A Lol i ) Ni, (26)
Wij,,x,, — W "Elpxp '

and Ngn is calculated from Eq. (23). The corresponding expressions for the nuclei with

odd- proton number are formulated by performing the transformation LK. LK, in
Eqgs.(21-26). ‘

3. GAMOW-TELLER B* TRANSITION MATRIX ELEMENTS
IN ODD-A NUCLEUS

Gamow-Teller transition matrix elements of nuclei can be stated as following [14]:

Mg = (qu

LK,

&

Wik,)- (27)

The corresponding matrix elements of odd-A transitions are expressed for two different
cases as follows

(a) The case in which the number of pair does not change:

Byl¥i k. )

_ i wrf T Ll vy L} i Ll . £ R | +
= w[d[n;pN‘InN[p dp PREPRGY Ny Y REM N Y Ry M
3 4 J

M, = (\yprp

i (28)

M. 2(?;‘]{( By

¥ie,)

_ i f 1 18 1 i LI f Taf -
——{din,PN}len +dln[?ZRﬂ Ry +N192Rﬁ "M +NiHZRij *M;
i o i
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(b) The case in which the number of pair changes:

Mﬁm = <T§nKn 13;

Vi)

I i ol LI o LI i LI g f 11 +
_—[dInEPN;pNI" g PRERGY NG Y RIMI NG YR, "M;}
H J H

29
M. = <\P§pr

B[ ¥ix.)

— g i f Eud I0 i L1 + f II -
= [dI"IFNEﬂNlp Jrcllfnxsz,ij Ry +NIHZR@ "M +NIPZRij "M}}
] 1 i

where p =Ks- K;. The reduced transition probability for the ;Ki— 1¢Ks transitions on the
laboratory frame expressed by

. 2 2
Br (IiKi — Ifo): %?I_(IiKile - K /1K, )2 Mﬁ*i : (30)
and the ft values for these transitions are given by the following formula [25]:
g D
(ft)y =D—Y—= : : 31
41Br g 2 2
&4 | 1K.IK, -K, /LK) ‘Mﬁti
v .
37
In our calculations we use the constants [29], D= W =6295s and
gym.c

Ea =-1.254 and since transitions are among the ground states, Ki=I; and Ke=l; are
Ly
accepted.

4. RESULTS AND DISCUSSIONS

Numerical calculations have been performed for the deformed nuclei in the atomic
mass region of 125<A<131 and 150<A< 180. Nilsson single particle energies and wave
functions were calculated with a deformed Woods-Saxon potential developed by
Leander [30]. All energy levels from the bottom of the potential well to 8 MeV were
considered for neutrons and protons. The deformation parameters and pairing
interaction constants were chosen in accordance with Ref. [31]. The charge-exchange
interaction strength X, was chosen in order to describe the sentroid of the Gamow-
Teller resonance in odd-odd nuclei. Resulting coupling strength is in good agreement

with one derived in Ref. [27]. The log(ft) values for the GT transition in 16 nuclei are
~ obtained from the formula given in Eq. (31). The calculations were carried out for the



86 C. Selam, T. Babacan, H. A. Aygor, H. Bircan, A, Kiiciikkbursa, I. Marag

transitions  [5231T<[5231, [514]Te>[51410 and [402]T<[402]L having lower
energies. Since there are some transitions (for **Ho—'*Dy and ""Ho—'"Er) to the
excited states of the daughter nucleus, the corresponding energies (with respect to the
ground states) have been calculated.

The calculating log(ft) values and final energies for the investigated nucleus within
the different models (SP, SQP and QRPA) are given in Table. The transitions up to 10"
row of Table correspond to [523]T¢>[523]{ transitions. The rows from 10 to 14 shows
[514]T¢>[5141 transitions, and [402]T¢<>{402]{ transitions have been presented in
rows from 14 to 16. In the third and fourth columns of Table, the comparison of the
calculated energy values for the transitions to the excited states of the daughter nucleus
together with the experimental ones has been given. In the last four columns of Table,
the theoretical and experimental values of log(ft) values for the GT transitions in single
particle, single quasi-particle and QRPA pictures have been presented, respectively.

In Fig. 1, the log(ft) values for the investigated nuclei in different models have been
compared with the experimental values. The results show that the single-particle value
of the GT beta transition rate is 15-20 times larger than the corresponding experimental
values in the basis of Woods-Saxon potential as it is in the case of Nilsson potential,
This number reduces to 8-10 when the pairing interaction among like nucleons is taken
into account. However, if the effective Gamow-Teller interaction is considered and the
appropriate value for the interaction constant, X, is chosen, it is possible to make the

transition rate values close to the experimental ones.

Table : The log(ft) values and final energies for the investigated nucleus within the
different models.
N Transitions Er (KeV) _ Log(ft)
Theory |Exp.[32] SP SQP QRPA Exp.[25,32]
1 | ™Ho—"Dy | 34.03 | 3096 | 3.6l 407 | 444 4.81
1010 | 10162 | 4.41 4.69 5.07 5.24
2 | ®Ggao"'Th | 31066 | 4172 | 3.49 4.14 473 | 4.86;4.86+0.04
3 1 ""Ho—"'Dy 0 25.7 3.60 4.20 4776 | 4.88:4.80+0.2
4 | BHo—"%py 97.3 0 3,60 4.40 491 4.50
51 "Er—"%Ho 0 0 3.47 3.88 441 | 4.84:4.83+0.01
6 | Br—'®Ho 0 0 3.47 3.77 441 | 4.7;4.64+0.02
7| ypoSTm | 2387 | 1605 | 346 3.72 435 | 4.80;4.80+0.10
8 | ®'Ho—9Er 97.8 346.5 | 4.44 5.31 5.90 5.90
621 667.8 | 3.59 3.92 4.62 | 4.60;4.80+0.20
9 | Wyp 5%y, | 27693 | 2928 | 3.46 3.64 442 | 4.58;4.5510.05
10| “Ho—%gr | 10542 | 853.0 | 3.59 3.88 4.53 4.36
11| "Pyp!Ly | 302.11 396 3.38 3.73 4.44 4.70
12 | w1y 0 30.7 3.38 3.85 444 4.59
13| Blog»BIRe 55.5 262 3.38 3.62 4.29 4.40
I S 113.2 35.5 3.81 4.48 5.05 5.40
151 Yre-s!?] 0 0 3.66 4.46 5.10 5.48
16 | Blos—sBixe 0 0 4.24 4.67 5.82 5.54
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Fig.1: The log(ft) values for the investigated nucleus in different models

Calculations indicate that although the contributions of the three quasi-particle
states to the one quasi-particle wave function is so small as a result of the GT
interactions (the norm of wave function is less than 1%), the contribution of the core
which comes from the polarization phenomena is significant. The sum of these
contributions make the beta transition rate 7-8 times small, and thus the agreement
between its theoretical and experimental values is provided.

log(ft)
1525.9 Theory Exp.[32]
52317

1671,
621.0 462 | 460 6678
[52310 5231

590 L3460

st

-
-
-
-

97.8 .-5.90

[51217

PR i e
EG’IEI. 167Er

Fig. 2: Energy (in KeV) and log(ft) values for 17Ho-»""Fr transitions

The schematic form of the p and §* Gamow-Teller transitions has been presented
in Fig. 2 and Fig. 3 as an example. The "Ho—'"Br and ""Ho—'"Dy transitions are
shown in Fig. 2 and Fig.3, respectively. As can be seen from the figures, although the
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energies of low-lying states in both transitions are smaller than the corresponding
experimental values, the log(ft) values are in good agreement with the experimental
ones. In higher states, this agreement is valid for both the energy and log(ft) values.

We investigateci' in this study the 3* decay between ground state of odd-A nuclei in

the 125<A<180 mass region through proton-neutron QRPA by taking into account the
. residual spin-isospin interaction among the nucleons in the particle hole channel and
log(ft) values of [(3decay has been calculated, The results obtained through QRPA are in
agreement with experimental observations. The calculations showed that in the case of
Gamow-Teller interactions a strength parameter y., =5.2/A% MeV is suggested by

Ref. [27] is in close agreement with our results.

log(ft)

Exp.[32] Theory
10162 524 | 5.07 10100
51217 (31217

3096, 4.81
[5231 T
4.4~ 34.0
[52314
I DREMRRE
i67Dy 167Dy

1312.3
(52317
159H0

Fig. 3: Energy (in KeV) and log(ft) values for l591—10«~—>159Dy transitions
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