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A NOTE ON MELLIN TRANSFORM AND DISTRIBUTIONS
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Abstract- Mellin Transform occurs in many branches of Applied Mathematics and
Engineering. The Mellin transform is very much related to the Laplace and Fourier
transforms and the theory for the ordinary functions is well established. In the
distributional sense, first it was studied by Zemanian in [2]. In this work we try to
extend to the wider class of distributions.
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I. INTRODUCTION
Integral Transforms are extensively used in solving several kinds of boundary problems
and Integral Equations. Since Mellin Transform is special kind of Integral Transform

first of all we have the following definition.

DEFINITION 1. The Transform
8(@)= [ £(x) K(er.2)ds

is called the Integral' Transform and K(x) is called the Kernel of the transform. By
changing the kernel we can have several different integral transforms.

Now we let R, = (0, =) be the set of all positive real the numbers and let LY(S) be the
space of all (Lebesgue) measurable function with the norm

”f“f}(mm Js|f(x) dx

for $ ¢ R. Theniff: R, —> Cis a function such that f(x) e L‘ (S) for some s € C
then the Mellin Transform is defined by

MIf :s] j: F)x " dx = j: fox* Emfcfm, s=a+it, see[4].

We note that if the integral is bounded then the transform exists. But converse is not
necessarily to be true. The Inverse Mellin transform is defined by the contour integral
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1 patiee s
MUMENIE) = — [ M(f:5)x7ds =f(s)
2 worie
A simple example if fix) = e;" the Mellin transform is the well know Gamma Function

I'(s)= J: e xdx

Then we can easily make a statement that the Mellin Transform of f{x) = e times any
polynomials in the same variable x of the same degree in s, multiplied by the Gamma

Function I'(s). fact if we let Py(x) = Z

obtain

im0 nkxk be some polynomials then we

J‘: Pn (x)e—hx\;ﬁ;dx = %ge—j‘x'xkﬂ-ldx A‘k+s-2 zan k (‘S

The following theorem is easy and straightforward to prove:

THEOREM 1. If fis a Mellin transformable function then

M[x*f:s]=M[f:s+a] and
Mle™x® : 5] = I"(s+a)

k5+

for s # —o, -0t —1, —0t— 2, ...

The space Ag with its associated norm }

As = {fif IR+ -——-}_C;”f(x)xhl LI(R+)}
U, L3y = [ o} <o

for some 5 € C. then the space Ay = ﬂ A,

sela,d)

for a, b € R, a<b. In the statistical application we may interpret the Mellin Transform
MI f: 5] as the ( s — 1 ) the moment of f(x), see [3]. In particular,

Area of fix) =M{f: 1]
First moment of f{x) =MI[f: 2]
Second moment of f{ix) | =M [f: 3]

THEOREM 2. Mellin transform of sin(x?) and cos(x) exist and
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M [sing? @ 5] = (—I—)F(-I—stin (lmJ and
2 2 4
M[cosx 5] = ( J (lsjcos(—l—mJ
2 4

Mellin transform have some important properties, which we summarize in the next
theorem.

THEOREM. 3 Let f be Mellin transformable function defined on R, Then if the
differentiation under the integral sign is allowed,

(;}i—} M(f)s) =[] f(wlog'x xdx=Mlog” f:5~1]

M) = [ f@xtde=~(s-DM[f :s-1]
M(FYs) = [ froxtdx = (s=D(s - 2)M[f :5-2]
M) =[x (0x"dx = —sM[f : 5]

MG f)s) = [ o " (w = s(s+ DMF ;

On using the above theorem we can easily obtain the following results:
THEOREM 4. The Mellin transforms of log(x) sin(xz) and log (x) cos (xz) exist and

w675 s]m Lol Lo e Lo Veinf Lo 1o 20 Lo Veod L
M[log(x) sin{x ).s]— 4@(25]{2s}31n(4m}+ SP(ZS]COS[d,m]
oy Je L (D VAL Yo L o m (LY (1)
M[log(x)cos(x ).s]—- 4@(2s}l‘(2§]cos(4m] gl“[zs]51n(4sJ

In fact the results in theorem 3 are easily extended to the further derivatives in the
following theorem.

THEOREM. 5 The fbe n-times continuously differentiable, further f all its derivatives
Mellin transformable function defined on R, for all n € N. Then if differentiable under
the integral sign allowed,

N R o (W R I |
M(f N = [ £ x e == M [ s =l

VRS VN e =t g ¢ g SFR=DI
M(x f()ls)—joxf()(x)x ‘dx= (-1 —““(“““:“i‘)“;““M[f s]

In the next definition we give the Mellin convolution structure.
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DEFINITION 2 The Mellin convoluation product f * g of two given functions f, g ; R,
=5 C is defined by '

' - [ x du (1Y (x , du
(F*M g)s) =f0 f{—]g(u)— = | {~} f(m]g(u)u —
U i Ui u u u
provided that the integral exist. As we can see easily the convolution product f * g in

the Mellin sense can be expressed as the Mellin Transform of (1] f (—{}g (ue).
u u

We note that
1. If f, g € A then the convolution f * g exist almost everywhere on R, and
belongs to A, and further '
17 #elo <1, el
2. If X f{x) is uniformly continuous and bounded function on R, then f * g is
also bounded on R, ,

3. Iff,ge Asands:c+it,te R, then
Mf*g:s]=M[f:s]Mlg:s]

4. The convolution product is commutative and associative, that is, for f1, /5, f3,
€ A, then '

_ fi¥f=0%f, (i) *f3 = fi *(f2 * f3), see [4].
In the next section we will generalize this Mellin Transform to the space of linear
functionals £’ which are the distributions with bounded support in (0, ).

2. THE SPACE OF INFINITELY DIFFERENTIABLE FUNCTIONS

By the E,, we define the linear space of infinitely differentiable function ¢ defined on
- R, =(0, =) such that there exist two positive numbers 1y, 13 for

lim x*™ 2% (x) =0

x>0+

Eﬁ{z xk+l—rz—q¢{k} (x) — 0

and we consider ¢{x) = 0 for all x< 0. Of course E, , is not emptyand it is alinear space.
EXAMPLE 1 If we define

cosx x=20

(b(x)mc.os*)(m{ 0 x<0

then it is obvious that ¢{x} € E,
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EXAMPLE 2 1f is defined as follows

=1 x>0

Om sl x
Pt =%, {0 x<0

thend(x0 € E,, if p < s< q. Then we define

hyq(x) = {

x" O<x<l

x? x21
and

yk,p,q () = Sllphp’q (x)xk” | ¢(k) (x) !

x>0

the are all bounded and positively defined. In particular if we set k = O then satisfy tha
properties of norm. Then we define the convergence in E,, that infinite sequence §,(X)
convergence to 0 in sense of E,, if and only if y, , (¢,) —>0 for each ke N. Then if

we let I(S) be the space of infinitely differentiable functions ¢(x) having compact
support then one easily prove that D(S) ¢ E,, ,and it is dense in E,, By the E’,, we
define the linear space of continuous linear functionals on E,, which is zero on the
interval(-co, 0). In fact the space E’,, is the dual of the E,, That is, for every f€ E’p,4
if and only if the following conditions are satisfied.

1. (£ (x),9(x)) is defined for each ¢e E,,
2. {f(x),0(x)) =0if ¢(x) = 0 forx > 0.

3. (f(x)sa1¢i +a2¢2> = (f(x),a,(bl)%- (f(x),a2¢2> foraj, ;me R
4, (f(x),¢n (x)) — 0 if gu(x) > 0in E, ; as n ~» oo,

Ifge E,, and fe E’,, then we define by an integral,

(f:0)=] (0 900) dx

Since theory of distributions is a linear theory. We can extend some operations which
are valid for ordinary functions to E’,, such operations are called regular operations
such as addition, multiplication by scalars. For example if f;, > in E’,; and a is a scalar
then

L (fL)+ £,(x), 9(x)) = (.00} + (f,.9(x)) for each every ¢ € E,q
2. (af (x), §(x)) = a( f (x),¢(x)) for every ¢ & Ep, forx > 0.

Other operations can be defined only for particular distributions for certain restricted
subclasses of distributions; these are called irregular operations such as convolution,
multiplication and change of variables, see [1].
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- DEFINITION 3 Iff, g € F’,, then we define the Mellin Convolution

M[f*g:s]=((f * e Xa)9(0) = { £ ). (g (). B (ur)))
for all g€ E,,
EXAMPLE 3 Let f, g € E'yq and 8(x-n) then

(f *8Ce—n),9(0) = (£, (5Gx—n),$w0)))
=(f (u),9(nx))

Thus we can see that in particular case when n = 1, the § (x-1) acts as id?gntity and
always exists. In the example if we make substitution nx = ¢ then we have

(f 8 =n),000) = (£ 10), (8 x— ), pax)))
=(F (), ¢(nx))

e

f*(S(x—a)mif, fora>0
a” L

a

then we obtain

The following theorem holds in {1].

THEOREM 7 The Mellin convolution is commutative and associative that is, f, g, h e
E’p 4 then

frg=g*f (f*g)*h=Ff*(g *h)

Let M(f) and M(g) be exists for f, g € E’,, then the following equation also hold in
distributional sense.

M(f = g) = M(f) M(g)

3. SOME APPLICATIONS OF MELLIN TRANSFORM

The Mellin Transform has applications in various areas, including digital data
structures, probabilistic algorithms, asymptotics of Gamma-related functions,
coefficients of Dirichlet series, asymptotic estimation of integral forms, asymptotic of
algorithms and communication theory. '

The Mellin transform might be used in solving the ordinary differential equations with
polynomial coefficients which are usually difficult to be solved by using the Laplace
transform.
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Let us consider the general form of the linear ordinary differential equation with
polynomial-coefficient which is given by the equation

P(D) y = f(x)
where P(D) is the differential operator with polynomial coefficients. There is no general
method that can solve all kind of differential equations. Each might require different
methods. By application of Mellin transform we reduce ordinary differential equations
to the difference equation. In fact when we try to solve this differential equation, we
might have either of the following cases, see [3].

1. The solution y is a smooth function such that the operation can be performed in
the classical sense and the resulting equation is an identity. Then y is a classical
solution, :

2. The solution y is not smooth enough, so that the operation can not be performed
but satisfies as a distributions.

3. The solution v is a singular distribution then the solution is a distributional
solution.

In particular if we choose here to discuss the following differential equation

F=Xf+ xf = &xa)

Then by applying the Mellin transform to the both side and on using the theorem 6 we
have ‘

(s~lO(s—2)M(f:s-'-2)+——l—M(f:s+3)+M(f :s+1)m—}l
s+2 a
By solving the difference equation we obtain

1 1
M{I:s)=—
@9 a[(s—l)(s—2)+ x* Hz]

% s+2
Then one can apply the Inverse Mellin transform by using the complex inversion

integral in order to cover the f(x) explicitly as the solution.

The Mellin transform is also applicable to series in order to get summation for infinite
series. For example if we want to get the sum of

hw =3 £l

{1

where x € (0, ==). By taking the Mellin Transform on both sides one can obtain
= 1
M(his) =D =M (f ) =EOM(f:5)
i=t

where {(s) is the Riemann Zeta fanction. Then by applying the Inverse Mellin
transform it gives
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1 a-+ioo -5
hx) =~ Lm.-m C(M(F :s)x"ds, see [6].
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