
Mathematical & Computational Applications, Vol. 8, No.3, pp. 327-334, 2003
© Association for Scientific Research

Halil Ozer and Durmu~ Gtinay
Zonguldak Karaelmas University, Mechanical Eng. Department, 67100 Zonguldak

halil_ozer@karaelmas.edu.tr dgunay@karaelmas.edu.tr

Abstract- Ductile fracture in metals can involve the generation of considerable porosity
caused by nucleation, growth and coalescence of microvoids. This process takes place
on micro-level and can not describe by traditional constitutive laws such as von Mises
theory. Hence, A. L. Gurson developed a theory which takes account of void growth
and showed the role of hydrostatic stress in plastic yield and void growth. In this model
the void volume fraction f (the portion of void in the material) is the single damage
parameter; its evolution is defined by the incompressibility of the matrix material. (For
Lameitre's model the damage variable D is relevant.) To model the material damage by
using the Gurson damage approach a series of single elements including different types
of loading are used. In the single element cases the results of the Gurson model and von
Mises are also compared. In calculations the MARC finite elements software is used to
calculate stress, strains and f the void volume fraction.

Ductile fracture is a common cause of failure in engineering structures. A damaged
ductile material consists of two parts: matrix medium and damage, e.g. voids. Ductile
frature in metals can involve the generation of considerable porosity caused by
nucleation, growth, and coalescence of microvoids. This process takes place on micro-
level and cannot be described by traditional constitutive laws such as von Mises theory.
Hence, A. L. Gurson introduced a model for ductile fracture which includes the
influence of hydrostatic stress on the evolution of plasticity condition and combines
plasticity with damage by introducing porosity of a metal [1]. This model is called the
Gurson model. It assumes cylindrical and spherical voids surrounded by homogenous,
incompressible von Mises material (matrix). The Gurson model takes only void growth
into account. This model has no ability to predict void nucleation and coalescence.
Nucleation and coalescence of microvoids was incorporated later by A. Needleman and
V. Tvergaard [2,3,4,5, 6].
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Figure 1. Mechanism of ductile failure by voids

Gurson developed a theory which takes account of void growth, and showed the role of
hydrostatic stress in plastic yield and void growth. He employed simplified physical
models for ductile porous materials (aggregates of voids and ductile matrix), idealizing
the matrix material as rigid-perfectly plastic and obeying the von Mises yield criterion.
In order to get an analytical expression for the yield function, Gurson considered - as an
abstraction of a matrix with voids - cylindrical and spherical domains, respectively.
Each of them contains a void of the same shape in its centre (Figure 2 and Figure 3).
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Gurson approximated a solid with a volume fraction f of voids by a homogenous body
with a cylindrical or spherical cavitiy. An approximate rigid-plastic limit analysis of this
situation was used to develop the yield condition. The Gurson model characterizes the
porosity by a single-scale internal variable f the void volume ft;aetion. This dilatant
plastic yield criterion is known under the name of "Gurson 's criterion". For cylindrical
voids with parallel axis it holds:



(
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and for spherical voids it was derived:

$ =( ir +2fCOSh(~i )-I-f
2 =0

where f is void volume fraction (void volume fraction serves here as a damage
parameter.), cr is the actual yield stress of the matrix material, cre von Mises equivalent
stress of the homogenized material and crh the trace of the Cauchy stress tensor (crkk).
These are defined as follows:

eYe = ~%SijSij (3)

where Sjj

Sij = crij - crh8ij (4)

The yield stress cr of the fully dense matrix material is a fuction of the equivalent
plastic strain in the matrix £,
cr=cr(£) (5)

Plastic part of the rate of the deformation E~is derived from yield potential; the presence
of pressure in the yield condition results in nondeviatoric plastic strain. Plastic flow is
assumed to be normal to the yield surface with A as the non-negative plastic flow
multiplier [7,8, 9, and 10]. The plastic part of the rate of deformation tensor, E~, is
given by the flow rule
• p _ A' a<t>tjj -
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Plastic multiplier A (2': 0) is a plastic flow proportionally factor and calculated using the
consistency condition <b = 0 in the case of plasticity. Evolution equations need to be
specified for the internal variables f and cr. The portion of voids in the material is
expressed by void volume fraction. In general, the evolution of void volume fraction
results from both nucleation of new voids and from growth of existing voids. The
growth rate of existing voids is determined by requiring the matrix material to be
plastically incompressible. The growth rate is assumed proportional to hydrostatic part
the stress tensor:
f = (1-f)E~
rearranging the above equation yields

f = (1 - f) a<t> A = (1 - f) a<t> A
acrkk acrll



The plastic work rate for the porous solid is set equal to the matrix plastic work rate.
Accordingly,
<Jj/'~= (1- f)crE (9)

From Eq. 9, the plastic flow proportionality factor, ;\, In the flow rule Eq. 6 is
determined to be,
. (1- f)crE
;\ = a<t> (10)

<JkJ-- a<Jkl

Here, E is the matrix von Mises equivalent strain rate, which is determined from the
matrix strain hardening relation. For an elastic-plastic solid, we write
Eij = E~ + E~ (11)

In circumstances where the elastic strains remain small, although the plastic strains may
be large, it is convenient to use a hypoelastic approximation for E~ ,

~ 2E e Ev e 2G [(1 2) e e 8] De e (12)
<Jij = 2(1+ v) Ejj + (1+ v)(I- 2v) Ekk = (1- 2v) - v Ejj + VEkk ij = ijklEkl

where E is Young's modulus, v is Poisson's ratio, 8ij is Kronecker's delta. For plastic
loading,

The material damage has been assessed by Gurson's criterion by using a series of single
elements. In calculations the MARC finite element software is used to calculate stress,
strains and f the void volume fraction. A material element or "cell" of size LxL is taken
out of the body. This material element is analyzed in plane strain. Three cases,
illustrated in Figure 4-5-6, are considered here: (i) uniaxial tension, (ii) biaxial tension
(volumetric expansion) (iii) constrained axial tension.

The uniaxial strain stress response of the elastic-plastic material that surrounds the void
is described by

with E/<Jo =300, v = 0.3 and N = 0.1 and G is shear modulus. The Gurson model is
invoked using the strain-controlled nucleation model. Void volume fraction is described
by fN = 0.1, EN = 0.3 .and S = 0.04. (fN, the void volume fraction of void forming
particles; EN, the normal distribution around the mean value and S the standard
deviation). For the biaxial tension example, the voids were assumed to have already
nucleated at the beginning of the deformation with initial void volume fraction, fo =
0.04. In the other examples, the initial porosity was set to zero.



Figure 7 plots (Je/(Jo (equivalent stress/yield stress) versus £~q (equivalent plastic strain).
The results of the Gurson damage model and von Mises approach are compared.
Uniaxial tension results in Figure 8 shows an initial increase in porosity through void
nucleation centered around a strain of 0.3.

Figure 9 plots hydrostatic stress as a function of equivalent plastic strain for biaxial
tension case. Constituve softening behavior is observed as the hydrostatic stress drops
off sharply with increased porosity. The effect of void volume fraction on equivalent
plastic strain is showed in Figure 10.

Figure 11 plots hydrostatic stress as a function of equivalent plastic strain for
constrained axial extension. As can be seen in Figure 11, the stress rises sharply during
the initial stages of deformation for which the porosity is very low and drops suddenly
as the strains to cause void nucleation are reached. The initial material response is very
close to that of a von Mises material since f is small which allows the hydrostatic stress
and triaxiality ((Jh fa) to become large. As plastic strain begins to accumulate, void
nucleation becomes significant at uniaxial strains of about 0.022. At this point, the high



triaxility leads to a burst of void growth and a rapid contraction of the yield surface as
indicated by the sudden drop in stress. The effect of void volume fraction on equivalent
plastic strain is showed in Figure 12.
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Figure 12 void volume fraction versus equivalent plastic strain


