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Abstract- To represent the total energy of fcc metals(Cu, Ag, Al, Ca, Sr) the potential
functions are assumed to be composed of the two-body pairwise Rydberg potential and
volume dependent energy (P;V) which represent many body interactions. Energy, stress
and elastic moduli calculations are performed on the basis of Rydberg and Rydberg
plus P;V potentials to locate the stress-free bcc phase on the fcc metals. The studied
crystals are subjected to unconstrained (100) uniaxial tension and compression for all
computations. Also, these potentials are used to calculate the second- and third-order
elastic constants, Cj; and Ciy. The obtained results are compared with the available
experimental data and the agreement is good.
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1. INTRODUCTION :

The studies of elastic instability of crystals were motivated by many interesting
problems, such as, structure phase transformation, the prediction for liquid melting
point, theoretical strenght and the test for any constructed interatomic potential
function[1]. Computer simulation techniques are powerful tools which have been used
for many years to study the structure and properties of materials. The basic input to
these simulation techniques, whether they are static methods or dynamic calculations,
such as Monte Carlo and molecular dynamics, is knowledge about the interatomic
potential function among particles in the system under investigation. These potentials
which are used to simulate a particular material should be capable of reproducing some
of the basic properties of the material. Among the material properties there are structure
and lattice constants.

Born and many other investigators [1-13] noted the importance of examining the
stability of crystals and have performed some theoretical strength calculations. The
calculation method used in this study is a generalized form of that derived for pairwise
potentials by Milstein [2]. The pairwise potential model is not adequate, so in this study,

the two-body pairwise Rydberg potential [14] and volume dependent energy > P,V"

are assumed to represent the total energy of fcc crystals as in R. Najafabadi and G.
Kalonji [7].

In this work by using this potential functions some theoretical calculations are
performed. The stability and phase transitions, the variation of energy, stresses and
elastic moduli with respect to the lattice parameters are studied. By the means of the -
obtained curves, the lattice parameter, atomic volumes, cohesive energies in the fcc and
bee phase and the difference of energies (Ef.-Ej..) are computed and regions of stability
are determined. By using this method, some elastic properties, such as, the second-, and
third-order elastic constants(Cy;, Cij) are also calculated.

\
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2. COMPUTATIONAL PROCEDURE AND APPLICATIONS
2.1 Potential Function
Total interaction energy used in this work is assumed to be in the form of

#r)=-D[1+b(r-r,)le”" ™ +TPV" (1)

where D, b and r, are the potential parameters in the Rydberg potential. These are
calculated by Varshni Y.A.[14] following the procedure given by Girifalco and

Weizer[15]. For the volume dependent energy term, (>, P,V" )which represent many

body interactions, we choose n=1, and P; is a coefficient which depends upon the
material and is calculated such that the lattice constants at zero stress match the ones
observed experimentally [7]. The calculated results for D, b, r, [14] and our results for
P, for Cu, Ag, Al, Ca and Sr are listed in Table 1.
2.2 Mechanical Stability

For the crystals to be in stable equilibrium, the total energy ofsystem in the
presence of the applied forces must be at its minimum.

The difference in the internal potential energy between the states a; “ and a; can

be expressed in terms of a Taylor series expansion as
U Ia, (ai —a,‘)(a,’ -aj)- (2)

U@)=U@)+322 ), @ -a)+133
Y=U(a)+3— g )+—
@ “ i-1 aai o (G T4 2 izl j=1 aa,.aaj

The deformations a; ’- a; are taken to be small, so that the series is truncated at second-
order terms. For convenience, let

0°U
L= 3
' da,0a, " -
and
U
F =— . 4
" da, ' e

The double sum in equation (2) will be positive for an arbitrary deformation a; "-@; . This
is performed only if the principal minors of determinant |Bj; | are all positive [16]. The
principal minors of the matrix B can be positive if the following conditions at state a;
are satisfied

B,=B,’-B,’>0
BI.J :BII(BQZ+Bz3);ZBIZZ >O (5)
BSS > 0’ B.‘_; > Os B:z > O, 323 > O

In order to calculate the response of the unit cell to a uniformly applied stress along the
edge a;, one increase or decrease the lattice constant along edge a; by small amount

A w .
Aa, (i << 1) starting from the zero stress condition (F=F,=F3=0). The required force
al
F,” to keep the unit cell at mechanical equilibrium as well as the change in lattice
constant along a; and a; are calculated from equation (4). The uniform stress (oy) is
calculated by using the following equation
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o, =— : - (6)
(a, )?
These values are defined in equations (3) and (4) in terms of derivatives of the potential
function U, where U is made up of two terms U” and U, The potential energy due to
pair interaction per unit cell is

U? = %7lz¢(7,~) (7

where n is the number of atoms per unit cell and r;is the distance  from an arbitrary
atom in the crystal which is chosen as the origin, to the j th atom. This distance in a fcc
crystal which is subject to uniform deformations may be written as

=L@ty vai ity ®

where ¢; is the cell length and all the /; are integers such that /;,+/,+/3 must be even. The
quantities F; and Bjj due to the pair potential are given as

p__ 2 ¢ ;=
F, 4na %Z;l 300 i=123 9)
1 00 ¢ .
B =— 1 — I} =126 10
“ 8";§;<>+;§;a<)’ 0
1 0’ o
B! = gna,a,.%[zzyflf 8(r2¢)2 iz j=123 (11)

The quantities F; and Bj; due to the density dependent part of the potential are given as
(71
= nPV"

B = zo—a— i=123 (12)
P n
Zon(n—l) "V i=123 (13)
B, = i PV" i=456 (14)
n*PVv"
‘=3n wa i#j=123 (15)
n=0

In this work, the density dependent part of potential is taken as

U’=PV . (16)
In this case the constant factor P; is calculated such that the lattice constant at zero
stress matches that observed experimentally.
2.3. Elastic Constants

Second- and third-order elastic constants (SOEC and TOEC) at atmospheric
pressure and OK are evaluated adopting the general expressions given by Born[3]. At
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T=0K, the calculated values of these constants are given in Table 4 and Table 5,
respectively.
3. RESULTS AND DISCUSSION .

On the structural phase transformation and elastic instability, the numerical
calculations are performed using Rydberg potential and Rydberg potential plus volume
dependent energy for Cu, Al, Ca, Ag and Sr under [100] uniaxial loading. Two-and
third-order elastic constants are also included in the computations. The most of the
numerical results obtained from this work are summarized in Figl, 2, 3 and Table 2, 3,
4,5.

Table-1 Calculated potential parameter [14] and our calculated P;constants

Metals b (10°cm™) r,(10-8 cm) D(10™ erg) |- P1(10°dyn/cm”®)
Cu 1.9962 2.8170 61.78 1.4952
Al 1.7133 3.1940 49.07 1.2067
Ag 1.9646 3.0881 57.76 1.5712
Ca 1.0791 4.9300 29.71 3.0950
Sr 1.0902 4.8799 57.76 1.5655

Energy versus lattice parameters curves are plotted in Fig.1 for Cu and Sr. In each
curve there are two special points marked with circle and square, represent the
minimum of energy, and the energy at inflection point through which the second-order
derivative of energy with respect to a; changes sign, respectively. Our numerical results
show that the points marked with circle assert the initial equilibrium state of the fcc
structure and the points marked with triangles occupies the stress- free face centered
tetragonal (fct) structures. The squares indicate the stress-free bcc face phases, where

the ratio a, to a;(with ar,=aj3) is taken to be \/5 ]

The stress o; versus cell length a; are shown in Fig.2 for Cu and Sr. The square and
circle marks on the curve are associated with the stress-free cell length a.. and ay... The
values of ap. and ay.. are calculated from the values of marked points, respectively. It
can be seen from Table 2 that theoretical lattice parameter ap. and energy Ep.. of fcc
structures are in good agreement with experimental values for the present many-body
potential. The results are also in good agreement with the other theory [17].In the
present model, ay. theoretical lattice parameters are very close to the experimental
~ values. From the same table, one can also seen that in the present model the fcc-bee
energy differences are close to the obtained results from Ref. [17].
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Figure 1. Dependence of the cohesive energy per atom on a; for (a) Cu (b) Sr
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Figure 3: The variations of By, B2, Bj2, B23, B, and By, (in arb. units)
as a function of «; for Sr



300 Yasemin Oztekin Ciftci and Kemal Colakoglu

Table 2.Theoretical lattice parameters (a), atomic volumes (V) and cohesive
energies (E) per atom of the unstressed bcc and fcc sructures for Cu, Ag, Al, Ca, and Sr

Metal Apcc(A) | Viee(A) Epee  |apc(A) | Viee(A) Ee | Efcc-Epec
(10"% erg) (10" erg) | (10"% erg)
Cu
Ryd. 2.864 [11.745 |-5.645 3.671 12367 |-5.674  |-0.0286
*;ydﬂl’i;’] 2.874 [11.872 |-5.670 3.615 |11.810 [-5.694 -0.0236
RZ?'W] - - - 3.615 |-- 5584 |- .
2.856 [11.640 [-5.550 3.600 [11.660 |-5.600  [-0.0499
Ag
Ryd. 3.232 |16.885 |-4.778 4068 |16.829 |-4.818 -0.0402
Ryd+P\V 3249 [17.161 |-4.811 409 |17.104 |-4.845 -0.0333
Exp. [18] | __ - s 409 |- -4.720 -
Ref- 117113 205 [17.240 |-4.687 4.1 17.23 4720 |-0.0325

Al
Ryd.  [3.205 |16.461 |-4.675 4028 116338 |-4.818  [-0.0402
Ryd+P\V {3222 |16.724 [-47002  |4.05 |16.607 |-4.845 |-0.0333
Exp. [18] | __ - - 405 |-- -5.424 s
Ref. (17113200 116.690 |-5.216 403 |16360 |-5344  |-0.0325

Ca
Ryd. 4.443 143.853 |-2.634 5.473 [40.984 -2.644 -0.0095
Ryd+P\V [4.468 |44.612 |-2.665 5.580 [43.435 -2.668 -0.0035

Exp JI8] | - - 5580 |- 2944 |-
Ref. [17]

Sr
Ryd. 4.824 |56.126 |-2.768 6.053 |55.441 -2.778 -0.0092
Ryd+P\V [4.845 |56.855 |-2.776 6.08 56.188 -2.784 -0.008

Bxp, [15] | .. - e 6.08 |-- 2732 -
Ref. [17]

In order to see whether the bcc phase is stable or not, we plot Bu(=3222-3232), By
(:(B..(BZZ+BZ3)-2BDZ), B11, B2 and B»; as a function of cell length @, in Fig 3 for Sr.
Figure 3 shows, that in tension, when the cell length a, is longer than in 6.424 A, B,
becomes negative, and in compression when a; smaller than 5.653 A, By, is violated.
Thus, according to the criteria given in Eq. (5), Sr under [100] loading has an elastic
stability region (ESR) and corresponds to the internal of variation of lattice parameter a;
between 5.653 A and 6.424 A. These ranges are given for metals considered in Table 3.

~ One can see from Fig. 2 that both fcc and bee phase fall into the mechanical stability
region (MSR). Hence, from the point of view of mechanical stability, fcc and bcc phase
is stable. From Fig. 3. it seen that the failure first occurs in tension when Cy>0 is
violated and in compression when C,>0 is violated. Table 3 summarizes the values of
lattice parameter a; stress (theoretical strength) at failure in tension and in compression.
Table 3 shows the MSR-I and MSR-II values for all fcc metals considered. The region
of lattice stability determined from the failure criteria is shown in Fig. 3. Theoretical
strengths in tension and compression are taken to be the stresses observed in Fig.2 at the
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boundaries of the region of stability. Table 3 lists the values of stress o; calculated at
failure in tension and compression. The other theoretical strength values are also given
in Table 3 for the sake of compression.

Table.3 Values of cell lengths a; in tension and in compression for Cu, Ag, Al, Ca,
and Sr for stress o7 (theoretical strength) where the Born stability criteria are violated.

MSR-I MSR-II
Metal |Failure in Compr.( B,)  Failure in Tens.( B,) B B,
a;(A) ai(A) 07(GPa) a(A) a;(A)
Cu 3.3480 3.8402 3.2250 2.8001 2.9298
275
Al 3.7526 4.2845 1.6442 3.1166 3.2882
1.417
Ag 3.7590 4.3654 2.7806 3.1860 3.2774
2.41" .
Ca 5.4550 6.4892 0.2536 4.7161 5.0110
. Sr 5.6530 6.4240 0.2443 4.6700 4.9600

*: are taken from Ref. [8]

Table. 4 Second-order elastic constants Cij(1012 dyn/cm?) at T=0K of some fcc metals

This Study Experiment [20]
Metal C lp Clzp C44p Cn ! C12T C44T Cu Cn Cau
Cu 1.6376 | 1.1919 | 0.6944 | 1.7054 | 1.2205 | 0.7287 | 1.700 | 1.225 | 0.758
Ag 1.1785 | 0.8307 | 0.5087 | 1.2488 | 0.8608 | 0.5456 | 1.240 | 0.934 | 0.461
Al 0.8655 | 0.6429 | 0.3627 [ 0.9195 | 0.6660 | 0.3910 | 1.143 | 0.619 | 0.316
Ca 0.2277 | 0.1335 { 0.1073 | 0.2969 | 0.1631 | 0.1436 | 0.228 | 0.160 | 0.140
Sr 0.1395 | 0.1047 | 0.0581 | 0.1453 | 0.1052 | 0.0618 | 0.153 | 0.103 | 0.099

Table S. Third-order elastic constants (Cjj) (10"12 dyn/cmz) of some fcc metals

-’

Cak Cu Ag Al Ca Sr
ch, -10.810 -8.329 -5.627 -2.485 -8.864
cT -10.730 -8.238 -5.558 -2.307 -7.962

H -10.400 -8.170 -5.390 -- --
C,,, (Exp.)

Cl, -7.633 -5.798 -4.018 -1.307 -6.323
cT -7.609 -5.772 -3.999 -1.257 -6.074
e -7.700 -5.870 -4.060 -- --

C,,, (Exp.)

Chs 0.871 0.514 0.503 0.1289 0.8635
r 0.881 0.524 0.511 0.1485 0.9626

Cizs 0.920 0.540 0.530 -- --

C1T2.3 (Exp.)

Experimental values are taken from [21].
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Also, it can be seen from Table 4 and 5 that the computed values of SOEC and
TOEC at atmospheric pressure and at T=0 K are in good agreement with their
experimental values. Especially, TOEC are in good agreement for the present total
energy. We believe that the volume dependent energy added to two-body potential
improved the present results.
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