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Abstract-For defining surface finish and monitoring tool wear is essential for -
optimisation of machining parameters and performing automated manufacturing
systems. There is very close relationship between tool wear and surface finish
parameters as surface roughness (R,) and maximum depth of profile (R). The machined
surface reflects the rate of tool wear and the plot of surface provides reliable
information about tool condition. In this paper an approach for estimating R, and R, in
milling process using the artificial neural networks is proposed. Feed-forward multj-
layered neural networks, trained by the back-propagation algorithm are used. In training
phase seven input parameters (v, f, d, Fy, F,, F; and Vb) and two output parameters are
used and the network architecture is as 7x6x6x6x2. It was found that the ANN results
are very close to the experimental results. The developed model can be used to define
the quality of surface finish in tool condition monitoring systems. :

Keywords- Tool condition monitoring, neural networks, surface texture analysis, tool
wear.

1. INTRODUCTION

In recent years automated manufacturing systems have been more widely used in
the production industry. Modern machining systems need the developing reliable on-
line cutting tool condition monitoring (TCM) systemns. Such an on-line TCM syster is
essential to change the tool in right time. The quality of products depends on
performance of their related machining operations to a great extent. For this reason,
intelligent sensing techniques have been developed for detecting factors such as chip
formation, tool condition, surface texture, machine-tool vibrations and diagnosing
failures occurring on machine tools. Among these the most active researches have been
intensified on tool wear and surface texture. In this study, cutting forces accepted as
reference to identify tool wear [1, 2] and surface roughness to identify surface texture
measurements [3, 4] have been performed. Tool wear affects the surface texture
seriously and therefore tool geometry changes. The surface texture, even under stable
machining conditions changes considerable rate because of variations on tool geometry.
Since the cutting tool being directly contacts on the machining surface, it provides
source of reliable and detectable information about the process, including tool wear and
machine vibrations to identify tool condition [5]. Many researchers have investigated
the correlation between surface roughness and tool condition. Whitehouse [6], has been
used random process analysis techniques, including spectral analysis of the surface
waviness, (o characterise the surface machined by sharp and dull tools and Peklenik (7],
applied auto-correlation to characterise the machined surfaces.
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A machined surface is negative replica of the shape of the cutting tool and it
reflects the volumetric changes in the shape of the cutting edge. Since metal cutting
process that is influenced by a large number of interrelated parameters, has a complex
character, it needs intelligent decision-making device to establish a reliable and accurate
TCM. In the last few years’ neural networks (NN) were widely used for solving non-
linear problems, particularly on TCM systems based on single and multi-sensor signals.
In this subject, some neural network architectures and training and learning
methodologies are reported by many researchers [8, 9].

In this study, a monitoring approach for estimating surface finish parameters (R,
R;) by means of artificial neural network (ANN) is proposed based on cutting force and
tool flank wear (V&) in milling. In addition to cutting force, machining parameters, i.e.
cutting speed (v), feed rate (f) and depth of cut (d), are also used as input parameters to
provide input data to the network.

2. EXPERIMENTAL INVESTIGATIONS
2.1. Experimental Set-up and Conditions

The experiments were performed on a knee-type high precision milling machine
(FU315 V2). The used experimental samples were medium-carbon steel 1040 (with
the size of 60x120) and the inserts were uncoated cemented carbide having zero rake
angle (SPMW 120408 P15-P30). The cutting parameters with four levelled used in
these experiments are shown in Table 1.

Table 1. The cutting parameters used

Cutting speed Feed Depth of cut
v {(m/min} F{mm/min} d {(mm)
113 200 1.0
140 250 1.5
178 315 2.5
226 400 3.5

The cutting force signals received from three-components dynamometer were
amplified and recorded in a PC using a microprocessor controlled data acquisition card.
Since thé cutting in milling is intermittent and oscillating is generated in force signals,
the average values of signals were recorded. The milling operation lasted until the
inserts reached to catastrophic failure. After the number of determined pass the flank
wears (Vb) were measured with a toolmaker’s microscope (Fowler-Sylvac 25) in
accuracy of 0.001/0.0001 mm and surface roughness (R,) and maximum depth of
profile (R;) are measured using a stylus-based instrument (Taylor Hobson-Mitutoyo) in
accuracy of 0.1 um;

2.2. The Experimental Results

In the experiments, number of 129 data patterns was extracted from 16 tests. It
was found that the depth of cut had less effect on the flank wear and surface finish
parameters and while flank wear increases with machining at low feed rates, it reduces
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at high feed rate in response to same metal removal rate [10]. Figure 1 shows the
variation of R, and R, with machining time for different Vb rates.
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Figure 1. Variation of R, and R, with machining time for various Vb

It can be seen in the figure that the Vb increase gradually as proportional to machining
time in steady-state portion. The R, and R, decrease until to a certain Vb and then start to
increase. Therefore the variation of R, and R, is strongly related to Vh. Table 2 shows
the variation of R,, R, plots depends on the number of pass and Vb obtained in one test.
This situation can even be observed by sight. As can be seen in Table 2, the tip of 3rd
insert has micro-fractured at 30th pass; therefore the shape of curve has changed as
different as the others. When the catastrophic failure occurs on the inserts, the surface
texture deteriorates rapidly and surface finish parameters increase considerably. The
surface machined with a sharp tool differs from the surface machined with a dull tool.
The marks generated by a cutter are predominant in the actual machined surfaces. As
the cutting edge becomes more irregular with scars at the cutting tip, the appearance of
machined surface tends to be more smeared and the grooves corresponding to feed
marks become less predominant [5]. The plots clearly show that the area increases as
the quality of surface deteriorates. As the image deteriorates, the non-uniformity of the
vertical images increases. So in order to estimate the surface finish, a relatmnsth can be
set up between tool wear and surface finish parameters.
Table 2. The plots of R, and R, corresponding to various number of pass

Cutting parameters
(v=1 13 m/min; =200 mm/min; d=1 mm)}

Number of Vb Ra Rt
pass {mm) (umy ()

W 24 0383 12 83
\/\A/\‘\/\/\/\ \/\/\/\J\f \/\/ 30 0469 L1 88
/\/M\/\/\/VV\/\/W\ 6 os 20 103

The plots of R, and R,
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42 0.639 22 12.6
48 0.774 24 15.7
54 0.837 25 16.0
60 0.994 35 16.6

3. DES.IGN OF A NN FOR ESTIMATING SURFACE ROUGHNESS

3.1. The Structure 'of NN Used

The artificial neural networks are based on the neural architecture of human brain,
which process information by means of interaction between simple processing elements,
called neurons. Each neuron is connected to the neurons of in adjacent layer with weigh
vector, which represent the strength of information. A threshold value (&) is associated
with each neuron. The output of each neuron is determined by the level of the input
signal in relation to #. They are trained through examples patterns rather than
programmed by software [11]. The network consists of three processing unit: the input
layer (L), the hidden layer/layers (Ly) and the output layer (L,). For modelling surface
roughness, multi-layered neural networks: were used in the present work. The activation
function in the NN is sigmoid function, which is a non-linear function. The NN have to
be trained as off-line with BB type training algorithm [12] and then can be-tested on-
line with feed-forward method. NNs work through a connectionist model where, the
input nodes supply weighted values (@) of each node after adding a threshold value to
the nodes in the hidden layer. A similar process is used between the hidden and output
layer. The weights and threshold values are adjusted until the error comes to preset
limit, or the desired number of iterations is reached [11].

The activation function f{x) (used here is the sigmoid function) is given by:

. 1
flx)=-—-r B¢

l+e”
where; ‘
x=You+6ad x=) 0v+0 , 2
u= input node values, v= hidden node values

At the training phase, the initial values of @ and & are randomised and usually lie
between —1 and +1. When the error (E) between the target value (7) and output value



Cutting Tool Condition Monitoring Using Surface Texture 239
via Neural Network

(O) of the process is large, wand & are modified and the outputs recalculated. The error
between t.arget and calculated output is given by:

E=—§ sar-0y - - @)
where i is the index for the input, k is index for the output P is the number of patterns
and m is the number of output nodes.

The weights are up-dated as follow by considering the error for the output layer
(&) and for the hidden layer (&;) can be expressed as:
52 =01-0)(T-0) 4
o, =v(-v) ) 8,w . &)
The error is then back propagated through the network in such a way that the
weights are modified by an amount Aw(N). Incremental changes in the weights during
Nth iteration, between the nodes of two layers are modified as foliows : _

Ao (n)=nd+ahw (N -1) (6)
where 77 is leamning rate, which determines the influence of error over weight change,
and ¢ is the momentum factor which affects the performance of the network.

3.2. Training of The Neural Network

The NN is lramed using a large number of input data w1th correspondmg output
data [13] An mcrease in input features generally improves classification performance.
While the mput data consists of information about test conditions, the output identifies
the failure level of specimen. All the patterns were normalized in the .intervals -1
dividing the feature value by its maximum in the training set to fit to sigmoid function.

As first step in the training phase, various NN architectures have been tested to
obtained effective input features, the number of hidden layer (NH) and the number of
nodes in each hidden layers (NH;), number of iteration (NI), learning rate (n) and
momentum factor (¢t). Finally, it ‘was selected 7 features (3 sensor features and 4
process features) for input layer, and 2 features for output layer. After several pre-
training -experiments, NN architecture and training parameters were kept constant as
1=0.5, a=0.5, NI=20.000 and NH;=7x6x6x6x2 respectively. In order to find optimum
training parameters, their effects on the NN performance must be analysed.

3.2.1. Training error

The training error is a criterion for obtaining optimum training parameters and
network performance. The back-propagation of error is continued for a number of
iterations until an acceptable error level is achieved. Training with BB, large number of
iterations are required to back-propagate the error from output to input layer. Such
process is carried out to adjust the values of weight to achieve certain estimation
accuracy. The average error can converge to a global or a local minimum. The average
training error as a function of the number of iteration has been given in Fig. 2.

‘Tt is seen that while the error too high in low iteration it is decreased rapidly with
the increased NI The average training error obtained was 7.16% for R, and 4.85% for
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R; at 20.000 iterations. To obtain an acceptable error, further training experiments
should be carried out using different values of training parameters.
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Figuare 2. The variation of training error with the iteration number
3.2.2.Defining the number of hidden layers énd the neurons in the hidden layers

Depending upon the NN architecture, the testing error can be nearly constant with
the increase of iteration, or more than training error. NH,; is important factor to establish
NN architecture. Variation in hidden layer size affects the system performance. The NN
with two or more hidden layers provides better performance than with a single hidden
layer at solving complex problems. After a certain point, more layer and more nodes in
a hidden layer does not improve network performance, because of increasing
complexity and reduce learning speed. It sometimes cannot be achieved. With the
increase of neurons in Ly, the error converges faster to a smaller value. The optimum
NH and NH; were found as three and 6x6x6 respectively. The more layer and the more
nodes in the hidden layers were tested but this caused increasing average training error.

3.2.3. Defining the learning rate

~During the training a new weight value is formed by stepping from the present
position in the direction of steepest descent, wherein the size of the step is governed by
M, which affects the training speed. The large 7 provides rapid learning but might also-
result in oscillation; the network may converge to a local minimum instead of the global
minimura in the error space. It is better to initialise the training with a low value of n,
and to increase it gradually. This would prevent large number of iterations. The NN was
trained with various learning rates (n=0.05-1.5). Optimum learning rate was found as
1=0.8 including training error 11%.

3.2.4.Defining the momentum factor

To avoid oscillation in the results, Rumelhart and McClelland [12] suggested
momentum term. The momentum term allows fast learning at low 1 by taking into
consideration the changes made in the weights during the last iteration [13]. The NN
was trained in range =0.1-1. Optimum momentum factor was found as a=0.3.

As a result, the NN model was trained further with the training parameters of
n=0.8 and 0=0.3 at 50.000 iteration and average training error was reduced to 4%. The
NN architecture established as 7x6x6x6x2 is shown in Fig. 3. By training the NN with 6
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input features, 0.5 learning rate, 0.4 momentum factor, 1000 iteration number, 2 hidden
layer and 9 nodes in each hidden layer, the average training error were found 15%. Also
when the number of hidden layer and the nodes in each layer was taken too more the
learning speed of NN has decreased considerable but the expected result could not have
obtained. After training the NN model, the optimum training parameters are recorded,
and then the NN is ready for application in real machining conditions to evaluate the
surface texture with the set of data of input features.

Input Hidden . Output
Inputs iayer layer layer
O

}th kth
neuron B neuron neuron

Figure 3. Neural network model used

4. COMPARISON THE RESULTS OF NN BASED MODEL TO THE
EXPERIMENTAL RESULTS

The results of the NN model trained with extracted patterns for estimating R, and
R, were compared to the experimental data. The data recorded are noisy and effected by
many cutting parameters and cutting conditions either defined or undefined. Therefore,
during training, error convergence became slower and to a high value. At high learning
rate oscillation of average error occurred, and it converged to a very high value. To keep
the training error in an acceptable limit, we have to use a large iteration and three
hidden layer, In test phase, in order to observe the performance of NN architecture, six
test patterns were selected. The comparatively test results has been given in Table 3,

Table 3. The results of ANN and experiments for surface finish (R, and Ry

d v f F, F, F, Vb  Exp.results ANN  Exp.results ANN
mm_{(m/min) (mm/min} N) N} MN)  (em} Ry(um) R,(um) R(um) R, (um)
1 113 200 62 89 169 0.228 3.7 34 25 26
1 113 200 87 115 225 0.383 1.2 1.1 8.3 9
35 226, 400 203 240 477 0.367 3.0 3.0 16.7 16
35 226 400 208 300 505 0424 3.0 3.0 16.2 16
1.5 178 250 78 108 .200 0.203 26 25 14.6 14.7

1.5 178 250 88 120 250 0.305 2.1 2.0 10 3]
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The graph of experimental results and ANN results have been shown in Fig 4 and
5 obtained with the cutting parameters of v=113 m/min, f= 200 mm/min and d=1 mm.
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Figure 4. The comparison of experimental and ANN test results for R,
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Figure 5. The comparison of experimental and ANN test results for R;

As a result, optimum surface finish parameters have been obtained including
testing error 5.9% for R, and 3.9% for R, It was found that the ANNs results were very
close to values of R, and R, on experimental results. Very good network performance
has been achieved with the designed NN. :

5. CONCLUSIONS

1. To establish an analytical modelling for estimating surface finish is difficult because
of large number of definable and mdefmable interrelated parameters Instead of it,
NN based model was proposed.

2. It is clear that the plots of surface finish parameters point to increased- deterioration
and tool breakage even before it happens. So by measuring machined surfaces, tool
condition can be monitored indirectly. By analysing machine surface the condition of -
cutting tool (sharp, dull or catastrophic failure) can be detected effectively.

3. The calculated test error is a few higher than the training error. This result can be
attributed to presence of some contradicting patterns in the training set, build- up edge
formation, chipping, vibration and intermittent cutting.

4. The proposed NN was established with the network architecture including seven
input parameters (v, £ d, F, F,, F, Vb), two output parameters (R, R;} and three
hidden layers that contain six neurons in each layer. The NN was trained with
learning rate 0.8, momentum factor 0.3 and number of iteration 50.000. As a result,
R, and R, were estimated with the average error of 5.9% and 3.9% respectively. The
more hidden layer and nodes were not found useful to get less error.
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. During machining, it is not practical measuring R, and R, with a stylus-based

instrument. For on-line measurement a CCD camera, connected to computer
equipped with an image acquisition capability, must be used, so surface structure can
be monitored continuously and the machined surface images can be analysed rapidly.
The developed surface finish-estimating model can be used for analysing machined

surfaces and defining tool wear in real-time tool condition monitoring systems.
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